JPH01317298A - Address control system - Google Patents

Address control system

Info

Publication number
JPH01317298A
JPH01317298A JP14834088A JP14834088A JPH01317298A JP H01317298 A JPH01317298 A JP H01317298A JP 14834088 A JP14834088 A JP 14834088A JP 14834088 A JP14834088 A JP 14834088A JP H01317298 A JPH01317298 A JP H01317298A
Authority
JP
Japan
Prior art keywords
signal
address
speed
circuit
switching signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14834088A
Other languages
Japanese (ja)
Inventor
Chizuko Torikai
鳥飼 千鶴子
Koji Ikuta
生田 廣司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14834088A priority Critical patent/JPH01317298A/en
Publication of JPH01317298A publication Critical patent/JPH01317298A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an address switching signal which follows the variation of a clock signal by bringing a high speed clock signal to frequency division and generating a switching signal from this divided signal. CONSTITUTION:High speed and low speed clock signals CK1, CK2 are supplied to high speed and low speed address generating means 1, 2, respectively, and a high speed address signal AD1 and a low speed address signal AD2 are generated, and supplied to a selecting means 5. The high speed clock signal CK1 is supplied to a frequency dividing means 3, as well, brought to frequency division by a prescribed frequency division ratio and supplied as a clock signal CK3 to a switching signal generating means 4. The switching signal generating means 4 detects the address variation point of the low speed address signal AD2, and supplies the pulse of the clock signal CK3 after a prescribed time as a switching signal SW to a selecting means 5 from its variation point. In such a way, when the frequency of the clock signal for generating the address signal is switched, the address switching signal can be changed by following it.

Description

【発明の詳細な説明】 〔概 要〕 速さの異なる複数のアドレス信号で記憶装置の書き込み
および読み出し制御を行うアドレス制御方式に関し、 アドレス信号を生成しているクロック信号の周波数が切
り換えられた場合、それに追随してアドレス切換信号を
容易に変更することのできるアドレス制御方式を提供す
ることを目的とし、高速アドレス信号と低速アドレス信
号とにより記憶装置のアドレス制御を行う際に、高速ク
ロック信号に基づき前記高速アドレス信号を生成する高
速アドレス生成手段と、低速クロック信号に基づき前記
低速アドレス信号を生成する低速アドレス生成手段と、
前記高速クロック信号を所定の分周比で分周する分周手
段と、前記低速アドレス信号のアドレス変化点を検出し
前記分周手段の出力から特定のパルス信号を切換信号と
して抽出する切換信号生成手段と、この切換信号に基づ
き前記高速アドレス信号または前記低速アドレス、信号
を前記記憶装置に選択的に出力する選択手段とを設ける
ようにした。
[Detailed Description of the Invention] [Summary] Regarding an address control method that controls writing and reading of a storage device using a plurality of address signals having different speeds, when the frequency of the clock signal that generates the address signal is switched. , the purpose is to provide an address control method that can easily change the address switching signal in accordance with this, and when controlling the address of a storage device using a high-speed address signal and a low-speed address signal. high-speed address generation means for generating the high-speed address signal based on the low-speed clock signal; low-speed address generation means for generating the low-speed address signal based on the low-speed clock signal;
Frequency dividing means for frequency dividing the high speed clock signal at a predetermined frequency division ratio; and switching signal generation for detecting an address change point of the low speed address signal and extracting a specific pulse signal from the output of the frequency dividing means as a switching signal. and a selection means for selectively outputting the high-speed address signal or the low-speed address signal to the storage device based on the switching signal.

〔産業上の利用分野〕[Industrial application field]

本発明は、速さの異なる複数のアドレス信号で記憶装置
の書き込みおよび読み出し制御を行うアドレス制御方式
に関し、特にデータ圧縮・変換用のバッファメモリのア
ドレス制御などに適用して好適なものである。
The present invention relates to an address control method for controlling writing and reading of a storage device using a plurality of address signals having different speeds, and is particularly suitable for application to address control of a buffer memory for data compression and conversion.

〔従来の技術〕[Conventional technology]

第5図は、従来のアドレス制御方式を示すブロック図で
ある。
FIG. 5 is a block diagram showing a conventional address control method.

