JPH01316460A - Production of cubic b-c-n crystal - Google Patents

Production of cubic b-c-n crystal

Info

Publication number
JPH01316460A
JPH01316460A JP14913388A JP14913388A JPH01316460A JP H01316460 A JPH01316460 A JP H01316460A JP 14913388 A JP14913388 A JP 14913388A JP 14913388 A JP14913388 A JP 14913388A JP H01316460 A JPH01316460 A JP H01316460A
Authority
JP
Japan
Prior art keywords
solid solution
crystal
cubic
crystals
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14913388A
Other languages
Japanese (ja)
Other versions
JPH0691954B2 (en
Inventor
Minoru Akaishi
實 赤石
Takayoshi Sasaki
高義 佐々木
Junzo Tanaka
順三 田中
Yoshinori Fujiki
藤木 良規
Nobuo Yamaoka
山岡 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP63149133A priority Critical patent/JPH0691954B2/en
Publication of JPH01316460A publication Critical patent/JPH01316460A/en
Publication of JPH0691954B2 publication Critical patent/JPH0691954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce cubic B-C-N crystals under mild conditions of high temp. and pressure by bringing Co, Fe or Ni into contact with hexagonal BC2N synthesized by chemical vapor deposition with BCl3 and CH3CN and by heating them under specified conditions. CONSTITUTION:A film or powder of hexagonal BC2N having the regular compsn. is synthesized by chemical vapor deposition with BCl3 and CH3CN. One or more kinds of metals selected among Co, Fe, Ni and alloys thereof are brought into contact with the film or powder and they are heated at >=1,360 deg.C within the range in which diamond is stable. Extremely high pressure is not required and insulating cubic B-C-N crystals having high hardness are easily obtd. under mild conditions of temp. and pressure at a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高硬度、絶縁性立方晶B−C−N(以下cB
−C−Nと略記する)結晶の製造法に関する。cB−C
−N結晶は、ダイヤモンド及び立方晶窒化ほう素(以下
cBNと略記する)と同様に、高硬度、耐摩耗性を有す
るため、研削砥粒および切削工具材料等として、好適な
特性を有する物質として注目されているものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to high hardness, insulating cubic B-C-N (hereinafter referred to as cB
-C-N)) relates to a method for producing crystals. cB-C
-N crystal, like diamond and cubic boron nitride (hereinafter abbreviated as cBN), has high hardness and wear resistance, so it is a substance with suitable properties as grinding abrasive grains, cutting tool materials, etc. This is something that is attracting attention.

従来技術及びその問題点 ダイヤモンドは硬度に関しては現在知られている物質の
内で最も優れている。しかしながら、高い温度で使用す
るときに安定性に問題がある。−方、cBNはダイヤモ
ンドについで硬い物質である。しかもその高温安定性は
、ダイヤモンドに比較し、格段に優れている。しかしな
がら、cBN結晶の硬さは、ダイヤモンド結晶のそれの
約半分程度である。これらに対し、cB−C−N結晶は
ダイヤモンド結晶の硬さに近く、かつ高温安定性に優れ
ており、高硬度、対摩耗性物質として、きわめて有望な
物質である。
Prior Art and Its Problems Diamond is the best known material in terms of hardness. However, there are stability problems when used at high temperatures. - On the other hand, cBN is the second hardest substance after diamond. Furthermore, its high-temperature stability is far superior to that of diamond. However, the hardness of cBN crystal is about half that of diamond crystal. On the other hand, cB-C-N crystal has a hardness close to that of a diamond crystal and has excellent high temperature stability, making it an extremely promising material as a highly hard and wear-resistant material.

