JPS5814510B2 - Aeon Koukan Makuden Kaihouhou - Google Patents

Aeon Koukan Makuden Kaihouhou

Info

Publication number
JPS5814510B2
JPS5814510B2 JP50130088A JP13008875A JPS5814510B2 JP S5814510 B2 JPS5814510 B2 JP S5814510B2 JP 50130088 A JP50130088 A JP 50130088A JP 13008875 A JP13008875 A JP 13008875A JP S5814510 B2 JPS5814510 B2 JP S5814510B2
Authority
JP
Japan
Prior art keywords
chamber
membrane
water
concentration
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50130088A
Other languages
Japanese (ja)
Other versions
JPS5253799A (en
Inventor
阪上輝夫
村山直広
中村謙一
福田誠
鈴木四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP50130088A priority Critical patent/JPS5814510B2/en
Priority to US05/732,095 priority patent/US4076604A/en
Publication of JPS5253799A publication Critical patent/JPS5253799A/en
Publication of JPS5814510B2 publication Critical patent/JPS5814510B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Description

【発明の詳細な説明】 本発明は高濃度苛性アルカリを効率よく得るハロゲン化
アルカリ水溶液の電解方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolyzing an aqueous alkali halide solution to efficiently obtain a highly concentrated caustic alkali.

ハロゲンおよび苛性アルカリはあらゆる工業分野で要求
されている重要な薬品であり、特に塩素および苛性ソー
ダは食塩の電解により得られ、大量に使用されているも
のである。
Halogens and caustic alkalis are important chemicals required in all industrial fields, and in particular chlorine and caustic soda are obtained by electrolysis of common salt and are used in large quantities.

しかし特に資源のない日本においては、四方の海にある
食塩を原料とする電解は古くから試みられできたが、未
だその工業的利用にはいたっていない。
However, in Japan, which is particularly lacking in natural resources, electrolysis using salt from the four seas as a raw material has been attempted for a long time, but it has not yet been put to industrial use.

本発明は低濃度のハロゲン化アルカリ水溶液より簡単な
電槽を用い、高濃度の苛性アルカリを得ることを特徴と
する電解方法であり、特に海水または低濃度かん水の電
解による工業的苛性ソーダの製造を可能ならしめるもの
である。
The present invention is an electrolysis method characterized by obtaining a high concentration of caustic alkali using a simpler battery container than a low concentration aqueous halide aqueous solution, and is particularly suitable for the production of industrial caustic soda by electrolysis of seawater or low concentration brine. It makes it seem possible.

本発明者等は、このような目的で研究を行なった結果、
低濃度のハロゲン化アルカリ溶液を用いたイオン交換膜
電解によれば、苛性ソーダ溶液を生成するに必要な水は
すべてアルカリ金属イオンと共にハロゲン化アルカリ溶
液より陰極へ移行し、この場合陽極室と陰極室の間に中
間室を設ければ陰極室で高濃度且つハロゲンイオン含有
量の少ない苛性アルカリ溶液が高い電流効率で得られる
ことを見出し本発明に到達した。
As a result of research for this purpose, the present inventors found that
According to ion-exchange membrane electrolysis using a low-concentration alkaline halide solution, all the water necessary to produce the caustic soda solution is transferred from the alkaline halide solution to the cathode together with alkali metal ions, and in this case, the anode chamber and the cathode chamber are separated. The present inventors have discovered that by providing an intermediate chamber between them, a highly concentrated caustic alkaline solution with a low halogen ion content can be obtained in the cathode chamber with high current efficiency, resulting in the present invention.

本発明は2枚の陽イオン交換膜により陽極室、中間室、
隘極室に分離された電槽を用い、陽極室に20係以下の
濃度のハロゲン化アルカリ水溶液を供給し、中間室およ
び陰極室へは外部から水を全く供給せずに苛性アルカリ
水溶液の水はすべて陽極室から供給されることを特徴と
する高濃度と低濃度の苛性アルカリを同時に得る電解方
法である。
The present invention uses two cation exchange membranes to provide an anode chamber, an intermediate chamber,
Using a separate container in the outer electrode chamber, an aqueous halide aqueous solution with a concentration of 20 or less is supplied to the anode chamber, and aqueous caustic alkaline solution is supplied to the intermediate chamber and cathode chamber without supplying any water from the outside. This is an electrolytic method that simultaneously obtains high and low concentration caustic alkali, which is characterized by being supplied from the anode chamber.