同図において、RAM構成のメモIJ Mのアドレス人
力には、データ書き込み用の高速アドレス信号へD1と
データ読み出し用の低速アドレス信号へD2とがセレク
タ10を介して選択的に供給されている。セレクタ10
は通常はアドレス切換信号SWにより書込アドレス信号
ADIを選択しているため、メモリMは書込アドレス信
号ADlにより入力データWDを書き込む書き込みモー
ドとなっている。
In the figure, a high-speed address signal D1 for data writing and a low-speed address signal D2 for data reading are selectively supplied via a selector 10 to the address input of a memory IJM having a RAM configuration. selector 10
Since the write address signal ADI is normally selected by the address switching signal SW, the memory M is in a write mode in which input data WD is written by the write address signal ADl.

読出アドレス信号AD2のアドレス内容が変化すると、
切換信号生成回路11がその変化点を検出する。切換信
号生成回路11の人力には互いに位相の異なる2つのパ
ルス信号P1およびP2が人力されている。切換信号生
成回路11がアドレス信号AD2の変化点を検出すると
、パルス信号P1およびP2のうちアドレス信号AD2
の変化点から位相がずれている方のパルス信号を選択し
、切換信号SWとして出力する。
When the address content of read address signal AD2 changes,
The switching signal generation circuit 11 detects the point of change. Two pulse signals P1 and P2 having mutually different phases are input to the switching signal generation circuit 11. When the switching signal generation circuit 11 detects a change point of the address signal AD2, the address signal AD2 of the pulse signals P1 and P2 is
The pulse signal whose phase is shifted from the change point is selected and output as the switching signal SW.

この選択したパルス信号がセレクタ10に供給されると
、セレクタ10は読出アドレス信号AD2を選択してメ
モリMに供給する。このため、メモリMはこのパルス信
号、すなわち、切換信号SWが「1」レベルの間、アド
レス信号AD2の指示する位置から記憶データを読み出
す読み出しモードとなる。
When this selected pulse signal is supplied to the selector 10, the selector 10 selects the read address signal AD2 and supplies it to the memory M. Therefore, while this pulse signal, that is, the switching signal SW is at the "1" level, the memory M is in a read mode in which stored data is read from the position indicated by the address signal AD2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような従来例によると、アドレス信号を
生成するクロック信号の周波数を選択的に切り換えるシ
ステムでは、切換信号SWのパルス幅をそれに合わせて
切り換える必要があるため、切り換え周波数に合わせて
パルス信号P1およびP2の組を複数組準備しておく必
要があり、回路構成の複雑化を招くという問題点があっ
た。
By the way, according to such a conventional example, in a system that selectively switches the frequency of the clock signal that generates the address signal, it is necessary to switch the pulse width of the switching signal SW accordingly. It is necessary to prepare a plurality of pairs of P1 and P2, which poses a problem of complicating the circuit configuration.

本発明は、アドレス信号を生成するクロック信号の周波
数が切り換えられた場合に、それに追随してアドレス切
換信号を容易に変更することのできるアドレス制御方式
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an address control method that can easily change an address switching signal in accordance with the switching of the frequency of a clock signal that generates an address signal.

〔課題を解決するための手段〕[Means to solve the problem]

第1図の原理図に示すように、高速クロック信号CK1
に基づき高速アドレス信号ADIを生成する高速アドレ
ス生成手段1と、低速クロック信号CK2に基づき低速
アドレス信号AD2を生成する低速アドレス生成手段2
と、高速クロック信号CKIを所定の分周比で分周する
分周手段3と、低速アドレス信号AD2のアドレス変化
点を検出し分周手段3からの分周信号CK3から特定の
パルス信号を抽出する切換信号生成手段4と、この切換
信号生成手段4の出力に基づき高速アドレス信号AD1
または低速アドレス信号AD2を選択的に出力する選択
手段5とを設けるようにした。
As shown in the principle diagram of FIG. 1, high-speed clock signal CK1
A high-speed address generation means 1 that generates a high-speed address signal ADI based on the signal ADI, and a low-speed address generation means 2 that generates a low-speed address signal AD2 based on the low-speed clock signal CK2.
, a frequency dividing means 3 that divides the high speed clock signal CKI at a predetermined frequency division ratio, and a specific pulse signal is extracted from the frequency divided signal CK3 from the frequency dividing means 3 by detecting the address change point of the low speed address signal AD2. and a high-speed address signal AD1 based on the output of the switching signal generating means 4.
Alternatively, a selection means 5 for selectively outputting the low-speed address signal AD2 is provided.