従来のcB−C−N固溶体の製造方法としては、(+)
 Andrzej R,Badzianにより、マテリ
アル・リサーチ・プリテン(Mat、Res、Bull
、)、 vol、 16+ρρ1385−1393.1
981年にcB−C−N固溶体の合成が報告されている
。その論文によれば、化学気相蒸着法により合成した六
方晶B−C−N固溶体(hB−C−N固溶体)を静的高
温高圧装置を用いて、14GPa 、約3600にの非
常に高い圧力、温度条件下においてcB−C−N固溶体
を合成しえたと報告している。また、同−論文において
、同様にして合成したhB−C−N固溶体を、ダイヤモ
ンド合成触媒(Co、Ni)及びcBN合成触媒(Li
sN+MgaN1)と共存させて、通常のダイヤモンド
、cBNを合成する条件と同じ様な高温高圧条件下で処
理したがcB−C−N固溶体は、合成することはできな
ったと報告している。
As a conventional method for producing cB-C-N solid solution, (+)
Andrzej R. Badzian, Materials Research Paperback (Mat, Res, Bull
), vol, 16+ρρ1385-1393.1
In 1981, the synthesis of cB-C-N solid solution was reported. According to the paper, a hexagonal B-C-N solid solution (hB-C-N solid solution) synthesized by chemical vapor deposition was heated to a very high pressure of 14 GPa, about 3,600 psi using a static high-temperature and high-pressure apparatus. reported that cB-C-N solid solution could be synthesized under temperature conditions. In addition, in the same paper, hB-C-N solid solutions synthesized in the same manner were used as diamond synthesis catalysts (Co, Ni) and cBN synthesis catalysts (Li).
It is reported that the cB-C-N solid solution could not be synthesized even though it was treated under high-temperature and high-pressure conditions similar to those used for synthesizing ordinary diamond and cBN.

(2)瀬高信雄により、科学技術庁無機材質研究所研究
報告書第39号(ダイヤモンドに関する研究。
(2) Nobuo Setaka, Research Report No. 39 of the Institute of Inorganic Materials, Science and Technology Agency (research on diamonds).

pp59−61.1984年)に、衝撃高圧力を利用し
、cB−C−N固溶体の合成の可能性が報告されている
。その方法は、フラン樹脂より合成した炭素前駆体(6
00″C処理)とNaBH,−NH,CIより合成した
六方晶BN(hBN、)を0.7  : 1の割合で混
合し、60GPaの衝撃高圧力を加えて、cB−C−N
固溶体を合成するものである。
pp. 59-61, 1984), the possibility of synthesizing cB-C-N solid solution using high impact pressure was reported. The method uses a carbon precursor (6
Hexagonal BN (hBN, ) synthesized from NaBH, -NH, CI (00''
This is to synthesize a solid solution.

静的または動的高圧力を問わず、cB−C−N固溶体を
合成しえたとする上記2方法とも、非常に高圧力条件下
における合成方法であるため、工業的プロセスとしては
、実用化が難しい。さらに、ンドとcBNの格子定数の
間にあることを根拠としている。
Both of the above two methods, which are said to be able to synthesize cB-C-N solid solution under very high pressure conditions, regardless of static or dynamic high pressure, are difficult to put into practical use as an industrial process. difficult. Furthermore, it is based on the fact that the lattice constants are between those of cBN and that of cBN.

発明の目的 本発明は従来のcB−C−N固溶体の製造法の欠点をな
くし、非常に高い圧力条件を必要とせず、穏やかな高温
高圧条件下でcB−C−N結晶を製造する方法を提供す
ることを目的とする。
OBJECTS OF THE INVENTION The present invention eliminates the drawbacks of conventional cB-C-N solid solution production methods and provides a method for producing cB-C-N crystals under mild high temperature and high pressure conditions without requiring very high pressure conditions. The purpose is to provide.

発明の構成 本発明者らは前記目的を達成すぺ(鋭意研究の結果、前
記A、R,Baclzian報告ではhB−C−N固溶
体を製造するのに、BCIs、 CCl4. Na、 
Hzガスを用い、化学気相蒸着法(以下、CVD法と記
載する)によっている。
Structure of the Invention The present inventors achieved the above object (as a result of intensive research, the above-mentioned A. R. Baclzian report states that in order to produce hB-C-N solid solution, BCIs, CCl4.Na,
A chemical vapor deposition method (hereinafter referred to as CVD method) is performed using Hz gas.

しかし、この方法はB、C,N原料を各々異なる原料ガ
スを用いるため、均質なり−C−N固溶体というよりも
、むしろ選択的にhBNあるいはB、N、Cの不均質混
合物が形成され易く、また1憤とCの組成比の制御も難
しい。
However, since this method uses different raw material gases for B, C, and N raw materials, hBN or a heterogeneous mixture of B, N, and C tends to be selectively formed rather than a homogeneous -C-N solid solution. , It is also difficult to control the composition ratio of 1 ethylene oxide and C.

