JPH01316480A - Production of potassium hydroxide solution - Google Patents
Production of potassium hydroxide solutionInfo
- Publication number
- JPH01316480A JPH01316480A JP14579088A JP14579088A JPH01316480A JP H01316480 A JPH01316480 A JP H01316480A JP 14579088 A JP14579088 A JP 14579088A JP 14579088 A JP14579088 A JP 14579088A JP H01316480 A JPH01316480 A JP H01316480A
- Authority
- JP
- Japan
- Prior art keywords
- electrolysis
- soln
- membrane
- diaphragm
- potassium hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 80
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000012528 membrane Substances 0.000 claims abstract description 57
- 238000005341 cation exchange Methods 0.000 claims abstract description 23
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000005342 ion exchange Methods 0.000 claims abstract description 10
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 64
- 239000001103 potassium chloride Substances 0.000 claims description 31
- 235000011164 potassium chloride Nutrition 0.000 claims description 31
- 229910052731 fluorine Inorganic materials 0.000 claims description 20
- 239000011737 fluorine Substances 0.000 claims description 20
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 19
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 9
- 229910001414 potassium ion Inorganic materials 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 abstract description 11
- 239000011347 resin Substances 0.000 abstract description 10
- 229920005989 resin Polymers 0.000 abstract description 10
- 230000035699 permeability Effects 0.000 abstract description 8
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 abstract 2
- 235000002639 sodium chloride Nutrition 0.000 description 29
- 150000003839 salts Chemical class 0.000 description 25
- 239000000243 solution Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 12
- 239000003014 ion exchange membrane Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical compound OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010889 donnan-equilibrium Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、隔膜を使用し塩化カリウム溶液の電解により
水酸化カリウム溶液を製造する方法に関する。更に詳し
くは、隔膜としてスルホン酸基をイオン交換基としパー
フルオロカーボン重合体よりなるフッ素系カチオン交換
膜を用いて電解を行う方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a potassium hydroxide solution by electrolysis of a potassium chloride solution using a diaphragm. More specifically, the present invention relates to a method of performing electrolysis using a fluorine-based cation exchange membrane made of a perfluorocarbon polymer with sulfonic acid groups as ion exchange groups as a diaphragm.
[従来の技術]
水酸化カリウムは、基礎無機薬品の一つとして広範な利
用分野を有するものである。[Prior Art] Potassium hydroxide has a wide range of applications as one of the basic inorganic chemicals.
水酸化カリウム溶液の製造法は、塩化カリウム溶液の電
解法により実施されており、水銀法やアスベスト隔膜法
が工業的に用いられている。The potassium hydroxide solution is produced by electrolyzing a potassium chloride solution, and the mercury method and the asbestos diaphragm method are used industrially.
近年、塩化ナトリウム溶液の電解法に於て、環境汚染の
防止とともに、プロセスの省エネルギー化を図るため、
新しいフッ素系カチオン交換膜を用いる電解方法が開発
され、イオン交換膜食塩電解法と総称される工業プロセ
スとして実施されている。In recent years, in the electrolysis method of sodium chloride solution, in order to prevent environmental pollution and save energy in the process,
An electrolysis method using a new fluorine-based cation exchange membrane has been developed and is being implemented as an industrial process collectively referred to as ion exchange membrane salt electrolysis method.
塩化カリウム溶液の電解法に於ても、このフッ素系カチ
オン交換膜を用いる電解法即ちイオン交換膜電解法が注
目されており、既に幾つかの電解方法が提案されている
。Among the electrolysis methods for potassium chloride solutions, the electrolysis method using this fluorine-based cation exchange membrane, that is, the ion exchange membrane electrolysis method, is attracting attention, and several electrolysis methods have already been proposed.
例えば、特公昭53−3998号には、含フツ素陽イオ
ン選択透過膜の含水率を3〜6重量%に維持しつつ、塩
化カリウム溶液を電解する方法が開示されている。For example, Japanese Patent Publication No. 53-3998 discloses a method of electrolyzing a potassium chloride solution while maintaining the water content of a fluorine-containing cation selectively permeable membrane at 3 to 6% by weight.
イオン選択透過膜の含水率が膜の選択透過性に関係する
ことは古くより知られており、ここに開示された技術は
、イオン交換膜電解法に於ては原理的な意味で基本的な
ものと考えられる。即ち、イオン交換膜の選択透過性を
支配するものは、ドナン平衡、ドナン電位の理論として
古くから知られているように、膜の固定イオン濃度CX
(meq/g−1120)である。It has been known for a long time that the water content of an ion-selective membrane is related to the membrane's permselectivity, and the technology disclosed here is fundamental in the ion-exchange membrane electrolysis method. considered to be a thing. In other words, what governs the permselectivity of an ion exchange membrane is the fixed ion concentration CX of the membrane, as has long been known from the theory of Donnan equilibrium and Donnan potential.
(meq/g-1120).
この固定イオン濃度は、膜特性の一つとしてこれも良く
知られているイオン交換膜ff1cr(■eq/g−乾
燥樹脂)と、含水率V (g−H20/g−乾燥樹脂)
をパラメーターとしてCX−Cr1wの関係にある。This fixed ion concentration is determined by the ion exchange membrane ff1cr (■eq/g-dry resin), which is also well known as one of the membrane characteristics, and the water content V (g-H20/g-dry resin).