本発明の第一の特徴は、低濃度のハロゲン化アルカリの
ブラインを使用することである。
The first feature of the invention is the use of a low concentration of alkali halide brine.

第二の特徴は三室法にもか5わらず中間室および陰極室
に水を供給する必要がなく、電槽の構造が極めて簡単に
なることである。
The second feature is that although it is a three-chamber method, there is no need to supply water to the intermediate chamber and the cathode chamber, making the structure of the battery cell extremely simple.

第三の特徴は本発明において得られる高濃度苛性アルカ
リは極めて少量のハロゲン化アルカリしか含まず、極め
て品質のよいものであることである。
The third feature is that the highly concentrated caustic alkali obtained in the present invention contains only a very small amount of halogenated alkali and is of extremely good quality.

以下に食塩の電解を例にとって本発明の詳細を説明する
が、他のハロゲン化アルカリについても全く同様なこと
が成立することは言うまでもない。
The details of the present invention will be explained below by taking the electrolysis of common salt as an example, but it goes without saying that the same holds true for other alkali halides.

一般的な食塩電解においては、陽極室へ供給させるNa
Cl水溶液の濃度は26係以上の飽和水溶液が用いられ
るが、本発明では20係以下の低濃度の水溶液を用いる
陽極側のイオン交換膜(以下A膜とする)を通過する水
の量は電流効率に依存するが(即ちNa+とOH一に伴
なって移動する水)そのほかに中間室NaOHと陽極室
のNaClの濃度にも依存する。
In general salt electrolysis, Na is supplied to the anode chamber.
A saturated Cl aqueous solution with a concentration of 26 parts or more is used, but in the present invention, a low concentration aqueous solution of 20 parts or less is used.The amount of water passing through the ion exchange membrane (hereinafter referred to as A membrane) on the anode side is determined by the current It depends on the efficiency (ie the water moving with Na+ and OH-) but also on the concentration of NaOH in the intermediate chamber and NaCl in the anode chamber.

特に後者のNaCl濃度は調節が可能であり、陽極室の
NaClの濃度が中間室の濃度に比べて実効的に充分に
低ければ生成するNaOHに充分な量の水を通すことが
できる。
In particular, the latter NaCl concentration can be adjusted, and if the NaCl concentration in the anode chamber is effectively sufficiently lower than the concentration in the intermediate chamber, a sufficient amount of water can pass through the NaOH produced.

移動水の電流効率に依存する部分と、陽極室および中間
室の塩濃度に依存する部分との割合は未だ正確には測定
されておらず、恐らく両者は互いに交絡した関係を有し
、明確に分離し得ないものであろうと考えられるが、い
ずれにしてもA膜に実質的にピンホールがなく、陽極室
より直接(電気滲透によらず)水が流れ込まない限り飽
和に近い食塩水のイオン交換電解によって中間室に充分
な水を移行させることは困難であり、NaCl濃度は2
0重量係以下でなければならない。
The ratio between the part that depends on the current efficiency of the moving water and the part that depends on the salt concentration in the anode chamber and the intermediate chamber has not yet been accurately measured, and the two probably have a confounding relationship with each other and cannot be clearly defined. It is thought that they cannot be separated, but in any case, as long as there are virtually no pinholes in the A membrane and water does not flow directly (not through electrophoresis) from the anode chamber, the ions in the saline solution are close to saturation. It is difficult to transfer sufficient water to the intermediate chamber by exchange electrolysis, and the NaCl concentration is
Must be less than 0 weight.

