JPH0316023A - Magnetic disk and method and apparatus for producing the disk - Google Patents

Magnetic disk and method and apparatus for producing the disk

Info

Publication number
JPH0316023A
JPH0316023A JP5636190A JP5636190A JPH0316023A JP H0316023 A JPH0316023 A JP H0316023A JP 5636190 A JP5636190 A JP 5636190A JP 5636190 A JP5636190 A JP 5636190A JP H0316023 A JPH0316023 A JP H0316023A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic disk
surface wave
disk
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5636190A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Chiba
千葉 克義
Masayuki Katsumoto
勝本 正之
Yasutaro Kamisaka
保太郎 上坂
Hajime Fukuya
福家 元
Heigo Ishihara
石原 平吾
Iwao Matsuyama
松山 巌
Naoki Kodama
兒玉 直樹
Hitoshi Inoue
均 井上
Yoshiharu Terada
義治 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5636190A priority Critical patent/JPH0316023A/en
Publication of JPH0316023A publication Critical patent/JPH0316023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prevent the reflocculation of the magnetic powder in a magnetic coating compd. and to obtain the magnetic disk having excellent electromagnetic characteristics, such as S/N by orienting the magnetic powder by applying surface waves to magnetic recording films while maintaining the undried state of the magnetic recording films. CONSTITUTION:The magnetic powder is dispersed and oriented by applying the surface waves to the magnetic recording films of a substrate 3 while the undried state of the magnetic recording films 100, 100' is maintained. For example, the material coating compd. is applied by spin coating on the aluminum disk 3 and the disk is immediately mounted to the device for producing the magnetic disk, then the impression of the surface waves of random mode and the intrasurface orientation of magnetic fields are simultaneously executed. The coating compd. is thereafter cured at 210 deg.C to form the magnetic recording films 100, 100'. A surface wave oscillator 4 having a flat con tact surface with the magnetic disk 3 is used and the surface waves of the random type mode are generated by adjusting the degree of clamping of the surface wave oscillator 4 and a receiving base 2. The reflocculation of the above-mentioned powder in the magnetic coating compd. is prevented in this way and the magnetic disk having the excellent electromagnetic characteristics is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野1 本発明は,記憶装置等に用いる塗布型の磁気ディスク及
びその製造方法並びに磁気ディスクを製造するための磁
気ディスク製造装置に関する。 〔従来の技術] 従来の塗布型磁気ディスクの製造方法は、磁性粉をバイ
ンダー(高分子結合剤)又はその溶液中にサンドミル,
二−ダ,ボールミル等を用いて分散せしめて磁気塗料と
し、これを基板上に塗布し、必要に応じて配向させ、熱
硬化し、研摩するこヒにより行なっている,さらに必要
なら塗膜上に潤滑剤を塗布している。バインダーは通常
熱硬化性樹脂が使用されるので熱硬化するが、単に加熱
のみで用いる場合もある.また通常、磁気塗料は、磁性
粉の再凝集を防ぐために、保存中は撹拌される。 近年、磁気ディスクの高密度化が進むにつれて,より微
粒子の磁性粉が用いられるようになった。 このような磁性粉を用いた磁気塗料は再凝集し易く、上
記撹拌だけでは再凝集を完全に防ぐことば困難である.
このような問題を解決するために、特開昭62−186
29に記載の技術は、支持体に磁性塗料を所定の厚さに
均一に塗布し、超音波振動を付与した直後、一様な磁場
を印加して磁性粉を配向させるものである。この方法に
より、再凝集が生じてもその構造を破壊し、磁性粉の配
向磁場による回転運動を容易にして高度に配向させ、角
形比の向上を図ることができる.また、基板に垂直な磁
界と超音波振動を印加して垂直配向の磁気ディスクを製
造することが特開昭60−83224に記載されている
[Industrial Field of Application 1] The present invention relates to a coated magnetic disk used in storage devices and the like, a method for manufacturing the same, and a magnetic disk manufacturing apparatus for manufacturing the magnetic disk. [Prior Art] A conventional method for manufacturing coated magnetic disks involves applying magnetic powder to a binder (polymer binder) or its solution in a sand mill.
The magnetic paint is dispersed using a secondary machine, a ball mill, etc., and then applied to the substrate, oriented as necessary, cured with heat, and polished. lubricant is applied to the The binder is usually a thermosetting resin and is cured by heat, but it may also be used simply by heating. Magnetic paints are also typically stirred during storage to prevent reagglomeration of the magnetic powder. In recent years, as the density of magnetic disks has increased, finer particles of magnetic powder have come to be used. Magnetic paints using such magnetic powders tend to re-agglomerate, and it is difficult to completely prevent re-agglomeration with the above-mentioned stirring alone.
In order to solve such problems, Japanese Patent Laid-Open No. 62-186
The technique described in No. 29 involves applying a magnetic paint uniformly to a predetermined thickness on a support, immediately after applying ultrasonic vibration, and applying a uniform magnetic field to orient the magnetic powder. By this method, even if reaggregation occurs, the structure is destroyed, the magnetic powder is easily rotated by the orienting magnetic field, and the magnetic powder is highly oriented and the squareness ratio can be improved. Furthermore, Japanese Patent Laid-Open No. 60-83224 describes manufacturing a vertically oriented magnetic disk by applying a perpendicular magnetic field and ultrasonic vibration to the substrate.