The relationship is CX-Cr1w with .
膜の選択透過性を高めるには% Crを増大させること
が必要であり、Crに対応した含水率Vを選択すること
はイオン交換膜電解としては当然のことである。このよ
うに含水率は基本的な概念であるが、問題は電解運転時
に含水率を測定することが極めて困難なことであり、工
業的な電解条件では不可能に近いことである。従って、
この数値を用いて工業的な規模での制御は極めて困難で
ある。In order to increase the permselectivity of the membrane, it is necessary to increase % Cr, and it is natural for ion exchange membrane electrolysis to select a water content V that corresponds to Cr. As described above, the water content is a basic concept, but the problem is that it is extremely difficult to measure the water content during electrolysis operation, which is nearly impossible under industrial electrolysis conditions. Therefore,
Control on an industrial scale using this value is extremely difficult.
又、特開昭57−35888号には、スルホン酸基の当
量重量が1000〜1300であるフルオロカーボン系
陽イオン交換膜を用いる塩化カリウム水溶液の電解に於
て、陽極室の塩化カリウム塩水中のカルシウムイオン及
びマグネシウムイオンの合計濃度が0.05a+g/l
で、塩化カリウム濃度を150g71以上とする条件で
の塩化カリウム塩水の電解法が開示されている。Furthermore, in JP-A No. 57-35888, in the electrolysis of a potassium chloride aqueous solution using a fluorocarbon-based cation exchange membrane in which the equivalent weight of sulfonic acid groups is 1000 to 1300, calcium in a potassium chloride salt solution in an anode chamber is disclosed. Total concentration of ions and magnesium ions is 0.05a+g/l
discloses a method for electrolyzing potassium chloride salt water under conditions where the potassium chloride concentration is 150g71 or more.
塩水中のカルシウム、マグネシウム等のカチオン不純物
は膜内に堆積して電解電圧の上昇、電流効率の低下の原
因となるため、この量を微量に制御することは極めて重
要であり、イオン交換膜食塩電解法では既に工業的に実
施されている。又、塩水濃度を150g/l(約2.6
mol/l)以上とすることも、食塩電解の経験から推
測すれば当然のことと考えられ、従来の公知例の塩水濃
度範囲が用いられている。Cation impurities such as calcium and magnesium in salt water accumulate in the membrane and cause an increase in electrolytic voltage and a decrease in current efficiency, so it is extremely important to control this amount to a very small amount. Electrolytic methods have already been implemented industrially. In addition, the salt water concentration was adjusted to 150 g/l (approximately 2.6
mol/l) or more is also considered to be a matter of course based on the experience of salt electrolysis, and the conventionally known salt water concentration range is used.
さらに、特開昭59−67379号には、陽イオン交換
膜として0,80〜0.95履eq/g−乾燥樹脂のイ
オン交換容量を存し、膜の厚みが0.1〜0.2+uの
パーフルオロスルホン酸膜を使用し、陽極室にカルシウ
ムおよびマグネシウムの含有量がO,l*g/l以下の
塩化カリウム溶液を供給し、かつ、陰極室の水酸化カリ
ウム濃度を20〜40wt%の範囲に保持することを特
徴とする水酸化カリウム水溶液の電解方法が開示されて
いる。この技術も、今日の食塩電解の経験から推測すれ
ば当然のこととも考えられる。Furthermore, JP-A No. 59-67379 describes a cation exchange membrane having an ion exchange capacity of 0.80 to 0.95 eq/g-dry resin, and a membrane thickness of 0.1 to 0.2+u. A perfluorosulfonic acid membrane is used to supply a potassium chloride solution with a calcium and magnesium content of 0,1*g/l or less to the anode chamber, and a potassium hydroxide concentration of 20 to 40 wt% in the cathode chamber. A method for electrolyzing an aqueous potassium hydroxide solution is disclosed, which is characterized by maintaining the potassium hydroxide aqueous solution within the range of . This technology can also be considered natural if we infer from today's experience with salt electrolysis.
このように、フッ素系カチオン交換膜を隔膜として用い
て塩化カリウム電解を行い、水酸化カリウム溶液を製造
する方法については種々検討され、食塩電解の経験をも
とに幾つかの提案がなされている。しかしながら、この
ような各種提案にもかかわらず、今日までイオン交換膜
を用いる塩化カリウム電解法は実用化に至っていない。In this way, various methods for producing potassium hydroxide solution by performing potassium chloride electrolysis using a fluorine-based cation exchange membrane as a diaphragm have been studied, and several proposals have been made based on experience with salt electrolysis. . However, despite such various proposals, potassium chloride electrolysis using an ion exchange membrane has not been put into practical use to date.