〔作 用〕[For production]

高速クロック信号CK1および低速クロック信号CK2
は、高速アドレス生成手段1および低速アドレス生成手
段2にそれぞれ供給され、高速アドレス信号ADIおよ
び低速アドレス信号AD2を生成している。両アドレス
信号ADIおよびAD2は選択手段5に供給され、切換
信号SWが「0」のときはアドレス信号ADI、切換信
号SWが「1」のときはアドレス信号へ〇2がそれぞれ
選択される。高速クロック信号Cに1は、また、分周手
段3に供給されており、所定の分周比で分周されてクロ
ック信号CK3として切換信号生成手段4に供給される
High speed clock signal CK1 and low speed clock signal CK2
are supplied to the high-speed address generation means 1 and the low-speed address generation means 2, respectively, to generate the high-speed address signal ADI and the low-speed address signal AD2. Both address signals ADI and AD2 are supplied to the selection means 5, and when the switching signal SW is "0", the address signal ADI is selected, and when the switching signal SW is "1", the address signal 02 is selected. The high-speed clock signal C 1 is also supplied to the frequency dividing means 3, and is divided by a predetermined frequency dividing ratio and supplied to the switching signal generating means 4 as a clock signal CK3.

切換信号生成手段4ては、低速アドレス信号AD2のア
ドレス変化点を検出し、この変化点から所定時間以上の
ちのクロック信号CK3の1パルスを切換信号SWとし
て選択手段5に供給し、アドレス信号AD2のアドレス
変化点を避けて選択手段5でこのアドレス信号AD2を
選択するようにしている。
The switching signal generation means 4 detects an address change point of the low-speed address signal AD2, and supplies one pulse of the clock signal CK3 after a predetermined time period or more from this change point to the selection means 5 as a switching signal SW. The selection means 5 selects this address signal AD2 while avoiding the address change point.

〔実施例〕〔Example〕

第2図は、本発明によるアドレス制御方式の一実施例を
示すブロック図である。なお、同図において第1図と同
一部分には同一符号を付して説明する。
FIG. 2 is a block diagram showing an embodiment of the address control method according to the present invention. In addition, in this figure, the same parts as in FIG. 1 are given the same reference numerals and will be explained.

このアドレス制御方式は、RAM構成のメモリM1高速
りロック信号(例えば、6〜8M Hz) CK1から
書込アドレス信号式01を生成する書込アドレス生成回
路1、低速クロック信号(例えば、64KHz) CK
 2から読出アドレス信号AD2を生成する読出アドレ
ス生成回路2、高速クロック信号CKIを所定の分周比
で分周しクロック信号CK3を出力する分周回路3、読
出アドレス信号AD2のアドレス変化点を検出し分周回
路3の出力信号CK3から特定のパルス信号を抽出して
切換信号SWとして出力する切換信号生成回路4および
切換信号SWによってアドレス信号ADIまたは八〇2
の一方を選択するセレクタ5から構成される。
This address control method uses a write address generation circuit 1 that generates a write address signal formula 01 from a memory M1 having a RAM configuration, a high-speed lock signal (e.g., 6 to 8 MHz) CK1, and a low-speed clock signal (e.g., 64 kHz) CK.
A read address generation circuit 2 generates a read address signal AD2 from 2, a frequency divider circuit 3 divides the high speed clock signal CKI at a predetermined frequency division ratio and outputs a clock signal CK3, and detects an address change point of the read address signal AD2. The switching signal generating circuit 4 extracts a specific pulse signal from the output signal CK3 of the frequency dividing circuit 3 and outputs it as the switching signal SW, and the switching signal SW generates the address signal ADI or 802.
It is composed of a selector 5 for selecting one of the two.