本発明者らは三塩化ほう素(BCIs)とアセトニトリ
ル(CIlICN)の両ガスを用い、CVD反応を利用
し、750〜900℃で固溶体を製造した。
The present inventors used both boron trichloride (BCIs) and acetonitrile (CIlICN) gases and a CVD reaction to produce a solid solution at 750 to 900°C.

その結果、750℃より基板上に黒色フィルム状の堆積
物が認められた。堆積物の電子線回折及び粉末X線回折
の結果、格子定数は、a =2.44人、C==3.4
0人であった。これらの値は、黒鉛、hBNの格子定数
の値に非常に近いものである。
As a result, a black film-like deposit was observed on the substrate from 750°C. As a result of electron beam diffraction and powder X-ray diffraction of the deposit, the lattice constants are a = 2.44 and C = 3.4.
There were 0 people. These values are very close to the lattice constant values of graphite and hBN.

これらのことより、生成物は、両者によく偵た層状構造
を有していると考えられる。また生成物の結晶性は、ガ
ス分圧が低いほど、CVD反応温度が高いほど、良好で
あった。
From these facts, it is considered that the product has a well-defined layered structure. Moreover, the crystallinity of the product was better as the gas partial pressure was lower and the CVD reaction temperature was higher.

することにより調べた。その結果、BC!Hの化学組成
を有することが明らかとなった。このように定比組成の
hB−C−N固溶体が合成できるのは、C,N源をアセ
トニトリルから供給し、B源を三塩化ほう素から供給す
るため、選択的なhBNの形成を抑え、B、C,Nが均
質に分布した堆積物が得られるためと考えられる。この
点において、既存のhB−C−N固溶体とは大きく異な
るものとなることが分かった。その反応は次の通りであ
る。
I investigated by doing this. As a result, BC! It was revealed that it has a chemical composition of H. The hB-C-N solid solution with the stoichiometric composition can be synthesized in this way because the C and N sources are supplied from acetonitrile and the B source is supplied from boron trichloride, which suppresses the selective formation of hBN. This is thought to be because a deposit in which B, C, and N are homogeneously distributed is obtained. In this respect, it was found that it is significantly different from existing hB-C-N solid solutions. The reaction is as follows.

BClz(g)  十CHsCN(g)−BC*N(s
)  +38C1(g)BClaとCI(、CNのCV
D反応により得られた膜状hB−C−N固溶体の電気抵
抗を四端子法で測定した結果、比抵抗、0.05〜0.
1Ω1であった。この値は、半導体領域に属し、半金属
的な振舞いをする黒鉛と絶縁体のhBNの中間に位置し
、電気的性質としては、膜状hB−C−N固溶体はhB
Nよりもむしろ黒鉛に近い性質を示す物質であることが
分かった。
BClz(g) 10CHsCN(g)-BC*N(s
) +38C1(g) BCla and CI(,CV of CN
The electrical resistance of the film-like hB-C-N solid solution obtained by the D reaction was measured by the four-probe method, and the specific resistance was 0.05 to 0.
It was 1Ω1. This value belongs to the semiconductor region and is located between graphite, which behaves like a semimetal, and hBN, which is an insulator.In terms of electrical properties, the film-like hB-CN solid solution has hB
It was found that this substance exhibits properties closer to graphite than to N.

このBctsとCIl、CNのCVD反応により合成し
たhB−C−N固溶体を7.7 GPa 、 2000
”Cの条件で処理したが、いかなるcB−C−N固溶体
の存在もX線回折では認められなかった。上記合成条件
の温度が低いため、cB−C−N固溶体の生成が認めら
れなかったと考え、さらに温度の高い合成条件、7.7
 GPa 、 2200’C,においてhB−C−N固
溶体を処理した。得られた試料のX線回折の結果、部分
的に立方晶系の物質に変換していた。これらの格子定数
の値から判断するに、cB−C−N固溶体ではなく、c
BNが部分的に生成したと考えられる。 ?、7 GP
a 、 2200℃の高温高圧条件下では、 hB−C−Nil!il溶体からcB−C−N固溶体に
直接変換するのではなく、分解し、その一部がcBNに
変換したと考えられる。
The hB-C-N solid solution synthesized by CVD reaction of Bcts, CIl, and CN was heated at 7.7 GPa, 2000
Although the treatment was carried out under the conditions of ``C'', the presence of any cB-C-N solid solution was not observed by X-ray diffraction.It is believed that the formation of cB-C-N solid solution was not observed due to the low temperature of the above synthesis conditions. Thoughts, higher temperature synthesis conditions, 7.7
The hB-C-N solid solution was processed at 2200'C, GPa. As a result of X-ray diffraction of the obtained sample, it was found that it was partially converted into a cubic crystal system substance. Judging from these lattice constant values, it is not a cB-C-N solid solution, but a cB-C-N solid solution.
It is thought that BN was partially generated. ? , 7 GP
a. Under high temperature and high pressure conditions of 2200°C, hB-C-Nil! It is considered that the il solution was not directly converted to a cB-C-N solid solution, but decomposed and a part of it was converted to cBN.