[発明が解決しようとする問題点]
本発明の目的は、フッ素系カチオン交換膜を隔膜として
使用する水酸化カリウム溶液の製造法に於て、高電流密
度条件で、工業的に満足できるような長期間に渡り、低
電圧、高電流効率を維持し、安定した電解挙動で高濃度
の水酸化カリウム溶液を製造する電解方法を提案するも
のである。[Problems to be Solved by the Invention] An object of the present invention is to develop a process for producing a potassium hydroxide solution using a fluorine-based cation exchange membrane as a diaphragm, which is industrially satisfactory under high current density conditions. This paper proposes an electrolysis method that maintains low voltage and high current efficiency over a long period of time, and produces a highly concentrated potassium hydroxide solution with stable electrolytic behavior.
[発明の詳細な説明]
本発明者等は、塩化カリウム溶液の電解により、水酸化
カリウム溶液を製造するにあたり、スルホン酸基をイオ
ン交換基としパーフルオロカーボン重合体よりなるフッ
素系カチオン交換膜を隔膜として使用し、かつ電解時の
透水量を抜脱を透過するカリウムイオン1モルあたり3
〜4モルに維持しつつ電解を行うことにより、前記した
ような工業的に満足できる安定した電解挙動で高濃度の
水酸化カリウム溶液を製造できることを見出し本発明を
完成した。[Detailed Description of the Invention] In producing a potassium hydroxide solution by electrolysis of a potassium chloride solution, the present inventors used a fluorine-based cation exchange membrane made of a perfluorocarbon polymer with sulfonic acid groups as ion exchange groups as a diaphragm. 3 per mole of potassium ions permeating the water during electrolysis.
The present invention was completed based on the discovery that a highly concentrated potassium hydroxide solution can be produced with stable electrolytic behavior that is industrially satisfactory as described above by performing electrolysis while maintaining the concentration at ~4 mol.
ここで言う透水量とは、電解時に陽極室から陰極室へ、
フッ素系カチオン交換膜を透過する水の量であり、単位
電解電気量あたりか、あるいは透過するイオンの111
位モル数あたりに透過する水のモル数として表示される
。この透水量は、一般に電位勾配を駆動力としてイオン
交換膜を透過するイオンに同伴する水と、陽極室と陰極
室の濃度勾配を駆動力として拡散によりイオン交換膜を
透過する水の和として考えられる。The amount of water permeated here refers to the water flow from the anode chamber to the cathode chamber during electrolysis.
It is the amount of water that permeates through a fluorine-based cation exchange membrane, and is calculated per unit amount of electrolyzed electricity or 111 ions of permeated ions.
It is expressed as the number of moles of water that permeate per number of moles of water. The amount of permeable water is generally considered to be the sum of the water that accompanies the ions that permeate through the ion exchange membrane using the potential gradient as the driving force, and the water that permeates the ion exchange membrane by diffusion using the driving force as the concentration gradient between the anode and cathode chambers. It will be done.
イオン交換膜食塩電解法に於ては、結果的に透水量は膜
を透過するナトリウムイオンあたり3モル〜4.5モル
(3〜4.5IIol−1120/Na+mol)で実
施されている。従って、イオン交換膜食塩電解法に於て
は、透水量を3〜4に維持することは公知である。しか
しながら、水酸化カリウム溶液の製造法に於ては、上記
範囲に透水量を維持することは、何等公知ではなく次に
述べるように本発明者等が初めて見出したことである。In the ion-exchange membrane salt electrolysis method, the resulting water permeation amount is 3 to 4.5 moles (3 to 4.5 IIol-1120/Na+mol) per sodium ion passing through the membrane. Therefore, in the ion exchange membrane salt electrolysis method, it is known to maintain the water permeation rate at 3 to 4. However, in the method for producing a potassium hydroxide solution, maintaining the amount of water permeation within the above range is not known at all, and was discovered for the first time by the present inventors as described below.
即ち、食塩電解で通常実施される条件、例えば陽極室塩
水濃度を2.6〜4101/1%陰極室アルカリ濃度を
20〜40vt%、電流密度20〜4OA/da2の条
件で塩化カリ電解を実施したとしても、透水量を本発明
の範囲に維持することは困難である。That is, potassium chloride electrolysis is carried out under the conditions normally carried out in salt electrolysis, for example, the anode chamber salt water concentration is 2.6 to 4101/1, the cathode chamber alkali concentration is 20 to 40 vt%, and the current density is 20 to 4 OA/da2. Even so, it is difficult to maintain the amount of water permeation within the range of the present invention.
図1に、スルホン酸基をイオン交換基としパーフルオロ
カーボン重合体よりなるフッ素系カチオン交換膜(交換
容ff10.9m当量/g−乾燥樹脂)を用いて、塩化
カリウム溶液の電解と、塩化ナトリウム溶液の電解(食
塩電解)を実施した場合の透水量の比較を示した。2つ
の電解系で、電流密度4OA/dm2 、電解温度90
℃、陰極室のアルカリ濃度を35νt%と一定にし、塩
水濃度を変化させて、透水量をalll定した。Figure 1 shows electrolysis of potassium chloride solution and sodium chloride solution using a fluorine-based cation exchange membrane made of perfluorocarbon polymer with sulfonic acid groups as ion exchange groups (exchange volume ff 10.9 m equivalent/g - dry resin). A comparison of water permeability when electrolysis (salt electrolysis) is performed is shown. Two electrolytic systems, current density 4OA/dm2, electrolysis temperature 90
℃, the alkaline concentration in the cathode chamber was kept constant at 35 νt%, and the salt water concentration was varied to determine all water permeation rates.
