JPH0131907B2 - - Google Patents

Info

Publication number
JPH0131907B2
JPH0131907B2 JP56203639A JP20363981A JPH0131907B2 JP H0131907 B2 JPH0131907 B2 JP H0131907B2 JP 56203639 A JP56203639 A JP 56203639A JP 20363981 A JP20363981 A JP 20363981A JP H0131907 B2 JPH0131907 B2 JP H0131907B2
Authority
JP
Japan
Prior art keywords
pdms
graft copolymer
poly
glu
obzl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56203639A
Other languages
Japanese (ja)
Other versions
JPS58105758A (en
Inventor
Yukio Imanishi
Takashi Kumaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56203639A priority Critical patent/JPS58105758A/en
Publication of JPS58105758A publication Critical patent/JPS58105758A/en
Publication of JPH0131907B2 publication Critical patent/JPH0131907B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明は抗血栓性気䜓透過膜に係わるもので
ある。 グラフト共重合䜓は通垞のポリマヌが単䞀盞で
あるのに察し、ミクロ的に倚盞構造を有する倚盞
系ポリマヌであり、成分ポリマヌの組合せの倚様
性、高次構造の発珟性、そしお独自の力孊的性質
に応じお、新しい倚面的な機胜を有する倚盞系材
料の開発が期埅できる。 異質䟋えば芪氎性―疎氎性な皮の高分子
鎖を結び合せたグラフト共重合䜓は、溶液から成
膜する過皋においお盞分離を起こし、䞍均質な衚
面構造を有する膜を生じる。このような䞍均質衚
面構造が血液タンパク質の遞択的吞着ず掻性化、
そしお血小板の粘着や倉圢を通しお血液凝固に関
係しおいるず考えられおいる。 さらに、成分ポリマヌの性質や高次構造の芏則
性に応じお、酞玠や二酞化炭玠等の気䜓の遞択的
透過、氎やアルコヌル等の促進透過、そしお金属
むオン、糖、アミノ酞等の溶質の遞択的透過等が
実珟できるず考えられる。 このような背景䞋にあ぀お、本発明者等は抗血
栓性で遞択的透過性が期埅される䞍均質ポリマヌ
を埗るための研究を重ね、ポリゞメチルシロキサ
ン幹ずポリα―アミノ酞枝ずからなるグラフ
ト共重合䜓が優れた抗血栓性で酞玠透過性の膜材
料を䞎えるこずを芋出し、本発明を完成した。 すなわち、本発明は優れた酞玠透過性を有する
抗血栓材を提䟛するこずを目的ずするものであ぀
お、その芁旚ずするずころは偎鎖にアミノ基をも
぀ポリゞメチルシロキサンを開始剀ずしおα―ア
ミノ酞―カルボキシ無氎物をグラフト共重合し
お埗られるグラフト共重合䜓を䞻芁成分ずしおな
る酞玠透過性の抗血栓材に存する。 以䞋本発明を詳现に説明する。 (i) ポリゞメチルシロキサン幹ずポリα―
アミノ酞枝ずからなるグラフト共重合䜓
の合成 ポリゞメチルシロキサン以䞋これをPDMS
ず略蚘するを幹ポリマヌずし、ポリα―アミ
ノ酞を枝ポリマヌずするグラフト共重合䜓は、
PDMSのメチル基の䞀郚が―アミノプロピル
基ず眮き換わ぀たもの、すなわち、アミノ偎鎖
PDMSを開始剀ずしお、α―アミノ酞NCA
NCAは―カルボキシ無氎物を衚わすを重合
させるこずにはよ぀お埗られる。アミノ偎鎖
PDMS米囜Petrarch Systems瀟によ぀お補造、
販売されおいる垂販品があり、このものはGPC
によ぀お決定した数平均分子量が25000数平均重
合床338、酞塩基滎定によ぀お決定したアミノ基
含有率が、ポリマヌ鎖個圓り7.2個である。 したが぀おアミノ偎鎖PDMSの構造は䞋蚘の
ずおりである。 このような構造のアミノ偎鎖PDMSは、
PDMSず―アミノプロピルメチルゞ゚トキシ
シランずをアルカリ觊媒存圚䞋に反応させるこず
によ぀お合成されるず考えられる。 次にアミノ偎鎖PDMSを開始剀ずするα―ア
ミノ酞NCAの重合を行い、ミクロ䞍均質な構造
をも぀グラフト共重合䜓を補造した。 補造䟋  この䟋においおは、開始剀ポリマヌずしお䞊蚘
のアミノ偎鎖PDMSを甚い、α―アミノ酞NCA
ずしおε―カルボベンゟキシ――リシンNCA
〔以埌LYSNCAず略蚘する〕を甚いおグラ
フト共重合を行぀た。アミノ偎鎖PDMS1.0ず
LysNCA2.0をそれぞれ重合溶媒のテトラ
ヒドロフランに溶かし、䞡溶液を加え合せLys
NCAの濃床を0.3Mずする泚意深く振り
たぜる。 重合溶媒ずしお塩化メチレンを甚いるこずもで
きる。しかるずきは速やかに液面から気泡が発生
し、脱炭酞ガスの起぀おいるこずが芳察された。
これをデシケヌタヌの䞭で時間攟眮しお重合さ
せた。 その埌、溶媒を留去しお濃瞮しテトラヒドロ
フランを甚いた堎合には、ゞメチルホルムアミド
を加えた埌、濃瞮する、゚ヌテル䞭に加えるず
癜色の沈殿が生じた。この沈殿を゚ヌテルで抜出
し、可溶分0.3ず䞍溶分2.3ずに分けた。 IRスペクトルによれば、゚ヌテル可溶分は倧
郚分がPDMSであ぀お、少量のポリα―アミ
ノ酞が含たれおいるこずがわか぀た。 䞀方、゚ヌテル䞍溶分は目的ずするグラフト共
重合䜓からなるが、ごくわずかのポリ〔LYS
〕が含たれおいる可胜性を陀倖できない。収
率87。 ゚ヌテル䞍溶分のIRスペクトル図CH2Cl2溶
液からKBR板の䞊に成膜しお枬定を第図に
瀺す。 図䞭〜の笊号は次のものを瀺す。
This invention relates to an antithrombotic gas permeable membrane. Graft copolymers are multiphase polymers that have a microscopic multiphase structure, whereas ordinary polymers have a single phase, and they have a wide variety of combinations of component polymers, the ability to develop higher-order structures, and unique properties. Depending on the mechanical properties of the material, we can expect the development of multiphase materials with new multifaceted functions. Graft copolymers, which are made by linking two different types of polymer chains (for example, hydrophilic and hydrophobic), undergo phase separation during the process of forming a film from a solution, resulting in a film with a non-uniform surface structure. Such a heterogeneous surface structure enables selective adsorption and activation of blood proteins,
It is thought to be involved in blood coagulation through the adhesion and deformation of platelets. Furthermore, depending on the properties and regularity of the higher-order structure of the component polymers, selective permeation of gases such as oxygen and carbon dioxide, accelerated permeation of water and alcohol, and selective permeation of solutes such as metal ions, sugars, and amino acids are possible. It is thought that transparency etc. can be realized. Against this background, the present inventors have conducted repeated research to obtain a heterogeneous polymer that is expected to have antithrombotic properties and selective permeability, and have developed a combination of a polydimethylsiloxane trunk and poly(α-amino acid) branches. The present invention was completed based on the discovery that a graft copolymer consisting of That is, the object of the present invention is to provide an antithrombotic material having excellent oxygen permeability, and the gist of the present invention is to provide an antithrombotic material having excellent oxygen permeability. The invention consists in an oxygen-permeable antithrombotic material whose main component is a graft copolymer obtained by graft copolymerizing amino acid N-carboxy anhydride. The present invention will be explained in detail below. (i) Polydimethylsiloxane (stem) and poly(α-
Synthesis of a graft copolymer consisting of polydimethylsiloxane (hereinafter referred to as PDMS) (amino acids) (branches)
A graft copolymer with poly(α-amino acid) as a trunk polymer and poly(α-amino acid) as a branch polymer is
Part of the methyl group of PDMS is replaced with 3-aminopropyl group, that is, amino side chain
α-amino acid NCA using PDMS as an initiator
(NCA stands for N-carboxy anhydride). amino side chain
PDMS Manufactured by Petrarch Systems, USA
There is a commercially available product, and this one is GPC
The number average molecular weight determined by the method is 25,000 (number average degree of polymerization 338), and the amino group content determined by acid-base titration is 7.2 per polymer chain. Therefore, the structure of amino side chain PDMS is as follows. Amino side chain PDMS with this structure is
It is thought to be synthesized by reacting PDMS and 3-aminopropylmethyldiethoxysilane in the presence of an alkali catalyst. Next, α-amino acid NCA was polymerized using amino side chain PDMS as an initiator to produce a graft copolymer with a microheterogeneous structure. Production Example 1 In this example, the above amino side chain PDMS was used as the initiator polymer, and α-amino acid NCA
as ε-carbobenzoxy-L-lysine NCA
[Hereafter abbreviated as LYS(Z)NCA] was used to carry out graft copolymerization. Amino side chain PDMS 1.0g and
Dissolve 2.0 g of Lys (Z) NCA in tetrahydrofuran, a polymerization solvent, and add both solutions together (Lys
(Z) NCA concentration is 0.3M) Shake carefully. Methylene chloride can also be used as a polymerization solvent. At this time, bubbles were immediately generated from the liquid surface, and it was observed that decarbonation gas was occurring.
This was left in a desiccator for 6 hours to polymerize. Thereafter, the solvent was distilled off and concentrated (if tetrahydrofuran was used, dimethylformamide was added and then concentrated), and the mixture was added to ether to produce a white precipitate. This precipitate was extracted with ether and divided into 0.3 g of soluble portion and 2.3 g of insoluble portion. The IR spectrum showed that the ether soluble content was mostly PDMS, with a small amount of poly(α-amino acid). On the other hand, the ether-insoluble portion consists of the desired graft copolymer, but contains a very small amount of poly[LYS
(Z)] cannot be excluded. Yield 87%. The IR spectrum of the ether-insoluble component (measured by forming a film on a KBR plate from a CH 2 Cl 2 solution) is shown in Figure 1. The symbols A to F in the figure indicate the following.

