JP2733568B2 - Fluorinated graphite fiber and its manufacturing method - Google Patents

Fluorinated graphite fiber and its manufacturing method

Info

Publication number
JP2733568B2
JP2733568B2 JP2239971A JP23997190A JP2733568B2 JP 2733568 B2 JP2733568 B2 JP 2733568B2 JP 2239971 A JP2239971 A JP 2239971A JP 23997190 A JP23997190 A JP 23997190A JP 2733568 B2 JP2733568 B2 JP 2733568B2
Authority
JP
Japan
Prior art keywords
fiber
graphite fiber
carbon
fluorinated graphite
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2239971A
Other languages
Japanese (ja)
Other versions
JPH03220322A (en
Inventor
守信 遠藤
祥男 大橋
信 勝亦
秀則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Yazaki Corp
Original Assignee
Mitsubishi Corp
Yazaki Sogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Yazaki Sogyo KK filed Critical Mitsubishi Corp
Priority to US07/587,936 priority Critical patent/US5106606A/en
Priority to EP19900118749 priority patent/EP0421306A3/en
Publication of JPH03220322A publication Critical patent/JPH03220322A/en
Application granted granted Critical
Publication of JP2733568B2 publication Critical patent/JP2733568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性複合材料などに利用するに適した炭素
繊維に関する。
Description: TECHNICAL FIELD The present invention relates to carbon fibers suitable for use in conductive composite materials and the like.

〔従来の技術〕[Conventional technology]

炭素繊維は軽量で機械的強度が優れ、また導電性も良
好なところから、金属やプラスチックあるいは炭素材料
などを組合わせて複合材料とし、各種の応用分野に利用
されている。
Since carbon fibers are lightweight, have excellent mechanical strength, and have good conductivity, they are used as composite materials by combining metals, plastics, carbon materials, and the like, and used in various application fields.

ところで、炭素材料は金属材料にくらべて導電性が劣
るところから、炭素材料の導電性を改良する研究が進め
られており、黒鉛の結晶の層間に種々の分子、原子、イ
オンなど、例えば硝酸などを挿入して導電性の改善され
た層間化合物を得ることが知られている。更にまた、黒
鉛とフッ素とを反応させて得た共有結合型の層間化合物
は絶縁性を示すとされていたが、天然黒鉛や人造黒鉛な
どのフレーク状または粉末状の黒鉛とフッ素とを反応さ
せると導電性の層間化合物が得られることも知られてい
る。しかしこのような層間化合物は粉末状であり、複合
材料としたときには均一で安定した導電性を得ることが
困難なうえ、強度が低下するという問題もあった。
By the way, since carbon materials are inferior in conductivity to metal materials, studies to improve the conductivity of carbon materials are being conducted, and various molecules, atoms, ions, etc., such as nitric acid, etc., are present between graphite crystal layers. Is known to obtain an interlayer compound having improved conductivity. Furthermore, the covalent intercalation compound obtained by reacting graphite and fluorine is said to exhibit insulating properties, but reacts flake or powdered graphite such as natural graphite or artificial graphite with fluorine. It is also known that a conductive interlayer compound can be obtained. However, such an intercalation compound is in a powder form, and when it is made into a composite material, it is difficult to obtain uniform and stable conductivity, and there is a problem that the strength is reduced.

一方、ピッチ系の黒鉛繊維やPAN系の黒鉛繊維などは
結晶構造があまり発達せず、層間化合物としても導電性
の優れたものは得られていないうえに、複合材料として
均一な分散を達成することは難しい。更に、これに対し
て結晶構造がより完全に近い気相成長炭素繊維を黒鉛化
して得た黒鉛繊維を用い、これに例えば硝酸、金属塩化
物、臭素などを反応させたものがあるが、安定性に乏し
くて電気抵抗が經時的に増大し、またこれに接触した装
置などが分解生成物により腐食するなどの欠点があっ
た。
On the other hand, pitch-based graphite fibers and PAN-based graphite fibers do not develop much crystal structure, and have not been able to obtain a compound with excellent conductivity as an interlayer compound and achieve uniform dispersion as a composite material. It is difficult. Further, on the other hand, a graphite fiber obtained by graphitizing a vapor-grown carbon fiber whose crystal structure is more complete is used, and for example, nitric acid, metal chloride, bromine, etc. are reacted with this. However, there is a drawback that the electrical resistance increases over time due to poor properties, and that the devices and the like in contact therewith are corroded by decomposition products.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

そこで本発明は、大気中での安定性や熱安定性が著し
く優れていて導電性もよく、しかも熱可塑性樹脂などと
配合し易く導電性複合材料などに利用するに適した黒鉛
層化合物繊維を提供することを目的とした。
Accordingly, the present invention provides a graphite layer compound fiber which is extremely excellent in stability and thermal stability in the atmosphere, has good conductivity, and is easily blended with a thermoplastic resin or the like and is suitable for use in a conductive composite material. The purpose was to provide.

〔課題を解決するための手段〕[Means for solving the problem]

上記のような本発明の目的は、炭素六角網面が繊維軸
に対して実質的に平行でかつ年輪状に配向した三次元結
晶構造を有する黒鉛繊維とフッ素との層間化合物からな
り、結晶のc軸方向の繰返し周期の長さが5〜24オング
ストロームの範囲で混在していることを特徴とするフッ
素化黒鉛繊維によって達成される。
An object of the present invention as described above is to form an intercalation compound of graphite fiber and fluorine having a three-dimensional crystal structure in which a carbon hexagonal net plane is substantially parallel to a fiber axis and oriented in a ring shape, and This is achieved by a fluorinated graphite fiber characterized in that the length of the repetition period in the c-axis direction is mixed in the range of 5 to 24 angstroms.