図よりl!!1 %かなように、塩化カリウム溶液の電
解と、食塩電解では、同一の電解条件に於て、透水量は
約1.7モルも異なり、全く異質の電解挙動を示すこと
がわかる。From the diagram! ! It can be seen that, under the same electrolytic conditions, the amount of permeable water differs by about 1.7 moles between the electrolysis of potassium chloride solution and the electrolysis of common salt, such as 1%, which shows completely different electrolytic behavior.
食塩電解で通常実施されている好ましい電解条件は、塩
水濃度約3〜4.2mol/1であるが、塩化カリウム
の電解では、この塩水濃度範囲では透水口は、本発明で
開示される範囲外となり、工業的な条件で長期に渡り、
安定した電解挙動を示すことはできない。The preferred electrolytic conditions normally implemented in salt electrolysis are a salt water concentration of about 3 to 4.2 mol/1, but in potassium chloride electrolysis, in this salt water concentration range, the water inlet is outside the range disclosed in the present invention. Therefore, under industrial conditions for a long period of time,
It cannot show stable electrolytic behavior.
本発明者等は、この透水量が塩化カリウム電解に於て極
めて重要なパラメーターであると考え、種々の電解条件
を検討し電解特性と透水量の関係を求めたところ、電解
時の透水量を該膜を透過するカリウムイオン1モルあた
り3〜4モルに維持しつつ電解を行うことが必要である
ことを見出した。The present inventors believe that this amount of water permeation is an extremely important parameter in potassium chloride electrolysis, and after examining various electrolytic conditions and determining the relationship between electrolytic characteristics and water permeation amount, we found that the amount of water permeation during electrolysis It has been found that it is necessary to perform electrolysis while maintaining the amount of potassium ions per mole of potassium ions permeating the membrane at 3 to 4 moles.
透水量が3モル未満では電解電圧が上昇する傾向がみら
れ、特に4QA/da2以上の電流密度での電解、ある
いは陰極室の水酸化カリウム濃度を35vtX以上とし
た場合には、この傾向が増大する。When the amount of permeable water is less than 3 mol, there is a tendency for the electrolytic voltage to increase, and this tendency increases especially when electrolysis is performed at a current density of 4QA/da2 or higher, or when the potassium hydroxide concentration in the cathode chamber is set to 35vtX or higher. do.
これは、膜と陰極室界面のアルカリ濃度及び界面のに+
イオン濃度が増大し、その結果膜の含水率は低下し、膜
抵抗が増大し、膜内の固定イオンとK イオンとの結合
が生じるためと推測される。This is due to the alkali concentration at the membrane and cathode chamber interface and the +
This is presumed to be because the ion concentration increases, resulting in a decrease in the water content of the membrane, an increase in membrane resistance, and a bond between fixed ions in the membrane and K ions.
透水量が4モルを超える条件では、現在の技術では、後
述するように塩水濃度を極めて低い条件で運転すること
が必要となり実用的ではない。塩水濃度が極端に低下す
ると、水酸化カリウム溶液中の塩化カリウム不純物の増
大、陽極室の生成物である塩素中の酸素不純物の増大、
更には、膜と陽極室界面に形成される塩水の拡散層の存
在により、限界電流密度領域に近くなり電解電圧の上昇
、電流効率の低下の原因となる。Under conditions where the amount of permeable water exceeds 4 moles, the current technology is not practical because it is necessary to operate the salt water concentration under extremely low conditions as described below. When the salt water concentration is extremely reduced, the potassium chloride impurity increases in the potassium hydroxide solution, the oxygen impurity increases in the chlorine product of the anode chamber,
Furthermore, due to the presence of a diffusion layer of salt water formed at the interface between the membrane and the anode chamber, the current density approaches the critical current density region, causing an increase in electrolytic voltage and a decrease in current efficiency.
電解時の透水量は、電解反応の物質収支を求めることに
より計算可能な量であり、従って、含水率とは異なり電
解運転時にM1定可能な量であり、従って電解時の変数
即ち電解条件を変化させることにより制御可能な量であ
る。透水量を上記範囲に制御することは、用いるフッ素
系カチオン交換膜の種類や、電解条件を種々変化させる
ことによって達成することができる。The amount of permeable water during electrolysis is an amount that can be calculated by determining the mass balance of the electrolytic reaction, and therefore, unlike the water content, it is an amount that can be determined during electrolysis operation. It is an amount that can be controlled by changing it. Controlling the amount of water permeation within the above range can be achieved by variously changing the type of fluorine-based cation exchange membrane used and the electrolytic conditions.
スルホン酸基をイオン交換基とするパーフルオロカーボ
ン重合体よりなるフッ素系カチオン交換膜を用い、透水
量を本発明の範囲に維持して、経済的な電解条件で塩化
カリウム電解を実施する場合、一つの好ましい実施態様
は、塩水濃度を変化させることである。When performing potassium chloride electrolysis under economical electrolytic conditions using a fluorine-based cation exchange membrane made of a perfluorocarbon polymer having sulfonic acid groups as ion exchange groups and maintaining water permeation within the range of the present invention, One preferred embodiment is to vary the saline concentration.