【衚】 よる吞収郚
このグラフト共重合䜓の構造は、トリフルオロ
酢酞溶液のNMR枬定によるシグナルの匷床比に
基づき、次のようであるず掚定される。 これをPDMS―〔Lys〕27ず衚わす。 補造䟋  この䟋では開始剀ポリマヌずしお䞊蚘のアミノ
偎鎖PDMSを甚い、α―アミノ酞NCAずしおγ
―ベンゞル――グルタメヌトNCA〔以埌Glu
OBzNCAず略蚘する〕を甚いおグラフト共重
合を行぀た。 䞊蚘アミノ偎鎖PDMS1.0ずGluOB2l
NCA5をそれぞれ重合溶媒の塩化メチレンに溶
かしテトラヒドロフランを甚いるこずもでき
る、䞡溶液を加え合わせ〔GluOBzlNCAの
濃床を0.3Mずする〕、泚意深く振りたぜたのち、
デシケヌタヌ䞭で12時間攟眮しお重合させた。 補造䟋においお述べたのず同じ操䜜で生成物
を分離し、゚ヌテル可溶分0.5ず䞍溶分4.6を
埗た。゚ヌテル䞍溶分はグラフト共重合䜓からな
るが、ごくわずかのポリ〔GluOBzl〕が含たれ
おいる可胜性を陀倖できない。収率89.5。 ゚ヌテル䞍溶分のIRスペクトル塩化メチレ
ン溶液からKBr板䞊に成膜しお枬定を第図
に瀺す。 図䞭〜の笊号は次のものを瀺す。
[Table] Absorption part The structure of this graft copolymer is estimated to be as follows based on the signal intensity ratio obtained by NMR measurement of a trifluoroacetic acid solution. This is expressed as PDMS-[Lys(Z)] 27 . Production Example 2 In this example, the above amino side chain PDMS was used as the initiator polymer, and γ was used as the α-amino acid NCA.
-Benzyl-L-glutamate NCA [hereinafter Glu
(OBz)NCA] was used for graft copolymerization. 1.0 g of the above amino side chain PDMS and Glu (OB 2 l)
Dissolve 5 g of each NCA in the polymerization solvent methylene chloride (tetrahydrofuran can also be used), add both solutions [Glu(OBzl)NCA concentration is 0.3M], and carefully shake.
The mixture was allowed to stand in a desiccator for 12 hours to polymerize. The product was separated using the same procedure as described in Production Example 1, yielding 0.5 g of ether soluble fraction and 4.6 g of insoluble fraction. The ether-insoluble component consists of a graft copolymer, but we cannot exclude the possibility that it contains a very small amount of poly[Glu(OBzl)]. Yield: 89.5%. IR spectrum of the ether-insoluble component (from methylene chloride solution to KBr plate) (measured by forming a film on top) is shown in Fig. 2. In the figure, the symbols A to F indicate the following.

【衚】 よる吞収郚
このグラフト共重合䜓の構造は、重クロロホル
ム溶液のNMR枬定によるシグナルの匷床比に基
づき、次のようであるず掚定される。 これをPDMS―〔GluOBzl76ず衚わす。 補造䟋  この䟋では開始剀ポリマヌずしお䞊蚘のアミノ
偎鎖PDMSを甚い、α―アミノ酞NCAずしお
SarNCAを甚いおグラフト重合を行぀た。 アミノ偎鎖PDMS1ずサルコシンNCA以埌
SarNCAず略蚘する1.5をそれぞれ重合溶媒
の塩化メチレンに溶かしSarNCAの濃床を
0.2Mずする、泚意深く振りたぜたのち、デシケ
ヌタヌ䞭で12時間攟眮しお重合させた。 補造䟋においお述べたのず同じ操䜜で生成物
を分離し、゚ヌテル可溶分0.07ず䞍溶分1.8
を埗た。゚ヌテル䞍溶分はグラフト共重合䜓から
なるが、ごく少量のポリSarが含たれおいる
可胜性を陀倖できない。収率96。 ゚ヌテル䞍溶分のIRスペクトル塩化メチレ
ン溶液からKBr板䞊に成膜しお枬定を第図
に瀺す。 図䞭〜の笊号は次のものを瀺す。
[Table] Absorption part The structure of this graft copolymer is estimated to be as follows based on the signal intensity ratio obtained by NMR measurement of a deuterated chloroform solution. This is expressed as PDMS-[Glu (OBzl) 76 . Production Example 3 In this example, the above amino side chain PDMS was used as the initiator polymer, and the α-amino acid NCA was
Graft polymerization was performed using SarNCA. Amino side chain PDMS 1g and sarcosine NCA (hereafter
(abbreviated as SarNCA) was dissolved in the polymerization solvent methylene chloride (the concentration of SarNCA was
After stirring carefully, the mixture was left in a desiccator for 12 hours to polymerize. The product was separated by the same operation as described in Production Example 1, and the ether soluble content was 0.07 g and the insoluble content was 1.8 g.
I got it. Although the ether-insoluble portion consists of a graft copolymer, we cannot exclude the possibility that it contains a very small amount of poly(Sar). Yield 96%. The IR spectrum of the ether-insoluble component (measured by forming a film on a KBr plate from a methylene chloride solution) is shown in Figure 3. The symbols A to D in the figure indicate the following.