例えば電流効率80%,90%,95係で50重量係の
苛性ソーダを生成する時に理論的に必要な水の量はそれ
ぞれ約1.9g/A−h,2.09/A−h,2.1g
/A−hであり、また同様な電流効率で40重量係の苛
性ソーダを生成するとすれば、必要な水の量はそれぞれ
約2.5 F/A−h,2.79/A−h,2.8F/
A−hである。
For example, when producing 50 parts by weight of caustic soda at a current efficiency of 80%, 90%, and 95 parts, the theoretically required amount of water is about 1.9 g/A-h, 2.09/A-h, and 2.0 g/A-h, respectively. 1g
/A-h, and if 40 parts by weight of caustic soda were to be produced with similar current efficiency, the amounts of water required would be approximately 2.5 F/A-h, 2.79/A-h, and 2, respectively. .8F/
It is A-h.

現在食塩電解用として供給されるイー・アイ・デュポン
社製のイオン交換膜NAFIONoを陽極室と中間室と
の間に用い、陽極室に飽和食塩水を供給した場合の透水
量は2.0g/A−h@後であり、A膜の性能のみから
言えば50重量係以上の濃度の苛性ソーダならば理論的
には製造し得る筈であるが、中間室に入った苛性ソーダ
は陰極室では更に濃縮されるので、アルカリ濃度が高く
なりすぎて操業ができなくなる。
When the ion exchange membrane NAFION No manufactured by E.I. DuPont, which is currently supplied for salt electrolysis, is used between the anode chamber and the intermediate chamber, and saturated saline is supplied to the anode chamber, the water permeation rate is 2.0 g/ A-h @ later, and speaking only from the performance of the A membrane, it should be theoretically possible to produce caustic soda with a concentration of 50% by weight or higher, but the caustic soda that enters the intermediate chamber is further concentrated in the cathode chamber. As a result, the alkali concentration becomes too high and operation becomes impossible.

また後述するように隘極側のイオン交換膜(以下B膜と
する)は常にA膜より透水量が少なくなければならない
Furthermore, as will be described later, the ion exchange membrane on the end pole side (hereinafter referred to as B membrane) must always have a lower water permeability than A membrane.

B膜としての透水量が2.0g/A−h以下の膜が祠ら
れたとしても両膜の透水量の差が少ないと、電解操業中
の膜のつまりゃ変質により両膜の好ましい性能が少しで
も変化すると、安定した操業ができなくなる。
Even if a membrane with a water permeability of 2.0 g/A-h or less is used as a B membrane, if the difference in water permeability between the two membranes is small, the desirable performance of both membranes will deteriorate due to clogging or deterioration of the membrane during electrolysis operation. If even the slightest change occurs, stable operations will no longer be possible.

従ってNaCl濃度を低くしてA膜の透水量を増加させ
、膜の性能が多少変化して中間室および陰極室の苛性ソ
ーダ濃度がかなり変化しても操業が困難とならぬように
する必要がある。
Therefore, it is necessary to lower the NaCl concentration to increase the amount of water permeation through the A membrane, so that even if the performance of the membrane changes slightly and the caustic soda concentration in the intermediate chamber and cathode chamber changes considerably, the operation will not become difficult. .

安定操業可能な条件としてNaCl濃度20重量係以下
を定めた。
A NaCl concentration of 20% by weight or less was determined as a condition for stable operation.

またNaCl濃度の下限は陽極液の電気抵抗が大きく増
加しない濃度であればよく、通常2重量係以上が好まし
い。
The lower limit of the NaCl concentration may be any concentration that does not significantly increase the electrical resistance of the anolyte, and is usually preferably 2 weight percent or more.

A膜の透水量が多すぎる場合は苛性ソーダが薄くなりす
ぎる恐れもある。
If the amount of water permeable through the A membrane is too large, the caustic soda may become too thin.

しかし例えば20重量係の苛性ソーダを電流効率95%
で得る場合に必要な水の量は約6.3g/A−hである
が、陽極室の食塩濃度2重量係以上の場合、通常イオン
交換膜電解で採用されるlOA/dm2乃至30A/d
m2の条件では実用的なピンホールのないイオン交換膜
ではこのような大きな透水量にはならない。
However, for example, when using 20% by weight of caustic soda, the current efficiency is 95%.
The amount of water required is approximately 6.3 g/A-h, but when the salt concentration in the anode chamber is 2 weight percent or more, the amount of water required is approximately 6.3 g/A-h.
Under the conditions of m2, a practical pinhole-free ion exchange membrane would not have such a large amount of water permeation.