【発明が解決しようとする課題l 上記特開昭62−18629に記載の従来技術は、面内
配向の磁気記録媒体としての優れた電磁気特性を持つ、
例えばS/N比や角形比が良好な、高密度化した磁気デ
ィスクの製造については何らの配慮もなされていない。 すなわち、上記従来技術は,磁気ディスクではなく磁気
テープの製造に関するものである。磁気テープは厚い塗
膜(1μm以上)を有し、このような塗膜の材料である
磁気塗料は.1000cpから2000cp程度の高粘
度である。それ故、一度超音波振動により高分散化した
塗料は短時間では再凝集しないので、塗膜の状態で磁性
粉を分散した直後に磁場配向すれば容易に配向すること
ができる.それに対して高密度化した磁気ディスクの塗
膜は薄い(0.75μm以下)。それ故、このような塗
膜の材料には500cp以下の低粘度の磁気塗料を用い
る必要がある。低粘度の塗料は高粘度の塗料より凝集し
易いので、塗布した状態での凝集の度合は高粘度の塗料
に比べて格段に大きい。そして、この凝集は上記従来技
術で用いられている超音波振動を印加しても破壊が難し
く、塗膜は高分散状態とならない,さらには、分散した
磁性粉も超音波振動を印加してから磁場配向を行なうま
でに時間があると、たとえ短時間でもその分だけ再び凝
集してしまう.そのため、製造した磁気ディスクは、種
々の電磁気特性、例えば角形比等が劣化するという問題
があった。 また、上記特開昭60−83224に記載され゛た垂直
配向磁気ディスクは磁性粉が垂直方向に配向されるとい
う固有の性質の為、面内配向磁気ディスクに比べて1l
磁気特性として、S/N比が小さく,欠陥が発生し易く
、出力が小さい等の問題があった. 本発明の目的は、少なくとも磁性粉を分散させた磁気塗
料を用いて面内配尚の磁気ディスクを製造するに際し、
磁性粉の再凝集を防止し、電磁気特性に優れた高密度な
面内配向磁気ディスクを製造する方法及び製造された面
内配向磁気ディスク並びにこのような磁気ディスクを製
造するための磁気ディスク製造装置を提供することにあ
る。 【課題を解決するための手段1 上記目的は、(1)高分子結合剤中に少なくとも磁性粉
を分散させた磁気塗料を非磁性基板上に塗布した後、磁
性粉を配向せしめて磁気記録膜を製造する磁気ディスク
の製造方法において,上記磁性粉の配向は、上記磁気記
録膜の未乾燥の状態を維持しつつ、該磁気記録膜に表面
波を与えることにより行なうことを特徴とする磁気ディ
スクの製造方法、(2)上記表面波は、定在波又は干渉
波を発生させる条件の振動である上記1記載の磁気ディ
スクの製造方法、(3)高分子結合剤中に少なくとも磁
性粉を分散させた磁気塗料を非磁性基板上に塗布して磁
気記録膜を製造する磁気ディスクの製造方法において、
上記磁気記録膜の未乾燥の状態を維持しつつ、基板とそ
の磁気記録膜に表面波を与え、磁性粉を分散させると共
に配向させることを特徴とする磁気ディスクの製造方法
、(4)上記表面波は,定在波又は干渉波を発生させる
条件の振動である上記3記載の磁気ディスクの製造方法
、(5)高分子結合剤中に少なくとも磁性粉を分散,配
向させた磁気記録膜を非磁性基板上に配置した磁気ディ
スクにおいて,上記磁性粉は、ディスクの中心に対し同
心円状に分布し、半径方向にその密度勾配が存在してお
り,かつ面内配向していることを特徴とする磁気ディス
ク、(6)高分子結合剤中に少なくとも磁性粉を分散さ
せ、かつ未乾燥状態の磁気記録膜を有する非磁性基板を
取り付ける受台と,上記非磁性基板上の磁気記録膜に表
面波を与えるための表面波振動子を有することを特徴と
する磁気ディスク製造装置によって達成される.この製
造装置に更に、上記非磁性基板の上下に少なくとも1対
の磁石を設ける等の、上記磁気記録膜に磁場を印加する
手段を設けても良い. 本発明の特徴は磁気記録膜への表面波の印加にある.表
面波のモードは大きく分けて同心円型,ランダム型,干
渉型の3つがある。表面波を例えば基板に印加すること
によって磁性粉が分散される.この場合には、分散は特
に表面波の一種である界面または表面張力波によって行
なわれる。上記同心円型の例は第3図を、上記ランダム
型の例は第4図を、上記干渉型の例は第5図(B)及び
(D)をそれぞれ用いて後に説明する.本発明において
は,表面波印加時に配向用の磁場を印加したり、磁気デ
ィスクを回転させることにより,磁性粉の分散,配向を
表面波印加のみの場合と比較して、より高めることがで
きる。磁場は不均一磁場でも良い.磁場の印加は表面波
印加後でもよい。 本発明における磁気塗料は、磁性粉以外にさらにアルミ
ナ等のフィラー(補強剤)を含んでいる方が好ましい.
また非磁性基板としては、金属又はセラミック基板のよ
うに表面波の振動が直接かつ有効に伝播する材質からな
るものが好ましい。 磁気ディスクは、例えば、5インチアルミニウム円板(
内径40.0+++mφ,外径130mmφ,厚さ1 
. 9 +++r++)の内周部で約0.55±0.0
6μm又はそれ以下の膜厚に、外周部で約0.65±0
.05μm又はそれ以下の膜厚に塗膜を形威して後、塗
膜を熱硬化し、内周部で約0.35μm以下,外周部で
0.45μm以下になるように研削して得る.このよう
にして例えば記#密度30,OOOBPI以上の磁気デ
ィスクが得られる. 【作用】 磁性塗料を塗布した非磁性基板に表面波を印加すること
により、塗膜中の磁性粉は分散,配向される。上記従来
技術の特開昭62−18629,特開昭60−8322
4に記載された超音波振動は、基板(テープ又はディス
ク)をその厚さ方向に単に上下振動させるだけである.
一方、本発明の表面波は基板の面方向に進行する波なの
で、磁性粉の凝集塊を細分化し又互いに接触している凝
集塊を引き離すのに有効で、磁性粉の分散,配向の効果
が大きい。本発明においては、超音波振動は表面波を発
生する為の手段にすぎない.磁性粉の分散,配向の状態
は、表面波の印加の仕方により異なる.表面波のモード
は同心円型モード,ランダム型モード及び干渉型モード
の3つに大きく分けることができる。 このモードの違いを第3図,第4@I及び第5図(B)
を例にとり説明する。 表面波振動子4が,第5図(B)に示すように、一円周
上に等角度で配置された3個の突起を有している場合を
例にとり説明する。第3図は同心円型モードの表面波を
印加した場合の磁性粉の分散,配尚の状態を示す磁気デ
ィスクの平面図である.このような同心円型モードを発
生させるのは,上記3個の突起に印加される表面波の周
波数,位相及び振幅が等しく、かつ周波数が基板(厳密
には磁性塗膜を含めたもの)の持っている固有の共振周
波数の場合に得られる.この場合の表面波は定在波であ
る.例えば直径5.25インチ、厚さ2mmのアルミニ
ウム円板(内径40+m,外径130mm)を基板とす
るときは、約37KHz(IW〜100W可変も可)又
はその整数倍の周波数で振動させればよい.この場合の
表面波は定在波である.a性粉は、ディスクの中心に対
し同心円状に分布し、かつ半径方向にその密度勾配が存
在する。密度勾配の繰り返し数は表面波の周波数によっ
て変えることができる。また、ディスクを回転させると
より効果がある. 第4図はランダム型モードの表面波を印加した場合の磁
性粉の分散,配向の状態を示す磁気ディスクの平面図で
ある。上記3個の突起のうち少なくとも1個に印加され
る表面波の位相が他の2つと異なった場合に得られる.
磁性粉は均一な密度で分布しているがその方向はランダ
ムである。 また、第5図(B)は干渉型モードの表面波を印加した
場合の磁気ディスク面内の表面波の状態を示す図である
。上記3個の突起からの表面波伝達のバランスがくずれ
た場合に得られる.例えば上記3個の突起が基板に与え
る圧力の違いがある。 磁性粉は磁気記録膜の膜厚方向において偏在している。 この為その密度は大きい。なお、ここで突起とは表面波
を基板に与える表面波振動子内の部分のことであり、人
口的に加工した突起の他、表面波振動子内のある部分が
結果として表面波を基板に与えている場合を含む。表面
波を発生させる為の突起の条件には、突起の配置(ディ
スク中心からの距離,突起間隔等)、突起の数,突起の
接触面積と圧力がある。突起の配置は、ディスクの中心
部に、中心部のまわりに置くのが望ましい。 また、ディスクの中心に対し対象にする必要はなく種々
の配置が可能である。例えば、突起を一部の領域に偏っ
て配置し、ディスクの所望の領域のみを面内配向させる
こともできる。金属体(アルミニウム,他)やセラミッ
クス(ガラス,他)は振動の伝播速度が大きいので、こ
れらをディスは少なくとも1個あれば良い。特に1個の
場合は、表面波振動子をディスク面に対し安定に保持す
る為に、弾性体(ゴム,テフロン等)から或る疑似突起
を設けると良い。この場合の表面波モードは同心円型モ
ードのうちの定在波をとる.突起の接触面積はディスク
の面積に対して点と見なせる程度に小さい必要がある.
さもないと表面波は発生せず従来技術と同様の超音波振
動となる.突起の接触圧力は表面波が進行する値に設定
する.磁性粉を高分子結合剤中に分散させた磁気塗料を
非磁性基板上に塗布して磁気記録膜を形威し、記録膜が
未乾燥の状態で、基板に表面波を印加すると、記録腹中
で磁性粉の再凝集が生じてもその構造が破壊される。ま
た、磁界を作用させることにより磁性粉の向きを所望の
方向に整列させることができる. 磁性粉が微粉末のとき、例えば平均粒径が0.4μm以
下、より好ましくは0.2μm以下のような微粉末のと
き,磁性粉が塗膜中で移動,回転する抵抗が小さいため
,磁性粉の共振周波数と基板に加える表面波の周波数が
ほぼ一致すると,磁界を印加しなくとも磁性粉をある方
向に、のぞましくは面内方向にある程度整列させること
ができる. 本発明の磁気ディスク製造装置の一例の概略断面図を第
1図,第5図(A)に示す。テフロン等の位相可変型超
音波を緩和する材料からなる受台2がモーターエにより
回転可能に配置される.この受台2の上にアルミニウム
基板3が取り付けられ、このアルミニウム基板3に直接
表面波が伝わるように、金属性の表面波振動子4がねじ
止めされる.表面波振動子4には超音波振動子6が固着
され両者は機械的に結合している.超音波振動子6には
コイル7が巻かれており、このコイル7に超音波発振器
10から電極スリップリング8,8′と、通電用摺動ピ
ン9.9′を経て闘動電流が供給される.超音波振動効
率を上げるために容器工1内は樹脂で満たされる。なお
、受台2を基板3の上側に、表面波振動子4を基板3の
下側に配置してもよい.磁場を印加するための磁石は図
に示したように円板3の上下に1対配置した.この場合
,反撥磁界が得られる.なお,磁石の配置は,例えば特
公昭56−45210に記載のように、上下の位置をず
らして設ける等種々の配置をとることができる. なお、第11!Iの表面波振動子4は円環状であるが、
第5図(B)及び第5図(C)に示した表面波振動子4
にはさらに効果を高めるために,ディスクの基板と接触
する部分に突起103を設けている.なお、第5図(B
)及び第5図(C)では3点干渉モードを,第5図(D
)及び第S図(E)では8点干渉モードを示したが、当
然その他の多点干渉モードも有効である. 第1図の装置は、他の塗布装置で基板に磁気塗料を塗布
して後、分散,配向を行なうに適した一例を示したが、
この装置で、塗布,分散,配向及び磁場配向を行なうこ
ともできる。その場合、磁石は移動可能にし、磁石を除
いた状態で磁気塗料を塗布し、その後磁石を所定の位置
に配置して分散,配向及び磁場配向を行なうことが好ま
しい。 [実施例】 以下実施例に基づき本発明を説明する.実施例1 ポリビニルブチラールの粉末70gと針状γ一Fe,O
,磁性粉(平均粒径: 0.35X0.06pi,抗磁
力Hc : 3300e,比表面積BET:22m”/
g)700gを二−ダー混線機に投入し、約15分間二
−ダー混線を行なう.次に酢酸セロソルブ250gを徐
々に添加し,ニーダー混線を約4時間行なう.この混練
物480gをとり、アルミナ3 g +酢酸セロソルブ
700gと共に、容積3Qのポールミルポットに入れ、
7日間ボールミル混練を行ない磁性粉,アルミナを良好
に分散させる.つぎにフェノール樹脂120g,40%
のエポキシ樹脂のプチルセロソルブ溶液300g,プチ
ルセロソルブ500gを添加混合し、磁気塗料を調合す
る。次にこの塗料を,予め表面を清浄にした直径5.2
5インチ,厚さ2n+m(内径40If!l,外径13
0mm)のアルミニウム円板3に回転、塗布した後、直
ちに第l図に示した磁気ディスク製造装置に取り付け、
ランダム型モード表面波印加と面内磁場配向を同時に3
0±5秒間行なった。 その後210℃で硬化し磁気記録膜100,100′を
形戊した。表面波振動子4は,人工的突起が設けられて
いない、磁気ディスク基板3との接触面が平坦なものを
用いた。表面波振動子4と受台2との締付具合を調節す
ることによりランダム型モードの表面波を発生させた。 次に,磁気記録膜の角形比を測定した。表面波振動子4
に印加する超音波の振動数と得られた磁気記録膜の角形
比(Br/Bm)との関係を第2図の曲線aに示す。図
に見られるように、表面波を印加することにより、角形
比の良品基準0.55を越える磁気ディスクが得られる
。また、超音波振動数を高くーすると角形比は増加し、
さらに高くすると飽和する。より好ましい超音波振動数
は30KHz以上、さらに好ましい超音波振動数は35
KHz以上である. 上記角形比測定後、磁気記録膜を加工しその内周部の膜
厚を0.32μmとした。この磁気ディスクの記録再生
特性をギャップ長0.5μmのMnZnフェライトヘッ
ドにより測定したところ、表面波を与えないで得た従来
の磁気ディスクのそれに対し、S/N比が5〜10%向
上した。 実施例2 針状CO−γ−Fe20,磁性粉(平均粒径:0.40
X0.07μm,抗磁力Ha : 6500e,比表面
積BET : 22.5m”/g)を用いた外は実施例
1と同様の処理を行なった.その結果,角型比が小さか
った。そこで、表面波のモードをランダム型モードから
同心円型モードに替え同様の実験を行なった。この場合
,表面波振動子41として,一円周上に等間隔に3個の
突起103が配に示す通りである.S/N比は従来のそ
れに対して5〜10%向上した。 実施例3 針状微粉Co一γ一Fe2o3磁性粉(平均粒径:0.
2X0.02μm,抗磁力Hc:7700e,比表面積
BET:50m2/g)を用いた外は実施例1と同様の
処理を行なった.その結果、角型比が小さかった.実施
例2で用いた同心円型モードの表面波を印加しても同様
であった.そこで、干渉型モードの表面波を印加した。 表面波振動子4は,実施例2の同心円型モードの場合と
同じものを用いた。(第5図(B)及び第5図(C)参
照)その結果は第2鋒髪■示す通りである。S/N比は
従来のそれに対してS〜10%向上した。 なお、実施例1から実施例3に示したように、用いる磁
性粉の抗磁力Haと比表面積BET値が大きくなるにつ
れて,ランダム型モード,同心円型モードの順に分散,
配向の効果が小さくなり、最も分散,配向の効果が大き
い干渉型モードの使用が必要となることがわかった。 実施例4 粉末状のエポキシ樹脂25重量部と板状六方晶系バリウ
ムフェライト磁性粉(直径約0.1μm,抗磁力Hc:
6550e,比表面積BET:30m”/g)100重
量部及び単結晶アルミナ5重量部を十分混合した後、シ
クロへキサノン10重量部を添加して、ニーダー混線機
中で二−ダー混線を行なった。その後、さらにシクロへ
キサノン5重量部を添加して約4時間二−ダー混棟を続
けた. 上記混棟物を容積3党のポールミルポットに入れ、シク
ロヘキサノンとイソホロンの混合溶媒140重量部を加
え、3日間ボールミル混練を行ない、磁性粉を分散させ
た.つぎに、フェノール樹脂25重量部とビニル樹脂6
重量部をシクロヘキサノン・イソホロン・ジオキサンの
混合溶媒490重量部に溶解した溶液を加えて磁気塗料
を調製した.つぎに,予め表面を清浄にした直径5.2
5インチ,厚さ21mlのアルミニウム基板3上に上記
塗料を回転塗布した。その後、これを第1図に示した磁
気ディスク製造装置に取り付け、干渉型モードの表面波
を印加した。表面波振動子4は実施例2,3で用いた3
個の突起を有するものを用いた。(第5図(B)及び第
5図(C)参照)この場合、干渉型モードの表面波の印
加のみで配向させたものと、磁界を同時に印加して面内
配向させたものと二組製造した。 さらに塗膜を210℃で硬化して磁気記録膜100,1
00’ を形威し、つづいて角形比を測定した。次に表
面加工(粗さRa<0.02μm)シテ磁気記録膜10
0,100’ を0.3μm(7)厚みとして、フッ素
系液体潤滑剤を塗布し磁気ディスクとした.この磁気デ
ィスクの電気特性をギャップ長0.3μmのメタルイン
ギャップ型ヘッドを用いて測定したところ、表面波を印
加させることなく製造した従来の磁気ディスクのそれに
対してS/N比が、磁場配向しないものは2〜6%、配
向したものは7〜12%向上した。また磁場配向して製
造した磁気記録膜の角形比と表面波振動子4に印加する
超音波振動数の関係は,第2図曲線Cに示した実施例3
の場合とほぼ同じであった.すなわち,干渉型モードの
表面波を印加すると、【発明の効果] 本発明の磁気ディスクの製造方法は、磁気塗料中の磁性