切換信号生成回路4は、第3図の回路図に示すように、
分周回路3からの分周信号CK3をアンド回路41でゲ
ート制御して切換信号SWとしてセレクタ5に出力する
ものである。分周信号CK3をゲート制御する信号S1
は、アドレス信号AD2の変化点を検出する変化点検出
回路42からの検出信号S2がDフリップフロップ(以
下、DFF、という)43、ノア回¥@44および第2
のDFF45を経て生成されるもので、切換信号SWを
アドレス信号Al112の変化点を避けて出力するよう
にアンド回路41をゲート制御する。
The switching signal generation circuit 4, as shown in the circuit diagram of FIG.
The frequency divided signal CK3 from the frequency dividing circuit 3 is gate-controlled by an AND circuit 41 and outputted to the selector 5 as a switching signal SW. Signal S1 that gate-controls frequency-divided signal CK3
In this case, the detection signal S2 from the change point detection circuit 42 that detects the change point of the address signal AD2 is applied to the D flip-flop (hereinafter referred to as DFF) 43, the NOR circuit ¥@44 and the second
The AND circuit 41 is gate-controlled so as to output the switching signal SW while avoiding the changing point of the address signal Al112.

ノア回路44の他方の入力には第3のDFF46のQ出
力が接続されている。DFF46の0人力にはDFF4
3の反転出力およびDFF45のQ出力がアンド回路4
7でアンド条件を取られたのちセレクタ48、オア回路
49を経て供給されている。オア回路49の他方の入力
にはDFF43の反転出力およびDFF46のQ出力が
アンド条件をとられて供給されている。また、DFF4
6のO出力はセレクタ48の「0」入力に供給されてい
る。
The other input of the NOR circuit 44 is connected to the Q output of the third DFF 46. DFF4 for 0 man power of DFF46
The inverted output of 3 and the Q output of DFF45 are connected to AND circuit 4.
After the AND condition is taken at step 7, the signal is supplied via a selector 48 and an OR circuit 49. The other input of the OR circuit 49 is supplied with the inverted output of the DFF 43 and the Q output of the DFF 46 under an AND condition. Also, DFF4
The O output of 6 is supplied to the "0" input of selector 48.

なお、各DFF43.45および46はそれぞれクロツ
タ信号CKIによってクロック制御され、また、セレク
タ48は信号CK3が「1」レベルのときはアンド回路
47の出力を、信号CK3が「0」レベルのときはDF
F46の出力をそれぞれ選択するように構成されている
Each of the DFFs 43, 45 and 46 is clock-controlled by the clock signal CKI, and the selector 48 outputs the output of the AND circuit 47 when the signal CK3 is at the "1" level, and outputs the output from the AND circuit 47 when the signal CK3 is at the "0" level. DF
It is configured to select the output of F46 respectively.

次に、このような構成を有する本実施例の動作を説明す
る。
Next, the operation of this embodiment having such a configuration will be explained.

切換信号SWは通常「0」レベルにあるので、セレクタ
5は常時は書込アドレス信号ADlを選択している。こ
のため、メモリMにはアドレス信号ADIで指定される
位置にデータWDが書き込まれている。切換信号生成回
路4でアドレス信号AD2のアドレス変化点が検出され
ると、切換信号SWが「1」レベルとなり、セレクタ5
はアドレス信号式D2を選択する。このため、メモ’J
Mのアドレス信号AD2で指定される位置からデータR
Dが出力される。
Since the switching signal SW is normally at the "0" level, the selector 5 normally selects the write address signal ADl. Therefore, the data WD is written in the memory M at the location specified by the address signal ADI. When the switching signal generation circuit 4 detects the address change point of the address signal AD2, the switching signal SW becomes "1" level, and the selector 5
selects address signal formula D2. For this reason, note 'J
Data R from the position specified by address signal AD2 of M
D is output.

次に、第4図のタイムチャートを参照しながら第3図に
示す切換信号生成回路4の動作を説明する。
Next, the operation of the switching signal generation circuit 4 shown in FIG. 3 will be explained with reference to the time chart shown in FIG.