A膜に要求される性質はイオン交換能の良いこと、適当
な透水量を有することのほかに耐塩素性および耐酸化性
に優れていることで、最も好ましくはフッ素系樹脂のイ
オン交換膜である。
The properties required for membrane A are good ion exchange ability, appropriate water permeability, and excellent chlorine resistance and oxidation resistance. Most preferably, an ion exchange membrane made of fluororesin is used. be.

しかしA膜の耐薬品性が悪い場合には陽極とA膜との間
に耐薬品性の優れた炉隔膜を設置することにより陽極室
を二分し、A膜に直接塩素ガスが触れないようにするこ
ともできるので、A膜は必らずしもフッ素樹脂のイオン
交換膜であることを要しない。
However, if the chemical resistance of the A membrane is poor, a furnace diaphragm with excellent chemical resistance is installed between the anode and the A membrane to divide the anode chamber into two and prevent chlorine gas from coming into direct contact with the A membrane. Therefore, the A membrane does not necessarily need to be a fluororesin ion exchange membrane.

またA膜はOH一の透過が少なく、少なくともNaOH
について80係以上の電流効果を有することが望まれる
ので、できる限りNaイオン交換容量が太きいものを使
用することが望ましい。
In addition, the A membrane has low permeation of OH, at least NaOH
Since it is desired to have a current effect of a factor of 80 or more, it is desirable to use a material with as large a Na ion exchange capacity as possible.

中間室と陰極室から出てくるNaOH水溶液を合せた水
溶液の濃度はA膜を通過してくる水の量と電流効率とで
決ってくる。
The concentration of the combined NaOH aqueous solution coming out of the intermediate chamber and the cathode chamber is determined by the amount of water passing through the A membrane and the current efficiency.

しかしながらそのNaOHが陰極室と中間室に如何に分
配されるかは、陰極側のイオン交換膜(B膜)の性質に
よる。
However, how the NaOH is distributed between the cathode chamber and the intermediate chamber depends on the properties of the ion exchange membrane (B membrane) on the cathode side.

B膜の透水量はA膜の透水量より必らず少なくなければ
ならない。
The amount of water permeable through the B membrane must necessarily be smaller than the amount of water permeable through the A membrane.

さもないと中間室のNaOH濃度が陰極室より高くなり
、A膜の電流効率が悪く、また高濃度、高純度の苛性ア
ルカリを得るという目的に沿わないのみならず、時には
中間室の液量が減少して内部にガスがたまり、運転が継
続し得なくなる。
Otherwise, the NaOH concentration in the intermediate chamber will be higher than that in the cathode chamber, the current efficiency of the A membrane will be poor, and the purpose of obtaining high-concentration, high-purity caustic alkali will not be met. As it decreases, gas accumulates inside, making it impossible to continue operation.

以下に実施例を示すが、実施例中係は重量係を示す。Examples are shown below, and the numbers in the examples refer to weights.

実施例 1 実験に用いた電解槽は附図の如きもので、電解槽1は陽
極室2、中間室3および陰極室4より成り、それぞれの
外壁ブ田ンクが図の如くボルトで結合(図では上部およ
び周囲のボルトは現われていない)されている。
Example 1 The electrolytic cell used in the experiment is as shown in the attached figure.The electrolytic cell 1 consists of an anode chamber 2, an intermediate chamber 3, and a cathode chamber 4, and the outer wall blocks of each are connected with bolts as shown in the figure. The top and surrounding bolts are not visible).

この際陽極5とイオン交換膜Aは陽極室と中間室の間に
、また陰極6とイオン交換膜Bは陰極室と中間室との間
に挾まれ、それぞれの室を分離している。
At this time, the anode 5 and the ion exchange membrane A are interposed between the anode chamber and the intermediate chamber, and the cathode 6 and the ion exchange membrane B are interposed between the cathode chamber and the intermediate chamber, thereby separating the respective chambers.