【衚】 よる吞収郚
このグラフト共重合䜓の構造は、重合においお
䜿甚したSarNCAずアミノ偎鎖PDMSのモル濃
床比から蚈算しお、次のようであるず掚定され
る。 これをPDMS―Star45ず衚わす。 枝ポリα―アミノ酞の重合床は、アミノ偎
鎖PDMS開始剀のアミン濃床に察するα―アミ
ノ酞NCAの仕蟌みモル濃床比によ぀お決定され
る。 補造䟋においお埗られたグラフト共
重合䜓をゞメチルホルムアミド溶液から成膜する
ず、透明で、柔軟な匷床のある膜が埗られた。 PDMSずポリ〔Lysやポリ〔GluOBZl〕
のグラフト共重合䜓膜は氎䞭に浞挬しおも安定で
あるが、PDMSずポリSarのグラフト共重合
䜓膜は吞氎性であり、氎䞭に浞挬するず著しく膚
最し、原圢が損われる。 グラフト共重合䜓を補造する堎合に䜿甚し埗る
α―アミノ酞ずしおは、アラニン、グルタミン酞
γ―アルキル゚ステル、アスパラギン酞β―アル
キル゚ステル、グリシン、ロむシン、む゜ロむシ
ン、ノルロむシン、ε―カルボベンゟキシリシ
ン、γ―カルボベンゟキシオルニチン、プニル
アラニン、―ベンゞルセリン、バリン、ノルバ
リン、プロリン、サルコシン等を挙げるこずがで
きる。 たた、それらの光孊掻性䜓、ラセミ䜓のいずれ
もが䜿甚可胜である。 皮類のα―アミノ酞NCAを同時に添加する
ず、ランダムに皮のα―アミノ酞が配列したブ
ロツクが生じるが、䞀方のNCAの重合の終了埌
に第のα―アミノ酞NCAを添加するず、皮
のα―アミノ酞がブロツク状に配列したものが埗
られる。 次にこのようなグラフト共重合䜓の補造䟋に぀
いお述べる。 補造䟋  この䟋では開始剀ポリマヌずしお䞊蚘のアミノ
偎鎖PDMSを甚い、α―アミノ酞NCAずしお
SarNCAを甚いおグラフト重合を行い、ひき぀づ
いおGluOBZlNCAを添加しおグラフト重合を
行぀た。 アミノ偎鎖PDMS1.0ずSarNCA1.5をそれ
ぞれ重合溶媒の塩化メチレンに溶かし、䞡溶液を
加え合せSarNCAの濃床を0.3Mずする、泚意
深く振りたぜ、デシケヌタヌ䞭で玄12時間攟眮し
お重合させた。 その埌GluOBzl1.0の塩化メチレン溶液を
添加し〔GluOBzlNCAの濃床は玄0.15Mずな
る〕、泚意深く振りたぜたのち、デシケヌタヌ䞭
で玄12時間攟眮しお重合させた。 補造䟋においお述べたのず同じ操䜜で生成物
を分離し、゚ヌテル可溶分0.3ず䞍溶分2.4を
埗た。゚ヌテル䞍溶分はグラフト共重合䜓からな
るが、ごくわずかのα―アミノ酞ホモポリマヌお
よびコポリマヌが含たれおいる可胜性を陀倖でき
ない。収率88。 ゚ヌテル䞍溶分のIRスペクトル塩化メチレ
ン溶液からKBr板䞊に成膜しお枬定を第図
に瀺す。 図䞭〜の笊号は次のものを瀺す。
[Table] Absorption area The structure of this graft copolymer is estimated to be as follows, calculated from the molar concentration ratio of SarNCA and amino side chain PDMS used in the polymerization. This is expressed as PDMS-(Star) 45 . The degree of polymerization of the branched poly(α-amino acid) is determined by the ratio of the charged molar concentration of the α-amino acid NCA to the amine concentration of the amino side chain PDMS initiator. When the graft copolymers obtained in Production Examples 1, 2, and 3 were formed into a film from a dimethylformamide solution, a transparent, flexible, and strong film was obtained. PDMS and poly [Lys (Z) and poly [Glu (OBZl)]
The graft copolymer membrane of PDMS and poly(Sar) is stable even when immersed in water, but the graft copolymer membrane of PDMS and poly(Sar) is water-absorbing and swells significantly when immersed in water, losing its original shape. Examples of α-amino acids that can be used in producing the graft copolymer include alanine, glutamic acid γ-alkyl ester, aspartic acid β-alkyl ester, glycine, leucine, isoleucine, norleucine, ε-carbobenzoxylysine, γ- Examples include carbobenzoxyornithine, phenylalanine, O-benzylserine, valine, norvaline, proline, and sarcosine. Moreover, both optically active forms and racemic forms thereof can be used. When two types of α-amino acids NCA are added at the same time, a block in which two types of α-amino acids are randomly arranged is generated, but when a second α-amino acid NCA is added after the completion of polymerization of one NCA, two types of α-amino acids are formed. A block-like arrangement of α-amino acids is obtained. Next, an example of producing such a graft copolymer will be described. Production Example 4 In this example, the above amino side chain PDMS was used as the initiator polymer, and α-amino acid NCA was
Graft polymerization was performed using SarNCA, and then Glu(OBZl)NCA was added to perform graft polymerization. 1.0 g of amino side chain PDMS and 1.5 g of SarNCA were each dissolved in the polymerization solvent methylene chloride, and both solutions were combined (the concentration of SarNCA was 0.3 M), carefully shaken, and left in a desiccator for about 12 hours to polymerize. I let it happen. Thereafter, a methylene chloride solution of 1.0 g of Glu(OBzl) was added (the concentration of Glu(OBzl)NCA was approximately 0.15 M), and after being carefully shaken, the mixture was allowed to stand in a desiccator for approximately 12 hours to polymerize. The product was separated using the same procedure as described in Production Example 1, yielding 0.3 g of ether soluble fraction and 2.4 g of insoluble fraction. Although the ether-insoluble portion consists of a graft copolymer, it cannot be excluded that it may contain a very small amount of α-amino acid homopolymer and copolymer. Yield 88%. The IR spectrum of the ether-insoluble component (measured by forming a film on a KBr plate from a methylene chloride solution) is shown in Figure 4. The symbols A to G in the figure indicate the following.