上記の圧力、温度条件下では、cB−C−N固溶体の合
成は、たいへん難しい。
Under the above pressure and temperature conditions, synthesis of cB-C-N solid solution is very difficult.

そこで、ダイヤモンド合成触媒として良く知られている
Co、 Ni、 Feの金属または合金とhB−C−N
固溶体を積層し、約6GPa 、 1500℃の条件で
処理した。得られた試料を熱濃塩酸で処理し、水洗乾燥
後、X線回折により調べた。その結果、試料の格子定数
は、明ら・かにcBNのそれよりも小さく、ダイヤモン
ドのそれよりも大きかった。これらの結果は、cB−C
−N固薄体合成の可能性を強く示唆している。走査型オ
ージェ電子分光法(SAM)を用いて、試料を調べた結
果、B、 C。
Therefore, metals or alloys of Co, Ni, and Fe, which are well known as diamond synthesis catalysts, and hB-C-N
The solid solution was laminated and treated under conditions of approximately 6 GPa and 1500°C. The obtained sample was treated with hot concentrated hydrochloric acid, washed with water, dried, and examined by X-ray diffraction. As a result, the lattice constant of the sample was clearly smaller than that of cBN and larger than that of diamond. These results indicate that cB-C
This strongly suggests the possibility of -N solid-thin synthesis. The results of examining the sample using scanning Auger electron spectroscopy (SAM) are B and C.

Nの3元素を明瞭に検出することができた。また、試料
の38M観察の結果、cB−C−N固溶体は自形面を持
った微結晶であることも明らかとなった。
Three elements, N, could be clearly detected. Moreover, as a result of 38M observation of the sample, it was also revealed that the cB-C-N solid solution was a microcrystal with an euhedral surface.

この処理温度は1360℃未満ではcB−C−N結晶は
得られないことも分かった。これらの知見に基づいて本
発明を完成した。
It was also found that cB-C-N crystals could not be obtained if the treatment temperature was lower than 1360°C. The present invention was completed based on these findings.

本発明の要旨は、三塩化ほう素とア七ト二トリルの化学
気相蒸着法により合成された足止組成の六方晶BC,N
膜または粉末に、コバルト鉄、ニッケル及びそれらの合
金から選ばれた1種または2種以上の金属を接触させて
、ダイヤモンド安定域で1360℃以上の温度で加熱処
理することを特徴とする立方晶B−C−N結晶の製造法
にある。
The gist of the present invention is that hexagonal BC,N
A cubic crystal characterized by contacting the film or powder with one or more metals selected from cobalt iron, nickel, and their alloys, and heat-treating the film or powder at a temperature of 1360°C or higher in the diamond stability range. It is in the manufacturing method of B-CN crystal.

本発明の方法において用いるCVD反応装置の概要図を
第1図に示す、lはヘリウムボンベ、2は三塩化ほう素
ボンベ、3は三塩化ほう常用バブラー、4はアセトニト
リル蒸留装置、5はアセトニトリル用バブラー、6は電
気炉、7はトラップ、8は真空ライン、9は水銀バブラ
ーを示す。
A schematic diagram of the CVD reactor used in the method of the present invention is shown in FIG. 1, where 1 is a helium cylinder, 2 is a boron trichloride cylinder, 3 is a common bubbler for boron trichloride, 4 is an acetonitrile distillation device, and 5 is for acetonitrile. 6 is an electric furnace, 7 is a trap, 8 is a vacuum line, and 9 is a mercury bubbler.