陽極室2にはブライン人口7およひ出口8が設けられ、
出口8よりは戻りブラインと共に塩素が排出される。
The anode chamber 2 is provided with a brine population 7 and an outlet 8,
Chlorine is discharged from the outlet 8 along with the return brine.

中間室3には稀薄苛性ソーダ出口9が、また陰極室4に
は濃厚苛性ソーダおよび水素ガスの出口が設けられてい
る。
The intermediate chamber 3 is provided with a dilute caustic soda outlet 9, and the cathode chamber 4 is provided with a concentrated caustic soda and hydrogen gas outlet.

陽極5は酸化ルテニウムコートされたチタン、陰極6は
鉄製金網を用いた。
The anode 5 was made of titanium coated with ruthenium oxide, and the cathode 6 was made of iron wire mesh.

イオン交換膜Aとして、イー・アイ・デュポン社製NA
FION315膜(NAFION EW−1100とN
AFION EW−1500および四フフ化エチレン樹
脂メッシュを張り合せたイオン交換膜)を、イオン交換
膜Bとしてメチルアクリレートとジビニルベンゼンとス
テレンとの共重合体ヲクロルスルホン酸で処理し、スル
ホン化した膜を用い、NaClの電解を行なった。
As ion exchange membrane A, NA manufactured by E.I. DuPont
FION315 membrane (NAFION EW-1100 and N
AFION EW-1500 and an ion exchange membrane laminated with tetrafluoroethylene resin mesh) were treated with chlorosulfonic acid, a copolymer of methyl acrylate, divinylbenzene, and stellane, to create a sulfonated membrane as ion exchange membrane B. NaCl was electrolyzed using the following.

陽極室にはNaClの6係水溶液を供給し、電流密度2
0A/dm2の条件で電解を行なった。
A 6-layer aqueous solution of NaCl is supplied to the anode chamber, and the current density is 2.
Electrolysis was performed under the condition of 0 A/dm2.

尚実験開始時には中間室および陰極室にそれぞれlO%
および30係のNaOH溶液を満たし、各室のNaOH
濃度が定常になった時の電解条件を測定した。
At the start of the experiment, 1O% was added to the intermediate chamber and cathode chamber, respectively.
Fill each chamber with 30 parts of NaOH solution.
The electrolytic conditions were measured when the concentration became steady.

結果を第1表に示す。実施例 2 実施例1と同様の装置を用い、陽極室と中間室を隔てる
膜AにNAFION390膜(NAFIONEW〜15
00とEW−iiooおよび四フッ化エチレン樹脂メッ
シュを張り合わせたイオン交換膜)、中間室と陰極室を
隔てる膜BにNAFION425膜(NAFIONEW
−1200および四フフ化エチレン樹脂メッシュを張り
合せたイオン交換膜)を用い、NaClの電解を行なっ
た。
The results are shown in Table 1. Example 2 Using the same apparatus as in Example 1, NAFION 390 membrane (NAFION NEW ~ 15
00, EW-iioo and tetrafluoroethylene resin mesh), NAFION425 membrane (NAFION NEW
-1200 and an ion exchange membrane laminated with a tetrafluoroethylene resin mesh), electrolysis of NaCl was performed.

陽極室にはNaC16係水溶液を供給し、中間室、陰極
室には何も供給しないで電流密度20人/am2の条件
で電解を行なった。
An aqueous NaC16 solution was supplied to the anode chamber, nothing was supplied to the intermediate chamber and the cathode chamber, and electrolysis was carried out at a current density of 20 people/am2.