【衚】 このグラフト共重合䜓の構造は、重合においお
䜿甚したGluOBzlNCA、SarNCAおよびアミ
ノ偎鎖PDMSのモル濃床比から蚈算しお次のよ
うであるず掚定される。 これをPDMS―Sar45―〔GluOBzl〕13ず
衚わす。 䞊蚘のグラフト共重合䜓をゞメチルホルムアミ
ド溶液から成膜するず、透明で柔軟な匷床のある
膜が埗られた。このグラフト共重合䜓膜を氎䞭に
浞挬するずある皋床膚最するが、補造䟋におい
お述べたPDMSずポリサルコシンのグラフト共
重合䜓のように激しく膚最しお型くずれを起こす
こずはない。 このように皮のポリα―アミノ酞をグラ
フト化するこずにより、適床の芪氎性を有する膜
を぀くるこずができる。 (ii) グラフト共重合䜓のポリα―アミノ酞 枝の改質 補造䟋においお合成したグラフト共重合䜓に
は、Lysのポリマヌが枝ずしお含たれる。
たた、補造䟋ずにおいお合成したグラフト共
重合䜓にはGluOBzlのポリマヌが枝ずしお含
たれる。これらのα―アミノ酞残基の偎鎖は、枩
和な化孊的凊理により、異皮構造に誘導できる。 このような過皋を反応匏で瀺すず次のようにな
る。 ポリα―アミノ酞枝の偎鎖の化孊的改質に
より、新しい性質を有するグラフト共重合䜓膜を
合成するこずができる。 以䞋にそのような反応䟋に぀いお述べる。 反応䟋  補造䟋の方法にしたが぀お合成したグラフト
共重合䜓PDMS―〔Lys〕200.5を10mlのゞ
メチルホルムアミドに溶かし、25HBr
ACOHを10ml加え、宀枩で12時間撹拌した。 溶液を濃瞮しお埗られるオむルを゚ヌテルでよ
くデカンテヌシペンし、揮発分を再び留去したの
ち1NNaOHを加えるず癜色物質が埗られた。 これをメタノヌルで掗浄し、也燥した。 反応生成物のIRスペクトルKBr錠剀法を
第図に瀺す。 反応前のIRスペクトル第図にくらべお、
1685cm-1のりレタン結合の吞収ず、700cm-1のベ
ンれン環に基づく吞収が匱くな぀おおり、Lys
残基がLys残基に倉換したこずがわかる。 反応生成物の構造は次のようであるず考えられ
る。 反応䟋  補造䟋の方法にしたが぀お合成したグラフト
共重合䜓PDMS―〔Glu―OBzl〕19〔IRスペク
トルは第図あるいは第図の䞊段〕0.7を40
mlのゞメチルホルムアミドに溶かし、1NNaOH4
mlを加え宀枩で分間撹拌した。 析出した癜色物質を別し、メタノヌルで掗浄
しおから也燥した。反応生成物のIRスペクトル
KBr錠剀法を第図の䞭段に瀺す。 反応前のIRスペクトルにくらべお1720cm-1の
゚ステル基に基づく吞収ず、700cm-1のベンれン
環に基づく吞収が消倱し、代わりに1400cm-1付近
にカルボキシラヌト基の察称䌞瞮振動に基づく吞
収が珟れた。この状態での反応生成物の構造は次
のようであるず考えられる。 䞊匏においお46 これをPDMS―〔GluONa〕19ず衚わす。 ぀づいお反応物に氎を加えたのち1N塩酞で
PH4に調敎し、分間撹拌する。析出する癜色
の物質を氎でよく掗い、さらにアセトンで掗浄し
おから也燥した。反応生成物のIRスペクトル
KBr錠剀法を第図の䞋段に瀺す。ここでは
3300cm-1付近ず2400cm-1付近にブロヌドなカルボ
ン酞OH基の䌞瞮振動に基づく吞収が珟れおい
る。したが぀おこの状態での反応生成物の構造は
次のようであるず考えられる。 䞊匏においお46 これをPDMS―〔GluOH〕19ず衚わす。 グラフト共重合䜓膜の衚面にのみ化孊的改質を
加えるこずができれば、疎氎性の匷靭な膜の衚面
に芪氎性の薄局を貌垃するこずができる。 以䞋に膜の䞍均質反応による衚面改質の䟋を述
べる。 反応䟋  補造䟋の方法にしたが぀お合成したグラフト
共重合䜓PDMS―〔GluOBzl〕24をゞメチルホ
ルムアミド溶液から成膜し、4N NaOH50mlずメ
タノヌル150mlの混合液に浞挬した。 䞀定時間ごずに膜を取り出しお枛衰党反射
ATR―IRスペクトルを枬定し、反応を远跡
した。 第図にATR―IRスペクトルを瀺す。䞭段の
図は䞊蚘のアルカリ济に80分浞挬したあずの
ATR―IRスペクトルであるが、䞊段の反応前の
スペクトルにくらべお1720cm-1の゚ステル基に基
づく吞収ず700cm-1のベンれン環に基づく吞収が
消倱し、代わりに1400cm-1付近にカルボキラヌト
基の察称䌞瞮振動に基づく吞収が珟われた。この
状態での膜の衚面構造はPDMS―〔GluONa〕
24であるず考えられる。 ぀づいお膜を10ク゚ン酞氎溶液50mlずメタノ
ヌル150mlの混合液に浞挬し、20分間攟眮した。
こうしお埗られた膜のATR―IRスペクトルは第
図の䞋段に瀺されおいるが、3300cm-1付近ず
2400cm-1付近にブロヌドなカルボン酞氎酞基の䌞
瞮振動に基づく吞収が珟われおいる。したが぀お
この状態での膜の衚面構造はPDMS―〔Glu
OH〕24であるず考えられる。 (iii) ポリゞメチルシロキサン幹ずポリα―
アミノ酞枝ずからなるグラフト共重合䜓
の衚面性質疎氎性のPDMS幹ず芪氎性の
ポリα―アミノ酞枝ずからなるグラフ
ト共重合䜓を溶液からガラス板䞊で成膜する堎
合、完成した膜内で疎氎性ブロツクず芪氎性ブ
ロツクの瞊方向の分垃の䞍均䞀性が生じるこず
が考えられる。すなわち膜は非察称性膜であ
る。 枬定䟋  補造䟋の方法で調補したグラフト共重合䜓
PDMS―〔GluOBzl〕24をゞメチルホルムアミ
ドに溶かし、ガラス板䞊に流延しお溶媒をゆ぀く
りず蒞発し、成膜した。膜をガラス板からはが
し、空気偎衚面ずガラス偎衚面の組成をATR―
IR法によ぀お枬定した。PDMSセグメントの特
性吞収ずしおSi―Me結合の倉角振動の800cm-1の
吞収匷床を、ポリ〔GluOBzl〕セグメントの特
性吞収ずしお1650cm-1のアミドの吞収垯の吞収
匷床をずり、その比で以お䞡成分の割合を評䟡
した。膜の空気偎の1.33、膜のガラス偎の
2.61であり、グラフト共重合䜓を成膜するず、
PDMSセグメントは空気偎よりもガラス偎に倚
く集たるこずがわかる。すなわち補造䟋で瀺さ
れた方法により合成したグラフト共重合䜓から、
ゞメチルホルムアミド溶液からの成膜により、非
察称性膜を調補するこずができる。 疎氎性のPDMS幹ず芪氎性のポリα―ア
ミノ酞枝ずからなるグラフト共重合䜓にお
いおは、䞡セグメントの盞溶性が䜎いため、溶液
から溶媒を留去しお成膜する堎合、詊料濃床の䞊
昇ずずもに、たず分子内ミセルが圢成され、続い
お分子間ミセルの圢成が起こり、成膜埌もミセル
構造すなわち盞分離構造が固盞においお保持され
る。したが぀お生成した膜は䞍均質な衚面構造
ドメむン構造を有する可胜性があり、これを
透過型電子顕埮鏡写真TEMで研究するこず
ができる。 枬定䟋  補造䟋の方法で合成しお埗たグラフト共重合
䜓PDMS―〔Lys〕27ずPDMS―〔Lys〕51
の0.5ゞメチルホルムアミド溶液を調補し、そ
の䞀滎を電子顕埮鏡のシヌトメツシナ䞊に萜し、
宀枩で溶媒を蒞発させお薄膜を埗、TEMによる
芳察を行な぀た。 写真では電子密床の高いPDMSセグメントが
黒く写り、ポリα―アミノ酞セグメントは癜
く写る。䞡グラフト共重合䜓ずも明確な海島構造
を瀺し、ミクロ盞分離に䌎うドメむン構造の発達
が芳察された。 PDMS―Lys〕27ではポリ〔Lys〕セ
グメントが短いため、黒い郚分が倚いのに察し、
PDMS―〔Lys〕51のTEMでは黒い郚分ず癜
い郚分の割合がほゞ等しか぀た。 TEMによ぀お瀺されたように、疎氎性の
PDMS幹ず芪氎性のポリ〔Lys〕枝の
グラフト共重合䜓を合成するこずにより、ミクロ
盞分離に䌎うドメむン構造の発達した衚面䞍均質
膜を調補するこずができる。たた、グラフト共重
合䜓の組成を倉化させるこずにより、膜のドメむ
ン構造を調節するこずができる。 (iv) ポリゞメチルシロキサン幹ずポリα―
アミノ酞枝グラフト共重合䜓の抗血栓
性 本発明のグラフト共重合䜓䞊びにこれず比范す
るためのPDMSおよびα―アミノ酞ホモポリマ
ヌの抗血栓性に぀いお枬定した結果に぀いお瀺
す。 この詊隓ではPDMSに぀いおはそのたた時蚈
皿の衚面に塗り぀け、その他はたずゞメチルホル
ムアミド溶媒に溶かしお各詊料300mgをゞメチ
ルホルムアミドmlに溶かす時蚈皿にずり赀倖
線ランプで玄時間かけお溶媒を留去し、真空ポ
ンプで晩也燥させお詊隓甚詊料ずする。たた、
䞊蚘(ii)の反応䟋に瀺したように成膜したのち衚
面を改質した詊料に぀いおはそのたた抗血栓性テ
ストに䟛した。 さらに比范のため、なんら凊理を斜さない、す
なわちガラスだけの時蚈皿を詊隓した。 詊隓方法は次の通りである。雄の成犬䜓重玄
15Kgの股動脈から30mlの血液をずり4.5mlの
ACD溶液ク゚ン酞、ク゚ン酞ナトリりム、お
よびブドり糖からなる液を加え、このもの0.2
mlを、䞊蚘のようにしお時蚈皿の䞊に調補したそ
れぞれの詊料に泚加し、0.1M塩化カルシりム氎
溶液0.02mlを添加しお凝血を開始させる。蚭定し
た、それぞれの時間に到達するず、蒞留氎を加え
お凝血を止め、生成した血栓をホルマリンで固定
し、蒞留氎で眮換する。濡れた血栓をスパチナラ
でずり出しおテむツシナペヌパヌの間に挟んで䜙
分の氎を吞いず぀お蚈量する。 ガラスを甚いたずきの15分埌の凝血物重量を
100ずし、これに察する盞察重量によ぀お血
栓生成率を比范した。 詊隓䟋  この䟋ではPDMSずポリ〔GluOBzl〕のグ
ラフト共重合䜓の抗血栓性に぀いおテストした。
[Table] The structure of this graft copolymer is estimated to be as follows, calculated from the molar concentration ratio of Glu(OBzl)NCA, SarNCA, and amino side chain PDMS used in the polymerization. This is expressed as PDMS - (Sar) 45 - [Glu (OBzl)] 13 . When the above graft copolymer was formed into a film from a dimethylformamide solution, a transparent, flexible and strong film was obtained. When this graft copolymer membrane is immersed in water, it swells to some extent, but unlike the graft copolymer of PDMS and polysarcosine described in Production Example 3, it does not swell violently and lose its shape. By grafting two types of poly(α-amino acids) in this manner, a membrane having appropriate hydrophilicity can be produced. (ii) Modification of poly(α-amino acid) (branches) of graft copolymer The graft copolymer synthesized in Production Example 1 contains a Lys (Z) polymer as a branch.
Furthermore, the graft copolymers synthesized in Production Examples 2 and 4 contain Glu (OBzl) polymers as branches. The side chains of these α-amino acid residues can be induced into heterologous structures by mild chemical treatments. The reaction equation for this process is as follows. By chemical modification of the side chains of poly(α-amino acid) branches, graft copolymer films with new properties can be synthesized. Examples of such reactions are described below. Reaction Example 1 Dissolve 0.5 g of graft copolymer PDMS-[Lys(Z)] 20 synthesized according to the method of Production Example 1 in 10 ml of dimethylformamide, and add 25% HBr/
10 ml of ACOH was added and stirred at room temperature for 12 hours. The solution was concentrated, the resulting oil was well decanted with ether, the volatiles were distilled off again, and 1N NaOH was added to give a white material. This was washed with methanol and dried. The IR spectrum (KBr tablet method) of the reaction product is shown in Figure 5. Compared to the IR spectrum before the reaction (Figure 1),
The absorption of the urethane bond at 1685 cm -1 and the absorption based on the benzene ring at 700 cm -1 are weak, and Lys
It can be seen that the (Z) residue has been converted to a Lys residue. The structure of the reaction product is thought to be as follows. Reaction Example 2 Graft copolymer PDMS- [Glu-(OBzl)] synthesized according to the method of Production Example 2.
Dissolved in ml dimethylformamide, 1NNaOH4
ml and stirred at room temperature for 5 minutes. The precipitated white substance was separated, washed with methanol, and then dried. The IR spectrum (KBr tablet method) of the reaction product is shown in the middle row of Figure 6. Compared to the IR spectrum before the reaction, the absorption based on the ester group at 1720 cm -1 and the absorption based on the benzene ring at 700 cm -1 disappear, and instead, an absorption based on the symmetric stretching vibration of the carboxylate group appears at around 1400 cm -1 . Appeared. The structure of the reaction product in this state is thought to be as follows. In the above formula, x+y=46, which is expressed as PDMS-[Glu(ONa)] 19 . Next, water was added to the reaction mixture, and then 1N hydrochloric acid was added.