実施例 第1図に示すCVD反応装置を使用し、キャリヤガスと
してヘリウムガスを用い、BCIsのガス骨上に厚さO
,1m程度の黒色フィルムを合成することができた。
EXAMPLE Using the CVD reactor shown in FIG. 1 and using helium gas as a carrier gas, a thickness of O
, we were able to synthesize a black film about 1 m long.

得られたフィルムのX線回折の結果、試料は六方晶系に
属し格子定数はm−2,44人、c −3,40人であ
った。第2図に試料断面の38M像を示す。
As a result of X-ray diffraction of the obtained film, the sample belonged to a hexagonal crystal system, with lattice constants of m-2,44 and c-3,40. Figure 2 shows a 38M image of the cross section of the sample.

X線回折図形及び゛SEM観察の結門、生成物の積層状
態は無秩序な乱層構造を有する均質粒子よりなるもので
あった。
The conclusion of the X-ray diffraction pattern and SEM observation was that the stacked state of the product was composed of homogeneous particles having a disordered turbostratic structure.

生成物の電子線エネルギー損失スペクトル(EELS)
を第3図に示す、エネルギー損失180〜450 eV
の範囲に3つのピークが出現した。
Electron energy loss spectrum (EELS) of product
is shown in Figure 3, energy loss 180-450 eV
Three peaks appeared in the range.

これらのピークはに殻電子の励起によるものでB。These peaks are due to the excitation of shell electrons.

C,Nにそれぞれ帰属された。この他のピークは観測さ
れないことから、生成物はB、C,Nの3  −元素か
ら成り立っていることは明らかである。各ピークの面積
と各元素のイオン化断面積の計算値をつきあわせること
によってB、C,Nのモル%はそれぞれ24.7±4.
1%、52.6±5.8%、22.7±3.6%となっ
た。これらの結果から生成物の化学組成はBC,Nであ
ることが判明した。また化学組成はオージェ電子分光法
によっても同一組成であることが確認された。
They were assigned to C and N, respectively. Since no other peaks are observed, it is clear that the product is composed of 3 elements: B, C, and N. By comparing the area of each peak with the calculated value of the ionization cross section of each element, the mol% of B, C, and N is 24.7±4.
1%, 52.6±5.8%, and 22.7±3.6%. These results revealed that the chemical composition of the product was BC,N. It was also confirmed by Auger electron spectroscopy that the chemical compositions were the same.

得られたhB−C−N固溶体を金属Co板に積層し5.
8 GPa 、 1500℃の条件下で1時間処理した
5. The obtained hB-C-N solid solution was laminated on a metal Co plate.
The treatment was carried out under conditions of 8 GPa and 1500° C. for 1 hour.

得られた試料を熱部塩酸、熱濃硫酸で処理し水洗乾燥後
、X線回折により調べた。X線回折図形(第4図)は立
方晶のパターンを示し格子定数はa−3,60人であっ
た。この(直はcBNとダイヤモンドの格子定数の中間
であった。試料の38M像を第5図に示す、この試料は
自形面を持ったサブミクロンから数ミクロンの微結晶粒
子からなっていることは明らかである。
The obtained sample was treated with hot hydrochloric acid and hot concentrated sulfuric acid, washed with water, dried, and examined by X-ray diffraction. The X-ray diffraction pattern (Fig. 4) showed a cubic pattern, and the lattice constant was a-3.60. This lattice constant was between the lattice constants of cBN and diamond. A 38M image of the sample is shown in Figure 5. This sample consists of microcrystalline particles of submicron to several micron size with euhedral surfaces. is clear.

この試料の構成元素を明らかにする目的でSAMにより
調べた(第6図)、この試料は絶縁体であるためみかけ
のエネルギー値はシフトしているが明白にB、C,Nが
検出された。数多くの点におけるオージェスペクトルを
調べたがいずれの点でもB、C,Nからなるスペクトル
が得られた。
In order to clarify the constituent elements of this sample, we investigated it using SAM (Figure 6). Since this sample is an insulator, the apparent energy value shifted, but B, C, and N were clearly detected. . Auger spectra at many points were investigated, and at every point a spectrum consisting of B, C, and N was obtained.