粉の再凝集を防止し、S/N比等の電磁気特性に優れた
磁気ディスクを得ることができる.
Problems to be Solved by the Invention The prior art described in JP-A-62-18629 has excellent electromagnetic properties as an in-plane oriented magnetic recording medium.
For example, no consideration is given to manufacturing high-density magnetic disks with good S/N ratios and squareness ratios. That is, the above-mentioned prior art relates to the manufacture of magnetic tapes rather than magnetic disks. Magnetic tape has a thick coating (1 μm or more), and the material for such coating is magnetic paint. It has a high viscosity of about 1000 cp to 2000 cp. Therefore, once the paint is highly dispersed by ultrasonic vibration, it will not re-agglomerate in a short period of time, so it can be easily oriented by applying magnetic field orientation immediately after dispersing the magnetic powder in the form of a paint film. In contrast, the coating film of a high-density magnetic disk is thin (0.75 μm or less). Therefore, it is necessary to use a magnetic coating material with a low viscosity of 500 cp or less as the material for such a coating film. Since low-viscosity paints tend to coagulate more easily than high-viscosity paints, the degree of aggregation in the applied state is much greater than that of high-viscosity paints. This agglomeration is difficult to break even when the ultrasonic vibrations used in the above-mentioned conventional technology are applied, and the coating film does not become highly dispersed. If there is time before the magnetic field alignment is performed, even if it is for a short time, the particles will aggregate again. As a result, the manufactured magnetic disks have a problem in that various electromagnetic properties, such as squareness ratio, etc., deteriorate. Furthermore, the vertically oriented magnetic disk described in JP-A No. 60-83224 has a unique property that the magnetic powder is oriented in the vertical direction, so it is 1 liter smaller than the in-plane oriented magnetic disk.
There were problems with its magnetic properties, such as a low S/N ratio, a high tendency for defects to occur, and a low output. An object of the present invention is to provide the following advantages when manufacturing a magnetic disk with in-plane alignment using a magnetic paint in which at least magnetic powder is dispersed.
Method for manufacturing a high-density in-plane oriented magnetic disk with excellent electromagnetic properties by preventing re-agglomeration of magnetic powder, the manufactured in-plane oriented magnetic disk, and a magnetic disk manufacturing apparatus for manufacturing such a magnetic disk Our goal is to provide the following. [Means for Solving the Problems 1] The above objectives are as follows: (1) After applying a magnetic paint in which at least magnetic powder is dispersed in a polymer binder onto a non-magnetic substrate, the magnetic powder is oriented to form a magnetic recording film. A magnetic disk manufacturing method for manufacturing a magnetic disk, characterized in that the magnetic powder is oriented by applying a surface wave to the magnetic recording film while maintaining the magnetic recording film in an undried state. (2) The method for manufacturing a magnetic disk according to (1) above, wherein the surface wave is a vibration under conditions that generate a standing wave or an interference wave; (3) at least magnetic powder is dispersed in a polymeric binder. In a method for manufacturing a magnetic disk, in which a magnetic recording film is manufactured by coating a magnetic paint on a non-magnetic substrate,
A method for producing a magnetic disk, characterized in that, while maintaining the magnetic recording film in an undried state, a surface wave is applied to the substrate and its magnetic recording film to disperse and orient the magnetic powder, (4) the surface of the magnetic disk; The method for producing a magnetic disk according to 3 above, in which the waves are vibrations under conditions that generate standing waves or interference waves; In a magnetic disk placed on a magnetic substrate, the magnetic powder is distributed concentrically with respect to the center of the disk, has a density gradient in the radial direction, and is oriented in the plane. a magnetic disk, (6) a pedestal for attaching a non-magnetic substrate having at least magnetic powder dispersed in a polymeric binder and having an undried magnetic recording film; and a surface wave on the magnetic recording film on the non-magnetic substrate. This is achieved by a magnetic disk manufacturing apparatus characterized by having a surface wave vibrator for providing This manufacturing apparatus may further include means for applying a magnetic field to the magnetic recording film, such as providing at least one pair of magnets above and below the nonmagnetic substrate. The feature of the present invention is the application of surface waves to the magnetic recording film. There are three main types of surface wave modes: concentric, random, and interference. Magnetic powder is dispersed by applying surface waves to a substrate, for example. In this case, the dispersion takes place in particular by interfacial or surface tension waves, which are a type of surface wave. The concentric type example will be explained later with reference to FIG. 3, the random type example with FIG. 4, and the interference type example with FIGS. 5(B) and (D), respectively. In the present invention, by applying a magnetic field for orientation or rotating a magnetic disk when applying a surface wave, the dispersion and orientation of the magnetic powder can be further enhanced compared to when only applying a surface wave. The magnetic field may be a non-uniform magnetic field. The magnetic field may be applied after the surface wave is applied. It is preferable that the magnetic paint in the present invention further contains a filler (reinforcing agent) such as alumina in addition to magnetic powder.
The non-magnetic substrate is preferably made of a material such as a metal or ceramic substrate through which surface wave vibrations propagate directly and effectively. The magnetic disk is, for example, a 5-inch aluminum disc (
Inner diameter 40.0+++mφ, outer diameter 130mmφ, thickness 1
.. Approximately 0.55±0.0 at the inner circumference of 9 +++r++)
Approximately 0.65±0 at the outer periphery for a film thickness of 6μm or less
.. After shaping the coating film to a thickness of 0.05 μm or less, the coating film is heat cured and ground to a thickness of about 0.35 μm or less at the inner circumference and 0.45 μm or less at the outer circumference. In this way, for example, a magnetic disk with a recording density of 30 and OOOBPI or higher can be obtained. [Operation] By applying surface waves to a non-magnetic substrate coated with magnetic paint, the magnetic powder in the paint film is dispersed and oriented. JP-A-62-18629 and JP-A-60-8322 of the above-mentioned prior art
The ultrasonic vibration described in 4 merely vibrates the substrate (tape or disk) up and down in the direction of its thickness.
On the other hand, since the surface wave of the present invention is a wave that travels in the plane direction of the substrate, it is effective for dividing magnetic powder aggregates into smaller pieces and separating aggregates that are in contact with each other, and has the effect of dispersing and orienting the magnetic powder. big. In the present invention, ultrasonic vibration is merely a means for generating surface waves. The state of dispersion and orientation of magnetic powder differs depending on how the surface waves are applied. Surface wave modes can be roughly divided into three types: concentric mode, random mode, and interference mode. The differences between these modes are shown in Figure 3, Figure 4@I, and Figure 5 (B).