Adjust the pH to 4 and stir for 5 minutes. The precipitated white substance was thoroughly washed with water, further washed with acetone, and then dried. The IR spectrum (KBr tablet method) of the reaction product is shown in the lower part of Figure 6. here
Broad absorptions based on stretching vibrations of carboxylic acid OH groups appear near 3300 cm -1 and 2400 cm -1 . Therefore, the structure of the reaction product in this state is considered to be as follows. In the above formula, x+y=46, which is expressed as PDMS-[Glu(OH)] 19 . If chemical modification can be applied only to the surface of the graft copolymer membrane, it is possible to apply a thin hydrophilic layer to the surface of a strong hydrophobic membrane. An example of surface modification by a heterogeneous reaction of a membrane is described below. Reaction Example 3 Graft copolymer PDMS-[Glu(OBzl)] 24 synthesized according to the method of Production Example 2 was formed into a film from a dimethylformamide solution, and immersed in a mixed solution of 50 ml of 4N NaOH and 150 ml of methanol. The reaction was tracked by removing the membrane at regular intervals and measuring the attenuated total reflectance (ATR)-IR spectrum. Figure 7 shows the ATR-IR spectrum. The figure in the middle row shows the result after being immersed in the above alkaline bath for 80 minutes.
The ATR-IR spectrum shows that compared to the spectrum before the reaction shown in the upper row, the absorption based on the ester group at 1720 cm -1 and the absorption based on the benzene ring at 700 cm -1 disappear, and the carboxylate group appears instead at around 1400 cm -1 . Absorption based on symmetric stretching vibrations appeared. The surface structure of the film in this state is PDMS-[Glu(ONa)]
It is thought to be 24 . Subsequently, the membrane was immersed in a mixture of 50 ml of 10% citric acid aqueous solution and 150 ml of methanol, and left for 20 minutes.
The ATR-IR spectrum of the film obtained in this way is shown in the lower part of Figure 7, and it is around 3300 cm -1 .
A broad absorption based on the stretching vibration of the carboxylic acid hydroxyl group appears around 2400 cm -1 . Therefore, the surface structure of the film in this state is PDMS-[Glu
(OH)] It is thought to be 24 . (iii) Polydimethylsiloxane (stem) and poly(α-
Surface properties of a graft copolymer consisting of hydrophobic PDMS (trunk) and hydrophilic poly(α-amino acid) (branches) from a solution on a glass plate. When forming a film, it is thought that non-uniformity in the vertical distribution of hydrophobic blocks and hydrophilic blocks occurs within the completed film. That is, the membrane is an asymmetric membrane. Measurement Example 1 Graft copolymer prepared by the method of Production Example 2
PDMS—[Glu(OBzl)] 24 was dissolved in dimethylformamide and cast onto a glass plate, and the solvent was slowly evaporated to form a film. Peel the film from the glass plate and check the composition of the air side surface and glass side surface using ATR.
Measured by IR method. The absorption intensity at 800 cm -1 of the bending vibration of the Si--Me bond is taken as the characteristic absorption of the PDMS segment, and the absorption intensity of the amide I absorption band at 1650 cm -1 is taken as the characteristic absorption of the poly[Glu(OBzl)] segment. The ratio of both components was evaluated using the ratio Z. Z on the air side of the membrane = 1.33, Z on the glass side of the membrane
= 2.61, and when the graft copolymer is formed into a film,
It can be seen that more PDMS segments gather on the glass side than on the air side. That is, from the graft copolymer synthesized by the method shown in Production Example 2,
Asymmetric membranes can be prepared by deposition from dimethylformamide solutions. In a graft copolymer consisting of hydrophobic PDMS (trunk) and hydrophilic poly(α-amino acid) (branches), the compatibility of both segments is low, so the solvent is distilled off from the solution to form a film. In this case, as the sample concentration increases, intramolecular micelles are first formed, followed by intermolecular micelles, and the micelle structure, that is, the phase-separated structure is maintained in the solid phase even after film formation. The resulting films may therefore have a heterogeneous surface structure (domain structure), which can be studied with transmission electron microscopy (TEM). Measurement Example 2 Graft copolymer PDMS-[Lys(Z)] 27 and PDMS-[Lys(Z)] 51 synthesized by the method of Production Example 1
Prepare a 0.5% dimethylformamide solution and drop a drop of it onto the sheet mesh of an electron microscope.
The solvent was evaporated at room temperature to obtain a thin film, which was observed by TEM. In the photo, the electron-dense PDMS segments appear black, and the poly(α-amino acid) segments appear white. Both graft copolymers showed a clear sea-island structure, and the development of a domain structure accompanied by microphase separation was observed. PDMS-(Lys(Z)) 27 has a short poly[Lys(Z)] segment, so there are many black parts, whereas
In the TEM of PDMS-[Lys(Z)] 51 , the proportions of black and white parts were almost equal. Hydrophobic as shown by TEM
By synthesizing a graft copolymer of PDMS (trunk) and hydrophilic poly[Lys(Z)] (branches), a surface-heterogeneous membrane with a developed domain structure due to microphase separation can be prepared. Furthermore, by changing the composition of the graft copolymer, the domain structure of the membrane can be adjusted. (iv) Polydimethylsiloxane (stem) and poly(α-
Antithrombotic properties of the (amino acid) (branch) graft copolymer: The results of measuring the antithrombotic properties of the graft copolymer of the present invention, as well as PDMS and α-amino acid homopolymer for comparison thereto will be shown. In this test, PDMS was applied directly to the surface of a watch glass, and other substances were first dissolved in dimethylformamide solvent (dissolve 300 mg of each sample in 8 ml of dimethyl formamide), and then placed on the watch glass and distilled off the solvent using an infrared lamp over about 2 hours. , dry overnight with a vacuum pump and use as a test sample. Also,
The sample whose surface was modified after film formation as shown in Reaction Example 3 in (ii) above was directly subjected to the antithrombotic test. Additionally, for comparison, a watch glass without any treatment, ie, just glass, was tested. The test method is as follows. Adult male dog (weight approx.
Take 30 ml of blood from the femoral artery of a patient (15 kg) and collect 4.5 ml of blood.
Add ACD solution (a solution consisting of citric acid, sodium citrate, and glucose) and add 0.2
ml to each sample prepared above on a watch glass and 0.02 ml of 0.1M aqueous calcium chloride solution added to initiate clotting. When each set time is reached, distilled water is added to stop blood clots, and the formed thrombus is fixed with formalin and replaced with distilled water. Remove the wet clot with a spatula, place it between tissue papers to absorb excess water, and weigh. The weight of the clot after 15 minutes when using glass
The thrombus formation rate was compared based on the weight percentage relative to 100%. Test Example 1 In this example, the antithrombotic properties of a graft copolymer of PDMS and poly[Glu(OBzl)] were tested.