まず、時点t1でアドレス信号AD2(第4図Δ)のア
ドレス変化点が変化点検出回路42て検出されると、そ
の変化点からクロック信号CK2(第4図B)の1周期
分の間「O」レベルとなる変化点検出信号S2(第4図
CおよびD)が出力される。
First, when the address change point of the address signal AD2 (Δ in FIG. 4) is detected by the change point detection circuit 42 at time t1, a period of one period of the clock signal CK2 (B in FIG. 4) is detected from the change point. A change point detection signal S2 (C and D in FIG. 4) which reaches the "O" level is output.

この信号S2はDFF43に供給され時点t2でクロッ
ク信号CKI(第4図E)の立ち上がりに同期して立ち
下がる信号S3(第4図F)として出力される。この信
号S3はノア回路44で反転され信号S4(第4図G)
としてDFF45に供給され、クロック信号CKIによ
って1クロツク遅延されたのち、時点t3で立ち上がる
信号SL(第4図H)としてアンド回路41に供給され
る。
This signal S2 is supplied to the DFF 43 and output as a signal S3 (FIG. 4F) which falls in synchronization with the rise of the clock signal CKI (FIG. 4E) at time t2. This signal S3 is inverted by the NOR circuit 44 and the signal S4 (FIG. 4G)
After being delayed by one clock by the clock signal CKI, it is supplied to the AND circuit 41 as a signal SL (H in FIG. 4) which rises at time t3.

セレクタ48は信号CK3が「0」レベルのときはDF
F46のQ出力を選択しているので、セレクタ48の出
力信号S5(第4図1)は「0」レベルである。この信
号S5はオア回路49を経てDFF46に供給され、D
FF46でクロック信号CKIによって1クロツク遅延
されたのち信号S6(第4図J)としてノア回路44、
セレクタ48およびアンド回路50に供給される。
Selector 48 is DF when signal CK3 is at “0” level.
Since the Q output of F46 is selected, the output signal S5 of the selector 48 (FIG. 4, 1) is at the "0" level. This signal S5 is supplied to the DFF 46 via the OR circuit 49, and
After being delayed by one clock by the clock signal CKI in the FF 46, the signal S6 (J in FIG. 4) is sent to the NOR circuit 44,
The signal is supplied to a selector 48 and an AND circuit 50.

ところで、クロック信号CKIは分周回路3で分周され
信号CK3(第4図K)としてアンド回路41に供給さ
れる。この信号CK3はクロック信号CKIを例えば1
/6分周した信号で、クロック信号CK1の1周期分の
パルス幅を有するパルス列で形成されている。
Incidentally, the clock signal CKI is frequency-divided by the frequency dividing circuit 3 and supplied to the AND circuit 41 as a signal CK3 (K in FIG. 4). This signal CK3 converts the clock signal CKI to 1, for example.
This signal is frequency-divided by /6 and is formed by a pulse train having a pulse width equivalent to one period of the clock signal CK1.

時点t4て信号Cに3のパルスが到来すると、セレクタ
48がアンド回路47の出力を選択するので、セレクタ
48の出力信号S5は「1」レベルとなり、1クロツク
遅れて時点t5で信号S6が「1」レベルとなる。信号
S6が「1」レベルとなると、ノア回路44の出力信号
S4がrojレベルに反転するので、■クロック遅れた
時点t6で信号S1が「0」レベルに戻る。このため、
アンド回路41からは信号CK3の時点t4のパルスが
切換信号SW(第4図L)として出力される。
When a pulse of 3 arrives at the signal C at time t4, the selector 48 selects the output of the AND circuit 47, so the output signal S5 of the selector 48 becomes "1" level, and after one clock delay, the signal S6 becomes "1" level at time t5. 1” level. When the signal S6 becomes the "1" level, the output signal S4 of the NOR circuit 44 is inverted to the roj level, so that the signal S1 returns to the "0" level at time t6, which is delayed by (1) clock. For this reason,
The AND circuit 41 outputs the pulse of the signal CK3 at time t4 as the switching signal SW (FIG. 4L).