This will be explained using an example. An example will be explained in which the surface wave vibrator 4 has three protrusions arranged at equal angles on one circumference, as shown in FIG. 5(B). Figure 3 is a plan view of a magnetic disk showing the dispersion and distribution of magnetic powder when a concentric mode surface wave is applied. The reason why such a concentric mode is generated is that the frequency, phase, and amplitude of the surface waves applied to the three protrusions are equal, and that the frequency is the same as that of the substrate (strictly speaking, that including the magnetic coating). is obtained when the natural resonant frequency is The surface wave in this case is a standing wave. For example, when using an aluminum disk with a diameter of 5.25 inches and a thickness of 2 mm (inner diameter 40+m, outer diameter 130 mm) as a substrate, if it is vibrated at a frequency of about 37 KHz (variable from IW to 100 W is also possible) or an integral multiple thereof. good. The surface wave in this case is a standing wave. The a-type powder is distributed concentrically with respect to the center of the disk, and a density gradient exists in the radial direction. The number of repetitions of the density gradient can be changed depending on the frequency of the surface waves. Also, rotating the disc is more effective. FIG. 4 is a plan view of a magnetic disk showing the state of dispersion and orientation of magnetic powder when a random mode surface wave is applied. This is obtained when the phase of the surface wave applied to at least one of the three protrusions is different from the other two.
Magnetic powder is distributed with uniform density, but its direction is random. Further, FIG. 5(B) is a diagram showing the state of surface waves within the surface of the magnetic disk when surface waves in an interference mode are applied. This is obtained when the balance of surface wave transmission from the three protrusions mentioned above is lost. For example, there are differences in the pressures that the three protrusions apply to the substrate. The magnetic powder is unevenly distributed in the thickness direction of the magnetic recording film. For this reason, its density is large. Note that a protrusion here refers to a part within the surface wave transducer that transmits surface waves to the substrate, and in addition to artificially processed protrusions, certain parts within the surface wave transducer result in surface waves being transmitted to the substrate. Including cases where it is given. The conditions for the protrusions to generate surface waves include the arrangement of the protrusions (distance from the disk center, protrusion spacing, etc.), the number of protrusions, the contact area of the protrusions, and the pressure. The arrangement of the protrusions is preferably at the center of the disk and around the center. Further, there is no need to make the arrangement symmetrical to the center of the disk, and various arrangements are possible. For example, it is also possible to arrange the protrusions in a biased manner in some areas, so that only desired areas of the disk are oriented in-plane. Since vibration propagation speed is high in metal bodies (aluminum, etc.) and ceramics (glass, etc.), it is sufficient to have at least one disc of these. In particular, in the case of one surface wave vibrator, it is preferable to provide a certain pseudo protrusion from an elastic body (rubber, Teflon, etc.) in order to stably hold the surface wave vibrator against the disk surface. In this case, the surface wave mode is a standing wave among the concentric modes. The contact area of the protrusion must be small enough to be considered a point compared to the area of the disk.
Otherwise, no surface waves will be generated and the ultrasonic vibration will be the same as in the conventional technology. The contact pressure of the protrusion is set to a value that allows the surface wave to proceed. A magnetic recording film is formed by applying a magnetic paint in which magnetic powder is dispersed in a polymeric binder onto a non-magnetic substrate, and when a surface wave is applied to the substrate while the recording film is not dry, the recording antagonism occurs. Even if the magnetic powder reagglomerates inside, its structure is destroyed. Furthermore, by applying a magnetic field, the magnetic powder can be aligned in a desired direction. When the magnetic powder is a fine powder, for example, when it is a fine powder with an average particle size of 0.4 μm or less, more preferably 0.2 μm or less, the resistance of the magnetic powder to move and rotate in the coating film is small, so the magnetic powder When the resonant frequency of the powder and the frequency of the surface wave applied to the substrate almost match, it is possible to align the magnetic powder in a certain direction, preferably in the in-plane direction, without applying a magnetic field. A schematic sectional view of an example of the magnetic disk manufacturing apparatus of the present invention is shown in FIG. 1 and FIG. 5(A). A pedestal 2 made of a material such as Teflon that moderates phase variable ultrasonic waves is rotatably arranged by a motor. An aluminum substrate 3 is mounted on the pedestal 2, and a metallic surface wave vibrator 4 is screwed so that surface waves are directly transmitted to the aluminum substrate 3. An ultrasonic transducer 6 is fixed to the surface wave transducer 4, and the two are mechanically coupled. A coil 7 is wound around the ultrasonic vibrator 6, and a fighting current is supplied to the coil 7 from an ultrasonic oscillator 10 via electrode slip rings 8, 8' and energizing sliding pins 9, 9'. Ru. In order to increase the efficiency of ultrasonic vibration, the inside of the container 1 is filled with resin. Note that the pedestal 2 may be placed above the substrate 3 and the surface wave vibrator 4 may be placed below the substrate 3. A pair of magnets for applying the magnetic field were placed above and below the disk 3 as shown in the figure. In this case, a repulsive magnetic field is obtained. The magnets can be arranged in various ways, for example, as described in Japanese Patent Publication No. Sho 56-45210, the magnets may be arranged vertically at different positions. In addition, the 11th! The surface wave oscillator 4 of I is annular, but
Surface wave vibrator 4 shown in FIG. 5(B) and FIG. 5(C)
In order to further enhance the effect, a protrusion 103 is provided on the portion of the disc that comes into contact with the substrate. In addition, Fig. 5 (B
) and Figure 5(C) show the three-point interference mode, and Figure 5(D) shows the three-point interference mode.
) and Figure S (E) show the eight-point interference mode, but of course other multi-point interference modes are also effective. The device shown in FIG. 1 is an example suitable for dispersing and orienting magnetic paint after applying it to a substrate using another coating device.