結果を第2表に示す。実施例1と同様の電解槽を用い、
陽極室と中間室との藺の膜AとしてNAFION315
膜、中間室と陰極室との間の膜Bとしてブナルメタクリ
レート50重量%とジビニルベンゼン50重量%をテフ
ロンペーパーに含浸させペンゾイルパーオキサイドを触
媒として窒素中で重合した成形物を濃硫酸中で処理した
膜を用い、陽極液として18%NaCl水溶液を用い電
解を行なった。
The results are shown in Table 2. Using the same electrolytic cell as in Example 1,
NAFION315 as the membrane A between the anode chamber and the intermediate chamber
As a membrane B between the intermediate chamber and the cathode chamber, Teflon paper was impregnated with 50% by weight of bunal methacrylate and 50% by weight of divinylbenzene, and a molded product was prepared by polymerizing in nitrogen using penzoyl peroxide as a catalyst, in concentrated sulfuric acid. Using the treated membrane, electrolysis was performed using an 18% NaCl aqueous solution as the anolyte.

結果を第3衣に示す。The results are shown in Figure 3.

対照例 実施例3で用いたと同じ膜および装置を用い、NaCl
濃度を26%として電解を行なったところ、中間室の液
が次第に減少し遂には電圧が急激に上昇し、陰極室の液
温か急激に上昇して通電が不可能となった。
Control Example Using the same membrane and equipment used in Example 3, NaCl
When electrolysis was carried out at a concentration of 26%, the liquid in the intermediate chamber gradually decreased, and finally the voltage suddenly rose, and the temperature of the liquid in the cathode chamber rose sharply, making it impossible to conduct electricity.

そこでイオン交換膜の透水量を測定する目的で同じく陽
極室に26%NaCl溶液を供給し、中間室にも水を供
給しながら(この場合の電解槽は中間室にも水入口を設
けたほかは実施例3と同じ)様に電解実験を行ない、膜
A,Bの透水量を測定したところ膜Aの透水量は2.1
89/A−h、膜Bの透水量は2.299/A−h、ま
たは槽電圧は4.2■、電流効率室のNaOH濃度はそ
れぞれ4.0%および41.8%であり、中間室に水を
通さない場合の透水量とは多少異なるとは考えられるが
、ここで測定された膜Aの透水量より膜Bの透水量の方
が多いという結果は、中間室に水を通さない場合に中間
室の液が減少した上記の実験結果と一致する。
Therefore, in order to measure the amount of water permeation through the ion exchange membrane, a 26% NaCl solution was also supplied to the anode chamber, and water was also supplied to the intermediate chamber (in this case, the electrolytic cell was equipped with a water inlet also in the intermediate chamber). An electrolytic experiment was conducted in the same manner as in Example 3), and the water permeability of membranes A and B was measured, and the water permeation of membrane A was 2.1.
89/A-h, the water permeability of membrane B is 2.299/A-h, or the cell voltage is 4.2■, the NaOH concentration in the current efficiency chamber is 4.0% and 41.8%, respectively, and the intermediate Although it is thought that the amount of water permeable is slightly different from the amount of water permeable when no water passes through the chamber, the result that the amount of water permeable through membrane B is higher than the amount of water through membrane A measured here is due to the fact that the amount of water permeable through membrane B is greater than the amount through which water is passed through the intermediate chamber. This is consistent with the above experimental results in which the liquid in the intermediate chamber decreased when there was no

【図面の簡単な説明】[Brief explanation of the drawing]