次いで、時点t7で信号CK3の次のパルスが到来する
と、セレクタ48が再びアンド回路47の出力を選択す
るが、アンド回路47の出力は「0」レベルに戻ってい
るのでセレクタ48の出力S5も「0」レベルに立ち下
がる。ただし、アンド回路50の出力は「1」であるの
でDFF46の出力S6は「1」を保つ。
Next, when the next pulse of the signal CK3 arrives at time t7, the selector 48 again selects the output of the AND circuit 47, but since the output of the AND circuit 47 has returned to the "0" level, the output S5 of the selector 48 also It falls to the "0" level. However, since the output of the AND circuit 50 is "1", the output S6 of the DFF 46 remains "1".

その後、時点t8で変化点検出信号S2が「1」レベル
に戻ると、クロック信号CKIの次の立ち上がり、すな
わち時点t9でDFF43のQ出力信号S3も「1」レ
ベルに戻る。
Thereafter, when the change point detection signal S2 returns to the "1" level at time t8, the Q output signal S3 of the DFF 43 also returns to the "1" level at the next rising edge of the clock signal CKI, that is, at time t9.

次いで、時点tlOで信号CK3のパルスが到来すると
、セレクタ48が再びアンド回路47の出力を選択する
。このときアンド回路47の出力は「0」レベルなので
セレクタ48の出力S5が立ち下がる。
Next, when a pulse of signal CK3 arrives at time tlO, selector 48 again selects the output of AND circuit 47. At this time, since the output of the AND circuit 47 is at "0" level, the output S5 of the selector 48 falls.

このときDFF43の反転出力は「0」レベルに戻って
いるのでアンド回路50の出力も「O」レベルとなりオ
ア回路49の出力が立ち下がり、1クロツク遅れた時点
tllでDFF46のQ出力信号S6が「0」レベルに
戻る。
At this time, the inverted output of the DFF 43 has returned to the "0" level, so the output of the AND circuit 50 also goes to the "O" level, and the output of the OR circuit 49 falls, and at time tll, which is delayed by one clock, the Q output signal S6 of the DFF 46 becomes Return to "0" level.

このようにして、時点t3〜t6の間「1」レベルとな
る信号S1によってゲート回路41がゲート制御される
ので、切換信号生成回路4からはアドレス信号へ〇2の
アドレスが変化したのち所定時間以降最初に到来する分
周信号CK3のパルスが切換信号SWとして抽出される
。こうして切換信号生成回路4からはアドレス信号AD
2のアドレス変化点を避けて確実にアドレス信号へ〇2
を選択できるパルス状の切換信号SWが出力される。
In this way, the gate circuit 41 is gate-controlled by the signal S1 which is at the "1" level between time points t3 and t6, so that the switching signal generation circuit 4 sends the address signal to the address signal for a predetermined period of time after the address of 〇2 changes. Thereafter, the pulse of the frequency-divided signal CK3 that arrives first is extracted as the switching signal SW. In this way, the switching signal generation circuit 4 outputs the address signal AD.
Avoid the address change point in 2 and reliably go to the address signal 〇2
A pulsed switching signal SW is output that allows selection of the following.

〔発明の効果〕〔Effect of the invention〕

本発明のアドレス制御方式によれば、高速クロック信号
を分周してこの分周信号から切り換え信号を生成するよ
うにしたので、高速クロック信号の周波数が切り換わる
とそれに追随してアドレス切換信号のパルス幅も変化す
るので、簡易な構成でクロック信号の変化に追随するア
ドレス切換信号を得ることが可能となる。
According to the address control method of the present invention, the frequency of the high-speed clock signal is divided and the switching signal is generated from this frequency-divided signal, so that when the frequency of the high-speed clock signal is switched, the address switching signal is changed accordingly. Since the pulse width also changes, it is possible to obtain an address switching signal that follows changes in the clock signal with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアドレス制御方式を示す原理図、 第2図は本発明によるアドレス制御方式の一実施例を示
すブロック図、 第3図は第2図に示す切換信号生成回路の回路図、 第4図は切換信号生成回路の動作を説明するためのタイ
ムチャート、 第5図は従来のアドレス制御方式を示すブロック図であ
る。 1・・・書込アドレス生成回路、2・・・読出アドレス
生成回路、3・・・分周回路、4・・・切換信号生成回
路、5・・・セレクタ、M・・・メモリ。
FIG. 1 is a principle diagram showing the address control method of the present invention, FIG. 2 is a block diagram showing an embodiment of the address control method according to the present invention, and FIG. 3 is a circuit diagram of the switching signal generation circuit shown in FIG. 2. , FIG. 4 is a time chart for explaining the operation of the switching signal generation circuit, and FIG. 5 is a block diagram showing a conventional address control system. DESCRIPTION OF SYMBOLS 1... Write address generation circuit, 2... Read address generation circuit, 3... Frequency division circuit, 4... Switching signal generation circuit, 5... Selector, M... Memory.