Coating, dispersing, orientation and magnetic field orientation can also be carried out with this device. In that case, it is preferable to make the magnet movable, apply the magnetic paint with the magnet removed, and then arrange the magnet at a predetermined position to perform dispersion, orientation, and magnetic field orientation. [Examples] The present invention will be explained below based on Examples. Example 1 70g of polyvinyl butyral powder and acicular γ-Fe,O
, magnetic powder (average particle size: 0.35X0.06pi, coercive force Hc: 3300e, specific surface area BET: 22m"/
g) Pour 700g into the two-dar mixer and mix the two-dars for about 15 minutes. Next, 250 g of cellosolve acetate was gradually added, and kneader mixing was performed for about 4 hours. Take 480 g of this kneaded material and put it in a Pall mill pot with a volume of 3Q, along with 3 g of alumina + 700 g of cellosolve acetate.
Ball mill kneading was performed for 7 days to disperse the magnetic powder and alumina well. Next, 120g of phenolic resin, 40%
Add and mix 300 g of the epoxy resin butyl cellosolve solution and 500 g of butyl cellosolve to prepare a magnetic paint. Next, apply this paint to a 5.2mm diameter
5 inches, thickness 2n+m (inner diameter 40If!l, outer diameter 13
After rotating and coating the aluminum disk 3 (0 mm), immediately attach it to the magnetic disk manufacturing apparatus shown in FIG.
Random mode surface wave application and in-plane magnetic field orientation at the same time 3
This was carried out for 0±5 seconds. Thereafter, it was cured at 210° C. to form magnetic recording films 100, 100'. The surface wave vibrator 4 used was one that was not provided with any artificial protrusions and had a flat surface in contact with the magnetic disk substrate 3. Random mode surface waves were generated by adjusting the tightness between the surface wave vibrator 4 and the pedestal 2. Next, the squareness ratio of the magnetic recording film was measured. Surface wave vibrator 4
The relationship between the frequency of the ultrasonic waves applied to the magnetic recording film and the squareness ratio (Br/Bm) of the obtained magnetic recording film is shown in curve a in FIG. As shown in the figure, by applying a surface wave, a magnetic disk with a squareness ratio exceeding the quality standard of 0.55 can be obtained. In addition, when the ultrasonic frequency is increased, the squareness ratio increases,
If you raise it even higher, it will become saturated. A more preferable ultrasonic frequency is 30 KHz or more, and an even more preferable ultrasonic frequency is 35
KHz or higher. After measuring the squareness ratio, the magnetic recording film was processed to have a film thickness of 0.32 μm at the inner peripheral portion. When the recording and reproducing characteristics of this magnetic disk were measured using a MnZn ferrite head with a gap length of 0.5 μm, the S/N ratio was improved by 5 to 10% compared to that of a conventional magnetic disk obtained without applying surface waves. Example 2 Acicular CO-γ-Fe20, magnetic powder (average particle size: 0.40
The same treatment as in Example 1 was carried out except that X0.07 μm, coercive force Ha: 6500e, specific surface area BET: 22.5 m"/g). As a result, the squareness ratio was small. A similar experiment was carried out by changing the wave mode from a random mode to a concentric mode.In this case, three protrusions 103 were used as the surface wave oscillator 41 at equal intervals on one circumference, as shown in the diagram. The S/N ratio was improved by 5 to 10% compared to the conventional one.Example 3 Acicular fine powder Co-γ-Fe2O3 magnetic powder (average particle size: 0.
The same treatment as in Example 1 was performed except that 2×0.02 μm, coercive force Hc: 7700e, specific surface area BET: 50 m2/g) were used. As a result, the squareness ratio was small. The same result was obtained even when the concentric mode surface wave used in Example 2 was applied. Therefore, an interferometric mode surface wave was applied. The surface wave vibrator 4 used was the same as in the case of the concentric mode in Example 2. (See Figures 5(B) and 5(C)) The results are as shown in the second drawing. The S/N ratio was improved by S~10% compared to the conventional one. As shown in Examples 1 to 3, as the coercive force Ha and specific surface area BET value of the magnetic powder used increase, the dispersion occurs in the order of random mode and concentric mode.
It was found that the effect of orientation becomes small and that it is necessary to use an interference mode that has the greatest dispersion and orientation effects. Example 4 25 parts by weight of powdered epoxy resin and plate-shaped hexagonal barium ferrite magnetic powder (diameter approximately 0.1 μm, coercive force Hc:
6550e, specific surface area BET: 30 m''/g) and 5 parts by weight of single-crystal alumina were thoroughly mixed, 10 parts by weight of cyclohexanone was added, and two-dar mixing was performed in a kneader mixing machine. Thereafter, 5 parts by weight of cyclohexanone was further added and the two-dar mixture was continued for about 4 hours.The above mixture was placed in a three-volume Pall mill pot, and 140 parts by weight of a mixed solvent of cyclohexanone and isophorone was added. was added and kneaded in a ball mill for 3 days to disperse the magnetic powder.Next, 25 parts by weight of phenolic resin and 6 parts by weight of vinyl resin were added.
A magnetic paint was prepared by adding a solution in which parts by weight were dissolved in 490 parts by weight of a mixed solvent of cyclohexanone, isophorone, and dioxane. Next, the diameter 5.2 with the surface cleaned in advance
The above paint was spin-coated onto an aluminum substrate 3 having a size of 5 inches and a thickness of 21 ml. Thereafter, this was attached to the magnetic disk manufacturing apparatus shown in FIG. 1, and an interferometric mode surface wave was applied. The surface wave vibrator 4 is the same as the one used in Examples 2 and 3.
A material with several protrusions was used. (Refer to Figure 5 (B) and Figure 5 (C)) In this case, there are two sets: one that is oriented by applying only an interferometric mode surface wave, and one that is oriented in-plane by simultaneously applying a magnetic field. Manufactured. Furthermore, the coating film was cured at 210°C to form a magnetic recording film 100,1.
00' was measured, and then the squareness ratio was measured. Next, surface processing (roughness Ra<0.02 μm) of the shite magnetic recording film 10
0.100' was made to have a thickness of 0.3 μm (7), and a fluorine-based liquid lubricant was applied to form a magnetic disk. When the electrical characteristics of this magnetic disk were measured using a metal-in-gap head with a gap length of 0.3 μm, it was found that the S/N ratio was lower than that of a conventional magnetic disk manufactured without applying surface waves. The improvement was achieved by 2 to 6% in the case without the alignment, and 7 to 12% in the case of the alignment. Further, the relationship between the squareness ratio of the magnetic recording film produced by magnetic field orientation and the ultrasonic frequency applied to the surface wave transducer 4 is as shown in Example 3 shown in curve C in FIG.
It was almost the same as in the case of That is, when a surface wave in an interference mode is applied, [Effects of the Invention] The method for manufacturing a magnetic disk of the present invention prevents reagglomeration of magnetic powder in the magnetic paint and has excellent electromagnetic properties such as S/N ratio. You can obtain a magnetic disk with