各ピークの強度から組成を推定すると約15%程度の炭
素を含むB、C,N結晶であることは明らかである。
Estimating the composition from the intensity of each peak, it is clear that it is a B, C, N crystal containing about 15% carbon.

X線回折、SEM像観察、オージェ電子スペクトルの測
定結果から、hB−C−N固溶体を金属Co板に積層し
5.8 GPa 、 1500℃の条件で処理した結果
、数ミクロン程度のcB−C−N結晶が得られることが
判明した。
From the measurement results of X-ray diffraction, SEM image observation, and Auger electron spectrum, it was found that hB-C-N solid solution was laminated on a metal Co plate and treated at 5.8 GPa and 1500°C, resulting in cB-C of about several microns. -N crystals were found to be obtained.

発明の効果 本発明の方法によると、従来のcB−C−N結晶を製造
する方法における非常に高い圧力を必要とせず、穏やか
な圧力温度条件で容易にcB−C−N結晶が製造し得ら
れる。そのため装置も簡単となり工業生産を容易になし
得る。
Effects of the Invention According to the method of the present invention, cB-C-N crystals can be easily produced under mild pressure and temperature conditions without requiring extremely high pressure in conventional methods for producing cB-C-N crystals. It will be done. Therefore, the equipment becomes simple and industrial production can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCVD反応装置の概要図、第2図は本発明の方
法で得られたhB−C−N固溶体断面のSEM像、第3
図はBC!Nの電子線エネルギー損失スペクトル、第4
図は本発明の方法で得られたcB−C−N結晶の粉末X
線回折図、第5図はその結晶のSEM像、第6図はその
結晶のオージェ電子スペクトルを示す。 ■=ヘリウムボンベ、  2:三塩化ほう素ボンベ、3
:三塩化ほう常用バブラー、 4ニアセトニトリル蒸留装置、 5ニア七ト二トリル用バブラー、 6;電気炉、      7:トラップ、8:真空ライ
ン、   9:水銀バブラー。 第  l  因 第  2  図 強度 第  5  図 第  b  図 運動エネルギー(ev) 手続補正書く4氏) 1ilj<’:。 昭和63年1り月/%日 特許庁長官 吉 1)文 毅 殿 昭和63年特許願第149133号 Z発明の名称 立方晶B−C−N結晶の製造法 3、補正をする者 事件との関係 特許出願人 ■ 瀬   高  信  雄 4.1iif□、Dヨイオ            ;
1了 −−−・昭和63年9月27日 5、補正により増加する発明の数 なしく1)  明細
書第12頁第2行の「固溶体断面の」の次に「粒子構造
を示す」を挿入する。 (2)  同第12頁第6行の「結晶のJの次に「構造
を示す」を挿入する。 以上
Figure 1 is a schematic diagram of the CVD reactor, Figure 2 is an SEM image of the cross section of hB-C-N solid solution obtained by the method of the present invention, and Figure 3 is
The diagram is BC! Electron beam energy loss spectrum of N, 4th
The figure shows cB-C-N crystal powder X obtained by the method of the present invention.
A line diffraction diagram, FIG. 5 shows an SEM image of the crystal, and FIG. 6 shows an Auger electron spectrum of the crystal. ■ = Helium cylinder, 2: Boron trichloride cylinder, 3
: Common bubbler for boron trichloride, 4 Niacetonitrile distillation equipment, 5 Niani heptonitrile bubbler, 6; Electric furnace, 7: Trap, 8: Vacuum line, 9: Mercury bubbler. Factor l Factor 2 Intensity Figure 5 Figure b Kinetic energy (ev) Procedural correction written by Mr. 4) 1ilj<':. Yoshi, Director General of the Japan Patent Office, January 1, 1983/% Date 1) Tsuyoshi Moon, 1988 Patent Application No. 149133 Z Name of Invention Method for Manufacturing Cubic B-C-N Crystal 3, Case of Person Who Makes Amendment Related Patent Applicant■ Nobuo Setaka 4.1iif□, Dyoio;
1 Completion --- September 27, 1988 5. Number of inventions increased due to amendment No. 1) In the second line of page 12 of the specification, after "solid solution cross-section", "indicates particle structure" is added. insert. (2) On page 12, line 6, insert ``Show structure'' next to ``J'' for crystal. that's all

Claims (1)