本発明者等の検討によると、他の電解変数を一定とした
場合、電解時の透水量は陽極室の塩化カリウム溶液の濃
度と一次の関係にある。即ち、電解時の塩水濃度を制御
することにより、電解時の透水はを上記範囲に制御する
ことが可能となる。According to studies by the present inventors, when other electrolysis variables are held constant, the amount of water permeation during electrolysis has a linear relationship with the concentration of potassium chloride solution in the anode chamber. That is, by controlling the salt water concentration during electrolysis, the water permeability during electrolysis can be controlled within the above range.
この観点より、陽極室の塩化カリウム溶液の濃度は、0
.8mol/1〜2.5mol/L好ましくは1ffl
O1ll〜2.3mol/1に維持することである。From this point of view, the concentration of potassium chloride solution in the anode chamber is 0.
.. 8mol/1 to 2.5mol/L preferably 1ffl
It is to be maintained at 011 to 2.3 mol/1.
塩化カリウム濃度が上記範囲を超えると、本発明の透水
量の下限値を維持することが困難となり、電解電圧上昇
の原因となる。塩化カリウム濃度が上記範囲未満の場合
は、前述したように水酸化カリウム溶液中の塩化カリウ
ム不純物の増大、陽極室の生成物である塩素中の酸素不
純物の増大、更には、膜と陽極室界面に形成される塩水
の拡散層の存在により、限界電流密度領域に近くなり電
解電圧の上昇、電流効率の低下の原因となる。If the potassium chloride concentration exceeds the above range, it will be difficult to maintain the lower limit of water permeation according to the present invention, causing an increase in electrolytic voltage. If the potassium chloride concentration is below the above range, as mentioned above, the potassium chloride impurity in the potassium hydroxide solution will increase, the oxygen impurity in the chlorine product in the anode chamber will increase, and furthermore, the interface between the membrane and the anode chamber will increase. Due to the presence of a diffusion layer of salt water formed in the process, the current density approaches the critical current density region, causing an increase in electrolytic voltage and a decrease in current efficiency.
本発明の水酸化カリウム溶液の製造方法に於ては、スル
ホン酸基を交換基としパーフルオロカーボン重合体より
なるフッ素系カチオン交換膜を隔膜として使用すること
が必要である。In the method for producing a potassium hydroxide solution of the present invention, it is necessary to use a fluorine-based cation exchange membrane made of a perfluorocarbon polymer and having a sulfonic acid group as an exchange group as a diaphragm.
食塩電解に於ては、通常フッ素系カチオン交換膜として
スルホン酸基膜とカルボン酸基膜よりなる2層膜、ある
いは、交換容量の異なる2層のスルホン酸基膜や2層の
カルボン酸基膜よりなるいわうる2層膜を用いることが
一般的であり、スルホン酸均一膜を使用すると、電流効
率が低く、又得られる苛性アルカリ中の不純物も増大す
る。In salt electrolysis, the fluorine-based cation exchange membrane is usually a two-layer membrane consisting of a sulfonic acid base membrane and a carboxylic acid base membrane, or two layers of sulfonic acid base membranes or two layers of carboxylic acid base membranes with different exchange capacities. It is common to use a so-called two-layer membrane consisting of a sulfonic acid homogeneous membrane, and if a sulfonic acid homogeneous membrane is used, the current efficiency is low and the amount of impurities in the resulting caustic alkali increases.
しかしながら、塩化カリウム電解においては、スルホン
酸基を交換基としパーフルオロカーボン重合体よりなる
特に均一の交換容量を持つフッ素系カチオン交換膜を使
用しても、本発明で限定した製造法を用いれば、高電流
効率で、かつ純度の高い水酸化カリウム溶液を得ること
が可能であり、逆に、フッ素系カチオン交換膜として食
塩電解に用いられるような2層膜を用いて長期間電解を
実施した場合、2層膜の境界面に不純物の蓄積が生じた
り、ブリスターが発生する等好ましくない傾向が見られ
る。特に40A/ds2以上の電流密度での電解、ある
いは陰極室の水酸化カリウム濃度を35wt%以上とし
た場合には、この傾向が増大する。However, in potassium chloride electrolysis, even if a fluorine-based cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group as an exchange group and having a particularly uniform exchange capacity is used, if the manufacturing method limited in the present invention is used, It is possible to obtain a potassium hydroxide solution with high current efficiency and high purity, and conversely, when electrolysis is carried out for a long period of time using a two-layer membrane such as the one used for salt electrolysis as a fluorine-based cation exchange membrane. , undesirable tendencies such as accumulation of impurities and generation of blisters at the interface of the two-layer film are observed. In particular, this tendency increases when electrolysis is carried out at a current density of 40 A/ds2 or higher, or when the potassium hydroxide concentration in the cathode chamber is set to 35 wt% or higher.
この事実も又、食塩電解と塩化カリウム電解とが、全く
異質の電解挙動を示すことを例示している。This fact also illustrates that salt electrolysis and potassium chloride electrolysis exhibit completely different electrolytic behavior.