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一磁気ディスク製造装置の概略断面図
、第2図は表面波振動子に印加する超音波の振動数と媒
体の角形比の関係を示す図、第3図は同心円型モードの
表面波を印加した場合の磁性粉の分散,配尚の状態を示
す磁気ディスクの平面図,第4図はランダム型モードの
表面波を印加した場合の磁性粉の分散,配向の状態を示
す磁気ディスクの平面図、第5図(A)は本発明の一磁
気ディスク製造装置の突起を有する表面波振動子部分の
概略断面図、第5図(B)及び第5図(C)は各々3個
の突起を有する表面波振動子を用いた場合の干渉型モー
ド表面波の磁気ディスクの面内の状態を示す図及び表面
波振動子部分の概略断面図、第5図(D)及び第5図(
E)は各々8個の突起を有する表面波振動子を用いた場
合の干渉型モード表面波の磁気ディスクの面内の状態を
示す図および表面波振動子部分の概略断面図である.1
・・・モーター、2・・・受台、3・・・基板、4・・
・表面波振動子、6・・・超音波振動子、7・・・コイ
ル、8,8′・・・電極スリップリング,9,9’・・
・摺動ピン、10・・・超音波発振器、1l・・・容器
,12.12’・・・磁石、100,100’ ・・・
磁気記録膜、101・・・円形の定在波,102・・・
ランダムモード、103・・・突起、104・・・表面
波、105・・・干渉モード。 A−−−−#七k眼動チ 潟{濃撤勤牧(ト}1zl
Fig. 1 is a schematic cross-sectional view of a magnetic disk manufacturing apparatus of the present invention, Fig. 2 is a diagram showing the relationship between the frequency of ultrasonic waves applied to a surface wave vibrator and the squareness ratio of the medium, and Fig. 3 is a concentric circular type Figure 4 is a plan view of a magnetic disk showing the state of dispersion and orientation of the magnetic powder when a random mode surface wave is applied. FIG. 5(A) is a schematic sectional view of a surface wave vibrator portion having protrusions of a magnetic disk manufacturing apparatus of the present invention, and FIGS. 5(B) and 5(C) are a plan view of a magnetic disk shown in FIG. A diagram showing the state of the interferometric mode surface wave in the plane of the magnetic disk when using surface wave vibrators each having three protrusions, and a schematic cross-sectional view of the surface wave vibrator portion, FIG. 5(D) and Figure 5 (
E) is a diagram showing the state of interferometric mode surface waves in the plane of the magnetic disk when surface wave vibrators each having eight protrusions are used, and a schematic cross-sectional view of the surface wave vibrator portion. 1
...Motor, 2...Base, 3...Board, 4...
・Surface wave transducer, 6... Ultrasonic transducer, 7... Coil, 8, 8'... Electrode slip ring, 9, 9'...
・Sliding pin, 10...Ultrasonic oscillator, 1l...Container, 12.12'...Magnet, 100,100'...
Magnetic recording film, 101...Circular standing wave, 102...
Random mode, 103...Protrusion, 104...Surface wave, 105...Interference mode. A---#7k eye movements