【衚】【table】

【衚】 PDMSやポリ〔GluOBzl〕などのホモポリ
マヌはガラスよりも優れた抗血栓性を瀺す。 しかしそれらのグラフト共重合䜓即ち衚におけ
る(A)(B)および(C)はホモポリマヌよりもさらに優
れた抗血栓性を有するこずがわかる。 組成の異なるグラフト共重合䜓の䞭では、
PDMS幹ポリマヌの鎖長に察しおポリ〔Glu
OBzl〕枝ポリマヌの鎖長があたり長くもなく、
短くもないものが最も良奜な抗血栓性を瀺すこず
がわかる。 詊隓䟋  この䟋ではPDMSずポリ〔Lys〕のグラフ
ト共重合䜓の抗血栓性に぀いおテストした。
[Table] Homopolymers such as PDMS and poly[Glu(OBzl)] exhibit better antithrombotic properties than glass. However, it can be seen that the graft copolymers (A), (B) and (C) in the table have even better antithrombotic properties than the homopolymers. Among graft copolymers with different compositions,
Poly[Glu
(OBzl)] The chain length of the branched polymer is not very long,
It can be seen that those that are not too short exhibit the best antithrombotic properties. Test Example 2 In this example, the antithrombotic properties of a graft copolymer of PDMS and poly[Lys(Z)] were tested.

【衚】【table】

【衚】 ゞメチルシロキサンがLysのホモポリマ
ヌはガラスよりも優れた抗血栓性を瀺す。 しかしそれらのグラフト共重合䜓即ち衚におけ
る(D)(E)および(F)はホモポリマヌよりもさらに優
れた抗血栓性を有するこずがわかる。 組成の異なるグラフト共重合䜓の䞭では、
PDMS幹ポリマヌの鎖長に察するポリ〔Lys
〕枝ポリマヌの鎖長があたり長くもなく、短
くもないものが最も良奜な抗血栓性を瀺すこずが
わかる。 詊隓䟋  この䟋ではPDMSずポリSarのグラフト共
重合䜓、ならびにPDMSずポリSarずポリ
〔GluOBzl〕の元グラフト共重合䜓の抗血栓
性に぀いおテストした。
[Table] A homopolymer of Lys (Z) dimethylsiloxane exhibits better antithrombotic properties than glass. However, it can be seen that these graft copolymers, namely (D), (E) and (F) in the table, have even better antithrombotic properties than the homopolymers. Among graft copolymers with different compositions,
Poly[Lys relative to chain length of PDMS backbone polymer
(Z)] It can be seen that branched polymers whose chain lengths are neither too long nor too short exhibit the best antithrombotic properties. Test Example 3 In this example, the antithrombotic properties of a graft copolymer of PDMS and poly(Sar) and a tertiary graft copolymer of PDMS, poly(Sar), and poly[Glu(OBzl)] were tested.

【衚】【table】

【衚】 PDMSずポリSarのグラフト共重合䜓はホ
モポリマヌPDMSよりも優れた抗血栓性を瀺し、
PDMS―〔GluOBzl〕グラフト共重合䜓ず
同皋床である。PDMS幹ポリマヌにポリSar
ずポリ〔GluOBzl〕のブロツク共重合䜓を枝ポ
リマヌずしお結合した元グラフト共重合䜓は、
元グラフト共重合䜓よりもさらに良奜な抗血栓
性を瀺すこずがわかる。 詊隓䟋  この䟋では(ii)の反応䟋の方法に埓぀お衚面を
改質したPDMS幹ずポリ〔GluOBzl〕枝
グラフト共重合䜓の抗血栓性に぀いおテストし
た。
[Table] Graft copolymer of PDMS and poly(Sar) shows better antithrombotic properties than homopolymer PDMS.
It is on the same level as PDMS-[Glu(OBzl)]n graft copolymer. Poly(Sar) to PDMS stem polymer
A tertiary graft copolymer in which block copolymers of and poly[Glu(OBzl)] are bonded as branch polymers is
It can be seen that it exhibits even better antithrombotic properties than the binary graft copolymer. Test Example 4 In this example, PDMS (trunk) and poly[Glu(OBzl)] (branch) whose surface was modified according to the method of Reaction Example 3 in (ii)
The graft copolymer was tested for antithrombotic properties.