本発明で用いるスルホン酸基をイオン交換基としパーフ
ルオロカーボン重合体よりなるフッ素系カチオン交換膜
は、交換容量として、0.5〜2.5当量/g−乾燥樹
脂のものを用いることができる。The fluorine-based cation exchange membrane used in the present invention, which is made of a perfluorocarbon polymer and has sulfonic acid groups as ion exchange groups, can have an exchange capacity of 0.5 to 2.5 equivalents/g of dry resin.
交換容量が上記範囲未満の場合は、膜の抵抗が高く電解
電圧が上昇する。交換容量が上記範囲を超えると、膜の
膨張、崩壊等の問題を生じ、安定した電解運転を妨げる
原因となる。If the exchange capacity is less than the above range, the resistance of the membrane is high and the electrolytic voltage increases. If the exchange capacity exceeds the above range, problems such as expansion and collapse of the membrane will occur, which will impede stable electrolytic operation.
本発明の水酸化カリウム溶液の製造法に於ては、陰極室
の水酸化カリウム溶液の濃度はtsvt%〜45vt%
の範囲に維持することができる。特に、本発明の水酸化
カリウム溶液の製造法は、85vt%以上の高濃度条件
に於ても長期に渡り、工業的に安定な電解運転が可能と
なることが特徴の一つである。In the method for producing a potassium hydroxide solution of the present invention, the concentration of the potassium hydroxide solution in the cathode chamber is between tsvt% and 45vt%.
can be maintained within the range of In particular, one of the characteristics of the method for producing a potassium hydroxide solution of the present invention is that it enables industrially stable electrolytic operation for a long period of time even under high concentration conditions of 85 vt% or more.
電解時の電流密度は、20〜BOA/da2の範囲で実
施することができる。40A/da2以上の電流密度に
於ても、電解運転を実施できることは、本発明の特徴の
一つである。The current density during electrolysis can be carried out in the range of 20 to BOA/da2. One of the features of the present invention is that electrolytic operation can be carried out even at a current density of 40 A/da2 or more.
本発明の水酸化カリウムカリウム溶液の製造方法に於て
は、隔膜としてスルホン酸をイオン交換基としパーフル
オロカーボン重合体よりなるフッ素系カチオン交換膜を
用い、透水量を本発明の範囲に維持するかぎり、他の条
件はこれまで公知の条件を適宜使用することができる。In the method for producing a potassium hydroxide solution of the present invention, a fluorine-based cation exchange membrane made of a perfluorocarbon polymer with sulfonic acid as an ion exchange group is used as the diaphragm, and as long as the amount of water permeation is maintained within the range of the present invention. , other conditions may be appropriately used as known conditions.
例えば、電解温度は、室温から100℃の範囲で実施す
ることができる。For example, electrolysis can be carried out at a temperature ranging from room temperature to 100°C.
陽極は、チタン製のエキスバンドメタルのような多孔形
状の基材にルテニウムやパラジウムのような貴金属酸化
物を被覆したもので、塩素過電圧が低く酸素過電圧が高
い、いわうるDSAタイプの陽極を用いることができる
。The anode is a porous base material such as titanium expanded metal coated with a noble metal oxide such as ruthenium or palladium, and is a so-called DSA type anode that has low chlorine overvoltage and high oxygen overvoltage. be able to.
陰極は、ニッケル又はニッケル合金製のエキスバンドメ
タルのような多孔形状の陰極、あるいはこれを基材とし
、ニッケルと硫黄を含む被覆やニッケル酸化物を被覆し
た低水素過電圧陰極を用いることが出来る。The cathode can be a porous cathode such as expanded metal made of nickel or nickel alloy, or a low hydrogen overvoltage cathode made of this as a base material and coated with a coating containing nickel and sulfur or a nickel oxide.
[発明の効果]
本発明により、工業的に満足できるような長期間に渡り
、低電圧、高電流効率を維持し、安定した電解挙動で高
濃度の水酸化カリウム溶液を製造する電解方法が実施可
能となり、その工業的価値は大きなものである。[Effects of the Invention] The present invention provides an electrolytic method that maintains low voltage and high current efficiency over an industrially satisfactory long period of time and produces a highly concentrated potassium hydroxide solution with stable electrolytic behavior. It has become possible, and its industrial value is great.
[実施例]
以下、実施例を述べるが、本発明はこれに限定されるも
のではない。[Example] Examples will be described below, but the present invention is not limited thereto.
実施例11比較例1. 2.3 以下の条件で水酸化カリウム溶液を製造した。Example 11 Comparative Example 1. 2.3 A potassium hydroxide solution was produced under the following conditions.