Claims (1)

【特許請求の範囲】 1.高分子結合剤中に少なくとも磁性粉を分散させた磁
気塗料を非磁性基板上に塗布した後、磁性粉を配向せし
めて磁気記録膜を製造する磁気ディスクの製造方法にお
いて、上記磁気記録膜の未乾燥の状態を維持しつつ、該
磁気記録膜に表面波を与えることを特徴と する磁気ディスクの製造方法。 2.上記表面波は、定在波又は干渉波を発生させる条件
の振動である請求項1記載の磁気ディスクの製造方法。 3.上記磁性粉は板状六方晶系バリウムフェライトであ
る請求項1記載の磁気ディスクの製造方法。 4.高分子結合剤中に少なくとも磁性粉を分散させた磁
気塗料を非磁性基板上に塗布して磁気記録膜を製造する
磁気ディスクの製造方法において、上記磁気記録膜の未
乾燥の状態を維持しつつ、基板とその磁気記録膜に表面
波を与えることを特徴とする磁気ディスクの製造方法。 5.上記表面波は、定在波又は干渉波を発生させる条件
の振動である請求項4記載の磁気ディスクの製造方法。 6.上記表面波印加時に面内方向に磁場を印加する請求
項4記載の磁気ディスクの製造方法。 7.上記磁性粉は板状六方晶系バリウムフェライトであ
る請求項6記載の磁気ディスクの製造方法。 8.高分子結合剤中に少なくとも磁性粉を分散、配向さ
せた磁気記録膜を非磁性基板上に配置した磁気ディスク
において、上記磁性粉は、同心円状に分布し、半径方向
にその密度勾配が存在しており、かつ面内配向している
ことを特徴とする磁気ディスク。 9.上記密度勾配は上記半径方向に繰り返し存在してい
る請求項8記載の磁気ディスク。10.高分子結合剤中
に少なくとも磁性粉を分散させ、かつ未乾燥状態の磁気
記録膜を有する非磁性基板を取り付ける受台と、該非磁
性基板上の磁気記録膜に表面波を与えるための表面波振
動子を有することを特徴とする磁気ディスク製造装置。 11.上記表面波振動子は超音波振動子と機械的に結合
している請求項10記載の磁気ディスク製造装置。 12.上記表面波振動子は突起を有しかつ該突起が上記
非磁性基板と接するように設置されている請求項11記
載の磁気ディスク製造装置。 13.上記突起は複数個あり、該突起の配置は一円周上
に等間隔に成されている請求項12記載の磁気ディスク
製造装置。 14.上記磁気記録膜に磁場を印加するために上記非磁
性基板の上下に配置された少なくとも一対の磁石を有す
る請求項11記載の磁気ディスク製造装置。
[Claims] 1. In a method for manufacturing a magnetic disk, in which a magnetic coating material in which at least magnetic powder is dispersed in a polymeric binder is coated on a non-magnetic substrate, the magnetic powder is orientated to produce a magnetic recording film. A method for manufacturing a magnetic disk, characterized in that a surface wave is applied to the magnetic recording film while maintaining a dry state. 2. 2. The method of manufacturing a magnetic disk according to claim 1, wherein the surface wave is a vibration under conditions that generate a standing wave or an interference wave. 3. 2. The method of manufacturing a magnetic disk according to claim 1, wherein the magnetic powder is plate-shaped hexagonal barium ferrite. 4. In a method of manufacturing a magnetic disk, in which a magnetic recording film is manufactured by applying a magnetic paint in which at least magnetic powder is dispersed in a polymeric binder onto a non-magnetic substrate, the magnetic recording film is maintained in an undried state. , a method of manufacturing a magnetic disk characterized by applying surface waves to a substrate and its magnetic recording film. 5. 5. The method of manufacturing a magnetic disk according to claim 4, wherein the surface wave is a vibration under conditions that generate a standing wave or an interference wave. 6. 5. The method of manufacturing a magnetic disk according to claim 4, wherein a magnetic field is applied in an in-plane direction when applying the surface wave. 7. 7. The method of manufacturing a magnetic disk according to claim 6, wherein the magnetic powder is plate-shaped hexagonal barium ferrite. 8. In a magnetic disk in which a magnetic recording film in which at least magnetic powder is dispersed and oriented in a polymeric binder is disposed on a non-magnetic substrate, the magnetic powder is distributed concentrically and a density gradient exists in the radial direction. What is claimed is: 1. A magnetic disk characterized in that it is oriented in a plane and has an in-plane orientation. 9. 9. The magnetic disk according to claim 8, wherein said density gradient exists repeatedly in said radial direction. 10. A pedestal for attaching a non-magnetic substrate having at least magnetic powder dispersed in a polymeric binder and having a undried magnetic recording film; and a surface wave vibration for applying a surface wave to the magnetic recording film on the non-magnetic substrate. A magnetic disk manufacturing apparatus characterized by having a child. 11. 11. The magnetic disk manufacturing apparatus according to claim 10, wherein the surface wave vibrator is mechanically coupled to an ultrasonic vibrator. 12. 12. The magnetic disk manufacturing apparatus according to claim 11, wherein the surface wave vibrator has a protrusion, and the protrusion is installed so as to be in contact with the nonmagnetic substrate. 13. 13. The magnetic disk manufacturing apparatus according to claim 12, wherein there are a plurality of said protrusions, and said protrusions are arranged at equal intervals on one circumference. 14. 12. The magnetic disk manufacturing apparatus according to claim 11, further comprising at least one pair of magnets arranged above and below the non-magnetic substrate for applying a magnetic field to the magnetic recording film.
JP5636190A 1989-03-09 1990-03-09 Magnetic disk and method and apparatus for producing the disk Pending JPH0316023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5636190A JPH0316023A (en) 1989-03-09 1990-03-09 Magnetic disk and method and apparatus for producing the disk