【衚】 グラフト共重合䜓がそれぞれのホモポリマヌよ
りも優れた抗血栓性を瀺すこずが明らかにされお
いるが、ポリ〔GluOBzl〕セグメントの偎鎖を
加氎分解するずさらに抗血栓性が向䞊するこずが
瀺された。 (v) ポリゞメチルシロキサン幹ずポリα―
アミノ酞枝ずからなるグラフト共重合䜓
の酞玠透過性。 ポリゞメチルシロキサンは倚孔質であり、䞀般
の気䜓透過性、ずくに酞玠透過性が非垞に高く、
人工肺甚材料ずしお䜿甚されおいる。しかしなが
ら気䜓の皮類に応じた遞択性は䜎い。疎氎性の
PDMSにポリα―アミノ酞をグラフト共重
合するず、盞察的に二酞化炭玠透過性をあげるこ
ずができよう。ただしこの堎合にも酞玠透過性は
䞀定のレベルを保぀こずが望たしい。 ここでは補造䟋あるいはの方法で合成した
PDMSずポリ〔Lys〕あるいはポリ〔Glu
OBzl〕のグラフト共重合䜓の酞玠透過性を枬
定し、皮々の合成高分子膜の酞玠透過性ず比范し
た。適圓な波長の光を受けお酞玠を励起する色
玠、゚リトロシンず、その励起䞀重項酞玠ず反応
するアクセプタヌ、ゞメチルアントラセンを分散
した゚チルセルロヌス膜を枬定しようずする詊料
フむルムで挟み、セル䞭に密閉し倧気圧の䞋でゞ
メチルアントラセンの消倱速床を远跡しお酞玠の
透過量を調べた。 膜の酞玠透過係数cm3STP、cm×1010cm2・
sec・cmHg27℃ セグメント化ポリアミノ゚ヌテルりレタン尿玠
4.20BzlCl四玚化 PDMS 606.4 PDMS―Lys〕33 95.129℃ ポリ〔Lys〕 0.080 PDMS―〔GluOBzl〕19 178.7 PDMS―〔GluOBzl〕32 96.5 PDMS―〔GluOBzl〕58 26.1 PDMS―〔GluOBzl〕87 2.90 PDMS―〔GluOBzl〕146 0.83 PDMS―〔GluOBzl〕161 0.76 ポリ〔GluOBzl〕 0.53 PDMSは非垞に倧きい酞玠透過性をもち、ポ
リα―アミノ酞の酞玠透過性はきわめお䜎
い。 PDMS幹にポリ〔Lys〕やポリ〔Glu
OBzl〕を枝ポリマヌずしおグラフト化するず、
酞玠透過性は䜎䞋し、グラフト共重合䜓の組成を
調節するこずにより、酞玠透過性を調節できるこ
ずが明らかにな぀た。 短いポリα―アミノ酞枝をも぀グラフト共
重合䜓の酞玠透過性は、かなり倧きい。 本発明のグラフト共重合䜓が以䞊のように優れ
た抗血栓性を瀺すのはポリα―アミノ酞ブロ
ツクの結晶性、芪氎性、剛盎性ずPDMSブロツ
クの非晶性、疎氎性、柔軟性に基づき、ミクロ盞
分離構造を生じ、ドメむン構造が発達しおいるた
めず考えられ、こうした構造が血液タンパク質ず
の遞択的な盞互䜜甚を通しお、血小板の掻性化や
噚質化の促進を制埡しおいるず考えられる。た
た、ポリα―アミノ酞ブロツクの偎鎖を改質
するこずにより抗血栓性が䞊昇するのは、改質に
より膜衚面の芪氎性が増倧し、血液ずの界面自由
゚ネルギヌが䜎䞋するためず考えられる。 䞊述の優れた性胜に基づき、本発明の抗血栓材
は抗血栓性を芁求される各皮医療甚噚具、材料、
たずえば、血管カテヌテルや䜓倖血液茞送回路等
に䜿甚し埗るものである。たた、優れた酞玠透過
性を有するこずより、抗血栓性ず酞玠透過性の䞡
方が芁求される各皮医療甚噚具、材料、たずえば
人工肺甚気䜓亀換膜、人工皮膚甚膜、コンタクト
レンズ等に䜿甚し埗るものである。 以䞊説明し、たた実斜の具䜓䟋に瀺したずころ
は本発明の理解を助けるための䟋瀺に係るもので
あり、本発明はこれら䟋瀺に制限されるこずな
く、特蚱請求の範囲によ぀おのみ拘束され、その
範囲内で他の倉曎、倉圢䟋をずるこずができるも
のである。
[Table] Graft copolymers have been shown to exhibit superior antithrombotic properties to their respective homopolymers; however, hydrolysis of the side chains of poly[Glu(OBzl)] segments further improves antithrombotic properties. It was shown that it improved. (v) Polydimethylsiloxane (stem) and poly(α-
Oxygen permeability of graft copolymers consisting of (amino acids) (branches). Polydimethylsiloxane is porous and has very high gas permeability in general, especially oxygen permeability.
Used as a material for artificial lungs. However, selectivity depending on the type of gas is low. hydrophobic
Graft copolymerization of poly(α-amino acid) to PDMS may relatively increase carbon dioxide permeability. However, even in this case, it is desirable to maintain oxygen permeability at a constant level. Here, it was synthesized using the method of Production Example 1 or 2.
PDMS and poly[Lys(Z)] or poly[Glu]
The oxygen permeability of the graft copolymer of (OBzl)] was measured and compared with that of various synthetic polymer membranes. An ethylcellulose membrane containing dispersed erythrosine, a dye that excites oxygen when exposed to light of an appropriate wavelength, and dimethylanthracene, an acceptor that reacts with the excited singlet oxygen, is sandwiched between sample films to be measured, and sealed in a large cell. The rate of disappearance of dimethylanthracene was tracked under atmospheric pressure to determine the amount of oxygen permeation. Membrane oxygen permeability coefficient cm 3 (STP), cm×10 10 /cm 2・
sec・cmHg (27℃) Segmented polyaminoether urethane urea
4.20 (BzlCl quaternization) PDMS 606.4 PDMS-(Lys(Z)) 33 95.1(29℃) Poly[Lys(Z)] 0.080 PDMS-[Glu(OBzl)] 19 178.7 PDMS-[Glu(OBzl)] 32 96.5 PDMS―[Glu(OBzl)] 58 26.1 PDMS―[Glu(OBzl)] 87 2.90 PDMS―[Glu(OBzl)] 146 0.83 PDMS―[Glu(OBzl)] 161 0.76 Poly[Glu(OBzl)] 0.53 PD M.S. has a very high oxygen permeability, and poly(α-amino acid) has an extremely low oxygen permeability.
(OBzl)] as a branched polymer,
The oxygen permeability decreased, and it became clear that the oxygen permeability could be controlled by adjusting the composition of the graft copolymer. The oxygen permeability of graft copolymers with short poly(α-amino acid) branches is considerably greater. The reason why the graft copolymer of the present invention exhibits excellent antithrombotic properties as described above is due to the crystallinity, hydrophilicity, and rigidity of the poly(α-amino acid) block, and the amorphousness, hydrophobicity, and flexibility of the PDMS block. This is thought to be due to the development of a microphase-separated structure and a well-developed domain structure, and these structures control activation and promotion of platelet organization through selective interaction with blood proteins. it is conceivable that. Furthermore, the antithrombotic properties are increased by modifying the side chains of poly(α-amino acid) blocks because the modification increases the hydrophilicity of the membrane surface and lowers the interfacial free energy with blood. Conceivable. Based on the above-mentioned excellent performance, the antithrombotic material of the present invention can be used for various medical devices, materials, and other materials that require antithrombotic properties.
For example, it can be used in vascular catheters, extracorporeal blood transport circuits, and the like. In addition, due to its excellent oxygen permeability, it is used in various medical devices and materials that require both antithrombotic properties and oxygen permeability, such as gas exchange membranes for oxygenators, membranes for artificial skin, and contact lenses. It is possible. What has been explained above and shown in the specific examples of implementation are examples to help the understanding of the present invention, and the present invention is not limited to these examples, but is limited only by the scope of the claims. However, other changes and modifications may be made within this scope.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本文䞭、補造䟋によ぀お埗られたグ
ラフト共重合䜓即ちPDMS―〔Lys〕27のIR
スペクトル図、第図は本文䞭、補造䟋によ぀
お埗られたグラフト共重合䜓即ちPDMS―〔Glu
OBzl76のIRスペクトル図、第図は本文䞭、
補造䟋によ぀お埗られたグラフト共重合䜓即ち
PDMSSar45のIRスペクトル図、第図は本文
䞭、補造䟋によ぀お補造されたグラフト共重合
䜓即ちPDMS―Sar45―〔GluOBzl〕13のIR
スペクトル図、第図は本文䞭、反応䟋によ぀
お埗られたグラフト共重合䜓、即ちPDMS―
Lys20のIRスペクトル図、第図は本文䞭、反
応䟋におけるグラフト共重合䜓の化孊的改質に
よるIRスペクトルの倉化を瀺すもので、䞊段は
PDMS―〔GluOBzl〕19、䞭段はPDMS―〔Glu
ONa〕19、䞋段はPDMS―〔GluOH〕19に぀
いおのIRスペクトル図、第図は本文䞭、反応
䟋におけるグラフト共重合䜓膜の衚面改質に䌎
なうATR―IRスペクトルの倉化を瀺すスペクト
ル図であ぀お、䞊段は衚面改質凊理前のもの即ち
PDMS―〔GluOBzl〕24、䞭段はアルカリ凊理
したもの、即ちPDMS―〔GluONa〕19、䞋段
は曎に酞凊理したもの、即ちPDMS―〔Glu
OH〕19に係わるものである。第〜図の図衚
においお瞊軞は波数cm-1を、暪軞は透過床を
衚わす。
Figure 1 shows the IR of the graft copolymer obtained in Production Example 1, namely PDMS-[Lys(Z)] 27 .
The spectrum diagram, FIG.
(OBzl) 76 IR spectrum diagram, Figure 3 is in the text,
The graft copolymer obtained in Production Example 3, namely
The IR spectrum of PDMS(Sar) 45 , Figure 4 is in the main text, the IR spectrum of the graft copolymer produced by Production Example 4, namely PDMS-(Sar) 45- [Glu(OBzl)] 13 .
The spectrum diagram, FIG. 5, is the graft copolymer obtained in Reaction Example 1, that is, PDMS-
(Lys) 20 IR spectrum diagram, Figure 6 shows the change in IR spectrum due to chemical modification of the graft copolymer in Reaction Example 2 in the main text, and the upper row is
PDMS―[Glu(OBzl)] 19 , middle row is PDMS―[Glu
(ONa)] 19 , the lower row is an IR spectrum diagram of PDMS-[Glu(OH)] 19 , and Figure 7 is the ATR-IR spectrum accompanying the surface modification of the graft copolymer film in Reaction Example 3 in the main text. This is a spectral diagram showing changes in the spectrum. The upper row shows the spectrum before surface modification treatment.
PDMS―[Glu(OBzl)] 24 , the middle row is the one treated with alkali, i.e., PDMS—[Glu(ONa)] 19 , the lower row is the one further treated with acid, i.e., PDMS—[Glu
(OH)] This concerns 19 . In the charts of FIGS. 1 to 7, the vertical axis represents the wave number (cm -1 ), and the horizontal axis represents the transmittance.