Claims (1)

【特許請求の範囲】 高速アドレス信号と低速アドレス信号とにより記憶装置
のアドレス制御を行うアドレス制御方式において、 高速クロック信号に基づき前記高速アドレス信号を生成
する高速アドレス生成手段と、 低速クロック信号に基づき前記低速アドレス信号を生成
する低速アドレス生成手段と、 前記高速クロック信号を所定の分周比で分周する分周手
段と、 前記低速アドレス信号のアドレス変化点を検出し前記分
周手段の出力から特定のパルス信号を切換信号として抽
出する切換信号生成手段と、この切換信号に基づき前記
高速アドレス信号または前記低速アドレス信号を前記記
憶装置に選択的に出力する選択手段とを有することを特
徴とするアドレス制御方式。
[Scope of Claims] An address control method for controlling the address of a storage device using a high-speed address signal and a low-speed address signal, comprising: a high-speed address generation means for generating the high-speed address signal based on a high-speed clock signal; and a high-speed address generation means based on a low-speed clock signal. low-speed address generation means for generating the low-speed address signal; frequency-dividing means for dividing the high-speed clock signal by a predetermined frequency division ratio; and detecting an address change point of the low-speed address signal from the output of the frequency-dividing means. It is characterized by comprising a switching signal generation means for extracting a specific pulse signal as a switching signal, and a selection means for selectively outputting the high speed address signal or the low speed address signal to the storage device based on this switching signal. Address control method.
JP14834088A 1988-06-17 1988-06-17 Address control system Pending JPH01317298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14834088A JPH01317298A (en) 1988-06-17 1988-06-17 Address control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14834088A JPH01317298A (en) 1988-06-17 1988-06-17 Address control system

Publications (1)

Publication Number Publication Date
JPH01317298A true JPH01317298A (en) 1989-12-21

Family

ID=15450581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14834088A Pending JPH01317298A (en) 1988-06-17 1988-06-17 Address control system

Country Status (1)

Country Link
JP (1) JPH01317298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247485A (en) * 1990-10-04 1993-09-21 Kabushiki Kaisha Toshiba Memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247485A (en) * 1990-10-04 1993-09-21 Kabushiki Kaisha Toshiba Memory device

Similar Documents

Publication Publication Date Title
US7681062B2 (en) Synchronous type semiconductor device for high speed data processing
US6982924B2 (en) Data output control circuit
JP2010056888A (en) Synchronization control circuit, semiconductor device and control method
US7629822B2 (en) Delay locked loop in semiconductor memory device and method for generating divided clock therein
KR20030002130A (en) A register controlled delay locked loop
US20060202875A1 (en) Triggered data generator
JPH01317298A (en) Address control system
JP3413423B2 (en) Strobe signal generation synchronous semiconductor device
JP2008305349A (en) Remote controller
JP2737903B2 (en) Clock switching method
KR19980041606A (en) Synchronous semiconductor memory device guarantees variable access time
JPH05342881A (en) Storage circuit
JP3132583B2 (en) Phase detection circuit
KR100294343B1 (en) Data input buffer of ddr(double data rate) synchronous dram
JPH01208791A (en) Semiconductor storage circuit
JP2002204448A (en) Dot de-interleave circuit
JP2533371Y2 (en) Multi-phase clock generation circuit
KR20060091334A (en) Semiconductor memory device having precharge control circuit and method for precharge therefore
JPH02114732A (en) Frame conversion circuit
JP2504143B2 (en) Frame conversion circuit
JP2850671B2 (en) Variable delay circuit
JPH06275072A (en) Semiconductor storage
KR20190117267A (en) Semiconductor memory device and the method for operating the same
JPH0385012A (en) Pulse generating circuit
JPH10190639A (en) Clock transfer circuit