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5500789 1989-03-09
JP1-55007 1989-03-09
JP5636190A JPH0316023A (en) 1989-03-09 1990-03-09 Magnetic disk and method and apparatus for producing the disk

Publications (1)

Publication Number Publication Date
JPH0316023A true JPH0316023A (en) 1991-01-24

Family

ID=26395831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5636190A Pending JPH0316023A (en) 1989-03-09 1990-03-09 Magnetic disk and method and apparatus for producing the disk

Country Status (1)

Country Link
JP (1) JPH0316023A (en)

Similar Documents

Publication Publication Date Title
JPS58203625A (en) Magnetic recording medium
Homola et al. Novel magnetic dispersions using silica stabilized particles
JPH02260225A (en) Magnetic recording medium
JPH0316023A (en) Magnetic disk and method and apparatus for producing the disk
US4189508A (en) Process for the preparation of magnetic recording medium
US5180608A (en) Process for producing a rigid magnetic disk by longitudinally generating standing waves or interference waves in an undried applied magnetic paint
EP0386762B1 (en) Magnetic disk and process and apparatus for producing the same
JPS5940323A (en) Attaching of magnetic film onto disc substrate
JPS5812136A (en) Magnetic field orienting device for production of vertical magnetic recording medium
JP4997484B2 (en) Ferrite film, manufacturing method thereof, and electromagnetic noise suppressor using the same
JPS6063728A (en) Manufacture of magnetic disk
KR950006943B1 (en) Process for the preparation of magnetic paint
JPH0329116A (en) Production of magnetic recording medium
JPH07153074A (en) Manufacture for magnetic recording medium
JPH0221049B2 (en)
JPS6224430A (en) Method for processing magnetic field of magnetic recording medium
JPH01319131A (en) Method for applying magnetic coating compound
JPH03288330A (en) Production of magnetic recording medium
JPS6334738A (en) Generation of magnetic coating compound
JPH05314457A (en) Magnetic recording medium and manufacture thereof
JPH01179221A (en) Production of perpendicular magnetic recording medium
JPS6236729A (en) Surface treatment of magnetic recording medium
JPS63124221A (en) Production of magnetic coating compound and magnetic recording medium formed by using said compound
JPS6022416B2 (en) Method for manufacturing magnetic disk recording media
JPH05258281A (en) Magnetic recording medium and magnetic recorder