【特許請求の範囲】[Claims] 三塩化ほう素とアセトニトリルの化学気相蒸着法により
合成された定比組成の六方晶BC_2N膜または粉末に
、コバルト、鉄、ニッケル及びそれらの合金から選ばれ
た1種または2種以上の金属を接触させて、ダイヤモン
ド安定域で1360℃以上の温度で加熱処理することを
特徴とする立方晶B−C−N結晶の製造法。
One or more metals selected from cobalt, iron, nickel, and their alloys are added to a hexagonal BC_2N film or powder with a stoichiometric composition synthesized by chemical vapor deposition of boron trichloride and acetonitrile. 1. A method for producing cubic B-C-N crystals, which comprises bringing them into contact with each other and heat-treating them at a temperature of 1360° C. or higher in the diamond stability region.
JP63149133A 1988-06-16 1988-06-16 Method for producing cubic B-C-N crystal Expired - Lifetime JPH0691954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149133A JPH0691954B2 (en) 1988-06-16 1988-06-16 Method for producing cubic B-C-N crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149133A JPH0691954B2 (en) 1988-06-16 1988-06-16 Method for producing cubic B-C-N crystal

Publications (2)

Publication Number Publication Date
JPH01316460A true JPH01316460A (en) 1989-12-21
JPH0691954B2 JPH0691954B2 (en) 1994-11-16

Family

ID=15468461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149133A Expired - Lifetime JPH0691954B2 (en) 1988-06-16 1988-06-16 Method for producing cubic B-C-N crystal

Country Status (1)

Country Link
JP (1) JPH0691954B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866059A (en) * 1992-11-06 1999-02-02 Central Glass Company, Limited Polycrystalline BCN substance and method of producing same
US6759128B1 (en) * 2002-07-05 2004-07-06 The Regents Of The University Of California Bulk superhard B-C-N nanocomposite compact and method for preparing thereof
CN102747321A (en) * 2011-04-18 2012-10-24 鸿富锦精密工业(深圳)有限公司 Coating part and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866059A (en) * 1992-11-06 1999-02-02 Central Glass Company, Limited Polycrystalline BCN substance and method of producing same
US6759128B1 (en) * 2002-07-05 2004-07-06 The Regents Of The University Of California Bulk superhard B-C-N nanocomposite compact and method for preparing thereof
CN102747321A (en) * 2011-04-18 2012-10-24 鸿富锦精密工业(深圳)有限公司 Coating part and preparation method thereof

Also Published As

Publication number Publication date
JPH0691954B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
Nagashima et al. Electronic states of monolayer graphite formed on TiC (111) surface
JP5435043B2 (en) High hardness conductive diamond polycrystal and method for producing the same
Komatsu et al. Synthesis and characterization of a shock-synthesized cubic B–C–N solid solution of composition BC2. 5N
Oshima et al. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces
Suri et al. Synthesis and consolidation of boron carbide: a review
JP2004131336A (en) Diamond polycrystal and its production method
EP0305197B1 (en) Method for making a graphite film or sheet and radiation optical elements using the graphite sheet
JP3452665B2 (en) Method for synthesizing diamond single crystal and single crystal diamond
JPH01316460A (en) Production of cubic b-c-n crystal
Andreyev et al. Synthesis of nanocrystalline nitrogen-rich carbon nitride powders at high pressure
Komatsu et al. Creation of superhard B–C–N heterodiamond using an advanced shock wave compression technology
Terasawa et al. Nano-polycrystalline diamond synthesized from neutron-irradiated highly oriented pyrolytic graphite (HOPG)
Alcalá et al. Mechanosynthesis of carbon nitride compounds
JPH06144993A (en) Boron-doped diamond
JPS631280B2 (en)
JPH02233511A (en) Production of diamond
Spitsyn Origin and Evolution of the Science and Technology of Diamond Synthesis in the USSR
JPH0477612B2 (en)
Berchmans et al. Synthesis of nanocrystalline boron nitride by combustion process
JPS62108713A (en) Production of cubic boron nitride
JP2733568B2 (en) Fluorinated graphite fiber and its manufacturing method
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body
JPS59184792A (en) Vapor phase synthesis of diamond
JPS62108710A (en) Production of cubic boron nitride
Xu et al. Internal atomic distortion and layer roughness of epitaxial SiC thin films studied by short wavelength x-ray diffraction

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term