電解槽は10cmX 10cmのアクリル電解槽を用い
、フッ素系カチオン交換膜として均一の交換容量をもつ
パーフロロスルホン酸膜(交換容量は約0.9m当量/
g−乾燥樹脂、膜厚150μ)を用い、陽極にはTI上
にRu02−TIO2披膜を有するDSAタイプで1/
4インチサイズのエキスバンドメタルを、陰極には、ニ
ッケル製の半インチサイズのエキスバンドメタル上に、
低水素過電圧を示すイオウを含むニッケルメッキを施し
た電極を用いた。なお、膜は陽極側に密着させ、陽極と
陰極間の距離は2o+mとした。 電解条件は、電流密
度; 40A/di2 、電解温度;90℃、陰極室ア
ルカリ濃度; 40wt%水酸化カリウム溶液とし、陽
極室塩化カリウム溶液濃度は1.9aof/Iで電解を
実施した。The electrolytic cell is a 10 cm x 10 cm acrylic electrolytic cell, and a perfluorosulfonic acid membrane with a uniform exchange capacity as a fluorine-based cation exchange membrane (exchange capacity is approximately 0.9 m equivalent/
g-dry resin, film thickness 150μ), and the anode was a DSA type with Ru02-TIO2 film on TI.
A 4-inch expanded metal is used as the cathode, and a half-inch expanded metal made of nickel is used as the cathode.
An electrode plated with nickel containing sulfur, which exhibits a low hydrogen overvoltage, was used. Note that the membrane was brought into close contact with the anode side, and the distance between the anode and the cathode was 20+m. The electrolysis conditions were: current density: 40 A/di2, electrolysis temperature: 90° C., cathode chamber alkaline concentration: 40 wt % potassium hydroxide solution, and anode chamber potassium chloride solution concentration of 1.9 aof/I.
この条件での透水量は、34mol−1120/ K”
molであった。The water permeability under these conditions is 34mol-1120/K”
It was mol.
6ケ月間電解運転を継続したが、電解71i圧は3.6
■とほぼ一定であり、電流効率は95%以上であった。Electrolysis operation continued for 6 months, but the electrolysis 71i pressure was 3.6
(2), which was almost constant, and the current efficiency was 95% or more.
一方、比較例1として、陽極室塩化カリウム溶液濃度を
2.50101/1とし、それ以外の条件は実施例1と
同様の条件で電解運転をおこなった。この際の透水量は
2X8rAol−1120/ K ll1olであっ
た。この条件では、初期の電解電圧は実施例1とほぼ同
様であったが、数ケ月間電解を継続すると、電解電圧は
徐々に上昇し6ケ月後は4v以上となった。On the other hand, as Comparative Example 1, electrolytic operation was carried out under the same conditions as in Example 1 except that the potassium chloride solution concentration in the anode chamber was set to 2.50101/1. The amount of water permeation at this time was 2X8rAol-1120/Kll1ol. Under these conditions, the initial electrolysis voltage was almost the same as in Example 1, but when electrolysis was continued for several months, the electrolysis voltage gradually increased and reached 4 V or more after 6 months.
又、比較例2として、陽極室塩化カリウム溶液la度を
0.8oIolハとし、それ以外の条件は実施例1と同
様の条件で電解運転をおこなった所、初期の透水量は4
.2a+ol−1t20/ K” a+olであったが
、数日後には電解電圧が4v以上となり、限界電流密度
領域に近づいたものと推察された。In addition, as Comparative Example 2, electrolytic operation was carried out under the same conditions as in Example 1 except that the potassium chloride solution la degree in the anode chamber was set to 0.8 oIol, and the initial water permeation amount was 4.
.. 2a+ol-1t20/K" a+ol, but after a few days, the electrolytic voltage increased to 4 V or more, which is presumed to have approached the critical current density region.
さらに、比較例3として、フッ素系カチオン交換膜とし
てパーフロロスルホン酸とパーフルオロカルボン酸の2
層膜(スルホン酸層:交換容量は約0.9m当量/g−
乾燥樹脂、膜厚125μ、カルボン酸層:交換容量は約
0.95℃当m/g−乾燥樹脂、膜厚25μ)を用い、
カルボン酸層を陰極室側に配置し、他の条件は実施例1
と同様な条件で電解運転を行った。この際の透水量は3
.2mol−H20/ K” s。Furthermore, as Comparative Example 3, two types of perfluorosulfonic acid and perfluorocarboxylic acid were used as a fluorine-based cation exchange membrane.
layer membrane (sulfonic acid layer: exchange capacity is approximately 0.9 m equivalent/g-
Dry resin, film thickness 125μ, carboxylic acid layer: exchange capacity is approximately 0.95°C m/g - dry resin, film thickness 25μ),
The carboxylic acid layer was placed on the cathode chamber side, and the other conditions were as in Example 1.
Electrolysis operation was carried out under the same conditions. The water permeability at this time is 3
.. 2 mol-H20/K”s.
lであった。この条件では、初期の電解電圧は3゜6■
であったが、数ケ月間電解を継続すると、電解電圧は徐
々に上昇し4v以上となった。電解槽を解体し膜を調査
した所、スルホン酸/カルボン酸界面にブリスターの発
生が認められた。It was l. Under these conditions, the initial electrolytic voltage is 3°6■
However, after continuing electrolysis for several months, the electrolysis voltage gradually increased to 4V or more. When the electrolytic cell was disassembled and the membrane was examined, blisters were observed at the sulfonic acid/carboxylic acid interface.