Claims (1)

【特蚱請求の範囲】[Claims]  偎鎖にアミノ基をも぀ポリゞメチルシロキサ
ンにより、α―アミノ酞―カルボキシ無氎物を
重合しお埗られるグラフト共重合䜓を䞻芁成分ず
しおなる気䜓透過性を有する抗血栓材。
1. An antithrombotic material having gas permeability, which is composed mainly of a graft copolymer obtained by polymerizing α-amino acid N-carboxy anhydride with polydimethylsiloxane having an amino group in the side chain.
JP56203639A 1981-12-18 1981-12-18 Anti-thrombotic material having gas permeability Granted JPS58105758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56203639A JPS58105758A (en) 1981-12-18 1981-12-18 Anti-thrombotic material having gas permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56203639A JPS58105758A (en) 1981-12-18 1981-12-18 Anti-thrombotic material having gas permeability

Publications (2)

Publication Number Publication Date
JPS58105758A JPS58105758A (en) 1983-06-23
JPH0131907B2 true JPH0131907B2 (en) 1989-06-28

Family

ID=16477374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56203639A Granted JPS58105758A (en) 1981-12-18 1981-12-18 Anti-thrombotic material having gas permeability

Country Status (1)

Country Link
JP (1) JPS58105758A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429266B2 (en) * 1998-06-30 2002-08-06 University Of South Alabama Thermal grafts of polyamides with pendant carboxylic acid groups, methods for producing the same, compositions containing the same, and methods of using the same

Also Published As

Publication number Publication date
JPS58105758A (en) 1983-06-23

Similar Documents

Publication Publication Date Title
US3901810A (en) Ultrafiltration membranes
US5401410A (en) Membrane and process for the production thereof
DK148784B (en) SYNTHETIC MEMBRANE FOR USE OF SPECIFICATION AND PROCEDURE FOR MANUFACTURING A SUCH
JPH08510274A (en) Membrane formed by acrylonitrile-based polymer
CN107088370A (en) Dialysis membrane and its production method
Kumaki et al. Antithrombogenicity and oxygen permeability of block and graft copolymers of polydimethylsiloxane and poly (α‐amino acid)
JPH0669485B2 (en) Molded product containing silk fibroin
JPS62201603A (en) Hydrophilic polysulfone membrane
JPH0131907B2 (en)
EP0580871A1 (en) Water-soluble cellulose derivative and biocompatible material
Hayashi et al. Preparation and properties of charged copolypeptide membranes as biodegradable materials
US3867352A (en) Isocyanate-modified polymers of aspartic and glutamic acid and method of preparing the same
JPH0351730B2 (en)
Crassous et al. A new asymmetric membrane having blood compatibility
JP3948993B2 (en) Polysulfone copolymer
Piao et al. Synthesis and characterization of poly (dimethylsiloxane)-poly (ethylene oxide)-heparin CBABC type block copolymers
JPS62168503A (en) Separation membrane
JP2004209423A (en) Polysulfone membrane having surface modified with dna
Hayashi et al. Preparation and properties of ABA tri-block copolymer membranes consisting of N-hydroxyalkyl L-glutamine as the A component and L-alanine as the B component
Hayashi et al. Preparation and properties of ABA tri-block copolymer membranes consisting of N-hydroxyethyl-l-glutamine as the A component and l-leucine as the B component
Fang et al. Radiation‐induced graft copolymerization of 2‐hydroxyethyl methacrylate onto chloroprene rubber membrane. II. Characterization of grafting copolymer
JP2004075741A (en) Branched polyethylene oxide-polysulfone block copolymer having excellent blood compatibility
Suberlyak et al. High-hydrophilic membranes for dialysis and hemodialysis
JP2613764B2 (en) Separation membrane
JP3967955B2 (en) Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same