附図は本発明に使用される代表的電槽の略図である。 1……電解槽、2……陽極室、3……中間室、4……陰
極室、5……陽極、6……陰極、7,8……ブライン入
口および出口、9,10……中間室および陰極室よりの
苛性アルカリの出口、A,B……陽イオン交換膜。
The accompanying drawing is a schematic diagram of a typical battery case used in the present invention. 1... Electrolytic cell, 2... Anode chamber, 3... Intermediate chamber, 4... Cathode chamber, 5... Anode, 6... Cathode, 7, 8... Brine inlet and outlet, 9, 10... Intermediate Caustic alkali outlet from chamber and cathode chamber, A, B...Cation exchange membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 ハロゲン化アルカリ水溶液を2枚の陽イオン交換膜
により陽極室、中間室、陰極室に分割された電槽を用い
、中間室からは低濃度の、陰極室からは高濃度の苛性ア
ルカリを得る電解において、陽極室に20係以下の濃度
のハロゲン化アルカリ水溶液を供給し、中間室および陰
極室へは外部から水を全く供給せず、生成する苛性アル
カリ水溶液に必要な水はすべて陽極室からイオン交換膜
を通して浸透移行させることを特徴とするイオン交換膜
電解方法。
1 Using a container containing an aqueous halide aqueous solution divided into an anode chamber, an intermediate chamber, and a cathode chamber by two cation exchange membranes, a low concentration of caustic alkali is obtained from the intermediate chamber and a high concentration of caustic alkali from the cathode chamber. In electrolysis, an alkali halide aqueous solution with a concentration of 20 parts or less is supplied to the anode chamber, no water is supplied from the outside to the intermediate chamber and the cathode chamber, and all the water necessary for the caustic alkaline aqueous solution to be generated is supplied from the anode chamber. An ion exchange membrane electrolysis method characterized by osmotic transfer through an ion exchange membrane.
JP50130088A 1975-10-13 1975-10-29 Aeon Koukan Makuden Kaihouhou Expired JPS5814510B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50130088A JPS5814510B2 (en) 1975-10-29 1975-10-29 Aeon Koukan Makuden Kaihouhou
US05/732,095 US4076604A (en) 1975-10-13 1976-10-13 Process for the electrolytic treatment of alkali halide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50130088A JPS5814510B2 (en) 1975-10-29 1975-10-29 Aeon Koukan Makuden Kaihouhou

Publications (2)

Publication Number Publication Date
JPS5253799A JPS5253799A (en) 1977-04-30
JPS5814510B2 true JPS5814510B2 (en) 1983-03-19

Family

ID=15025677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50130088A Expired JPS5814510B2 (en) 1975-10-13 1975-10-29 Aeon Koukan Makuden Kaihouhou

Country Status (1)

Country Link
JP (1) JPS5814510B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237880A (en) * 2012-05-11 2013-11-28 Set:Kk Multi-compartment type salt water electrolytic cell, salt water electrolysis method, and product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075194A (en) * 1973-11-01 1975-06-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075194A (en) * 1973-11-01 1975-06-20

Also Published As

Publication number Publication date
JPS5253799A (en) 1977-04-30

Similar Documents

Publication Publication Date Title
CN106801233B (en) A kind of electrolysis method prepares the system and method for high-purity tetrapropylammonium hydroxide
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
KR830002163B1 (en) Chlorine-Alkaline Electrolyzer
US5230779A (en) Electrochemical production of sodium hydroxide and sulfuric acid from acidified sodium sulfate solutions
US4108742A (en) Electrolysis
SU797594A3 (en) Method of electrolysis of aqueous solutions of sodium and potassium compounds or their mixture
US20160215402A1 (en) Electrolytic apparatus, electrode unit and electrolyzed water production method
JP6956953B2 (en) Reverse electrodialysis method and its use
CN106430451A (en) Method and device for producing subacid electrolyzed water
JP4751994B1 (en) Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell
JPS607710B2 (en) Electrolysis method of alkali metal chloride using diaphragm electrolyzer
FI90790B (en) Combined process for the production of chlorine dioxide and sodium hydroxide
US4144146A (en) Continuous manufacture of sodium dithionite solutions by cathodic reduction
US4295950A (en) Desalination with improved chlor-alkali production by electrolyticdialysis
US3775272A (en) Mercury diaphragm chlor-alkali cell and process for decomposing alkali metal halides
JPS5947037B2 (en) Electrolysis method
WO2016147439A1 (en) Electrolysis tank and electrolyzed water-generating method
JPS5814510B2 (en) Aeon Koukan Makuden Kaihouhou
US4076604A (en) Process for the electrolytic treatment of alkali halide
JPS5926671B2 (en) Aeon Koukan Makuden Kaihouhou
Venkatesh et al. Chlor-alkali technology
CN114402095A (en) Cross-flow water electrolysis
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
Gallone et al. Developments in separator technology for electrochemical reactors
JP4062917B2 (en) Method for producing sodium hydroxide