実施例2
パーフルオロスルホン酸膜(交換容量は約0.95℃当
m/g−乾燥樹脂、膜厚約150μ)を用い、実施例2
と同一の電解槽、陽極、陰極を用いて、塩化カリウム溶
液の電解を行い、水酸化カリウム溶液を製造した。Example 2 Using a perfluorosulfonic acid membrane (exchange capacity: approximately 0.95°C m/g-dry resin, membrane thickness: approximately 150μ), Example 2
Using the same electrolytic cell, anode, and cathode, a potassium chloride solution was electrolyzed to produce a potassium hydroxide solution.
電解条件は、電流密度; 50A/dm2 、電解温度
;90℃、陰極室アルカリ濃度; 35vt%水酸化カ
リウム溶液とし、陽極室塩化カリウム溶液濃度は1.3
aof/Iで電解を実施した。この条件での透水量は、
3.7mol−1t20/ K molであった。The electrolysis conditions were: current density: 50A/dm2, electrolysis temperature: 90°C, cathode chamber alkaline concentration: 35vt% potassium hydroxide solution, and anode chamber potassium chloride solution concentration of 1.3.
Electrolysis was performed with aof/I. The water permeability under this condition is
It was 3.7 mol-1t20/K mol.
6ケ月間電解運転を継続したが、電解電圧は3.6vと
ほぼ一定であり、電流効率は95%以上であった。Although the electrolytic operation was continued for 6 months, the electrolytic voltage remained almost constant at 3.6 V, and the current efficiency was 95% or more.
図1は、明細書本文に示した例であり、塩化カリウム溶
液の電解(1)と食塩電解(2)での透水量の比較を示
す図である。FIG. 1 is an example shown in the main text of the specification, and is a diagram showing a comparison of water permeability in potassium chloride solution electrolysis (1) and salt electrolysis (2).
Claims (1)
造するにあたり、スルホン酸基をイオン交換基としパー
フルオロカーボン重合体よりなるフッ素系カチオン交換
膜を隔膜として使用し、かつ電解時の透水量を該膜を透
過するカリウムイオン1モルあたり3〜4モルに維持し
つつ電解を行うことを特徴とする水酸化カリウム溶液の
製造方法In producing potassium hydroxide solution by electrolysis of potassium chloride solution, a fluorine-based cation exchange membrane made of perfluorocarbon polymer with sulfonic acid groups as ion exchange groups is used as a diaphragm, and the amount of water permeation during electrolysis is determined by A method for producing a potassium hydroxide solution, characterized by carrying out electrolysis while maintaining 3 to 4 moles per mole of permeated potassium ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14579088A JPH01316480A (en) | 1988-06-15 | 1988-06-15 | Production of potassium hydroxide solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14579088A JPH01316480A (en) | 1988-06-15 | 1988-06-15 | Production of potassium hydroxide solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01316480A true JPH01316480A (en) | 1989-12-21 |
Family
ID=15393221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14579088A Pending JPH01316480A (en) | 1988-06-15 | 1988-06-15 | Production of potassium hydroxide solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01316480A (en) |
-
1988
- 1988-06-15 JP JP14579088A patent/JPH01316480A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR850000052B1 (en) | Improved composite ion exchange membranes | |
US4221644A (en) | Air-depolarized chlor-alkali cell operation methods | |
KR830002163B1 (en) | Chlorine-Alkaline Electrolyzer | |
NO145543B (en) | ELECTROLYCLE CELL FOR ELECTROLYTIC DIVISION OF Aqueous SOLUTIONS OF IONIZABLE CHEMICAL COMPOUNDS | |
SU1750435A3 (en) | Method of electrolysis of aqueous solution of sodium chloride | |
JP2001271193A (en) | Synthesis of tetramethylammonium hydroxide | |
US4144146A (en) | Continuous manufacture of sodium dithionite solutions by cathodic reduction | |
US20050011753A1 (en) | Low energy chlorate electrolytic cell and process | |
US4253923A (en) | Electrolytic process for producing potassium hydroxide | |
JPH11269690A (en) | Method for stopping membrane electrolytic cell having oxygen reduction cathode | |
EP0008232B1 (en) | Oxygen electrode rejuvenation methods | |
JPH01316480A (en) | Production of potassium hydroxide solution | |
JPH01242794A (en) | Production of sodium hydroxide | |
CA1117895A (en) | Method of reducing chlorate formation in a chlor-alkali electrolytic cell | |
CA1155792A (en) | Air-depolarized chlor-alkali cell operation methods | |
US5512143A (en) | Electrolysis method using polymer additive for membrane cell operation where the polymer additive is ionomeric and added to the catholyte | |
US4056448A (en) | Process for brine membrane cell operation with external caustic and nacl concentration control | |
JPH024992A (en) | Production of potassium hydroxide solution | |
JP4447081B2 (en) | Method for producing polysulfide | |
US4360412A (en) | Treatment of permionic membrane | |
JPS63312988A (en) | Production of alkali hydroxide | |
JPH01283395A (en) | Production of potassium hydroxide solution | |
JPS5925036B2 (en) | Fluorine resin cation exchange membrane for electrolysis | |
JPS622036B2 (en) | ||
JPS5814510B2 (en) | Aeon Koukan Makuden Kaihouhou |