そしてかかる本発明のフッ素化黒鉛繊維は、基体上に
担持した触媒の存在下に非酸化性雰囲気中で炭化水素化
合物を熱分解して得た気相成長炭素繊維を黒鉛化して炭
素六角網面が繊維軸に対して実質的に平行でかつ年輪状
に配向した三次元結晶構造を有する黒鉛繊維を得、つい
で圧力が300〜1500Torrのフッ素ガスと−10〜120℃の温
度で接触させることによって製造することができる。そ
してまた、高温帯域中に浮遊した超微粒子金属触媒と炭
化水素化合物とを接触させて得た気相成長炭素繊維を黒
鉛化して炭素六角網面が繊維軸に対して実質的に平行で
かつ年輪状に配向した三次元結晶構造を有する黒鉛繊維
を得、ついで圧力が300〜1500Torrフッ素ガスと−10〜1
20℃の温度で接触させることによっても製造できる。
The fluorinated graphite fiber of the present invention is obtained by graphitizing a vapor-grown carbon fiber obtained by thermally decomposing a hydrocarbon compound in a non-oxidizing atmosphere in the presence of a catalyst supported on a substrate to form a carbon hexagonal mesh. By obtaining a graphite fiber having a three-dimensional crystal structure substantially parallel to the fiber axis and oriented in a ring shape, and then contacting with a fluorine gas having a pressure of 300 to 1500 Torr at a temperature of -10 to 120 ° C. Can be manufactured. Further, the vapor-grown carbon fiber obtained by contacting the ultrafine metal catalyst suspended in the high temperature zone with the hydrocarbon compound is graphitized so that the carbon hexagonal mesh plane is substantially parallel to the fiber axis, A graphite fiber having a three-dimensional crystal structure oriented in a ring shape is obtained, and then a pressure of 300 to 1500 Torr fluorine gas and -10 to 1
It can also be produced by contact at a temperature of 20 ° C.

本発明のフッ素化黒鉛繊維の材料となる炭素繊維は、
トルエン、ベンゼン、ナフタレン等の芳香族炭化水素や
プロパン、エタン、エチレン等の脂肪族炭化水素などの
炭化水素化合物、好ましくはベンゼンまたはナフタレン
を原料として用い、かかる原料をガス化して水素などの
キャリヤガスと共に900〜1500℃の反応帯域中で超微粒
金属からなる触媒、たとえば粒径100〜300オングストロ
ームの鉄、ニッケル、鉄−ニッケル合金などと接触さ
せ、分解することにより得られるものである。
Carbon fiber as a material of the fluorinated graphite fiber of the present invention,
Using hydrocarbon compounds such as aromatic hydrocarbons such as toluene, benzene and naphthalene, and aliphatic hydrocarbons such as propane, ethane and ethylene, preferably benzene or naphthalene as a raw material, and gasifying such raw material to produce a carrier gas such as hydrogen Together with a catalyst made of ultrafine metal, for example, iron, nickel, iron-nickel alloy having a particle size of 100 to 300 angstroms in a reaction zone at 900 to 1500 ° C. and decomposed.

こうして得た炭素繊維は、1500〜3500℃、好ましくは
2500〜3000℃の温度で、3〜120分間、好ましくは30〜6
0分間、アルゴン等の不活性ガスの雰囲気下で熱処理す
ることにより、炭素六角網面が繊維軸に対して実質的に
平行で年輪状に配向した三次元結晶構造を有する黒鉛繊
維となる。この場合、熱処理温度が1500℃より低いと、
炭素の結晶構造が充分に発達せず、一方3500℃を超えて
も特に効果は増進せず経済的でない。また、熱処理時間
が10分間より短いと熱処理効果が充分でなく結晶構造の
発達度合のばらつきが大きく、一方120分間を超えても
更なる改善はみられない。
The carbon fiber thus obtained is 1500 to 3500 ° C., preferably
At a temperature of 2500 to 3000 ° C., for 3 to 120 minutes, preferably 30 to 6
By heat-treating for 0 minutes in an atmosphere of an inert gas such as argon, a graphite fiber having a three-dimensional crystal structure in which carbon hexagonal planes are substantially parallel to the fiber axis and oriented in a ring shape is obtained. In this case, if the heat treatment temperature is lower than 1500 ° C,
The crystal structure of carbon is not sufficiently developed, and even if it exceeds 3500 ° C., the effect is not particularly enhanced and it is not economical. If the heat treatment time is shorter than 10 minutes, the effect of the heat treatment is not sufficient, and the degree of development of the crystal structure varies greatly. On the other hand, if the heat treatment time exceeds 120 minutes, no further improvement is observed.

なお、こうして得た炭素繊維は黒鉛化のための熱処理
の前あるいは後に、必要に応じて精製処理を行なっても
よく、またボールミル、ロータースピードミル、カッテ
ィングミルその他の適宜の粉砕機を用いて粉砕してもよ
い。かかる粉砕は必須ではないが、層間化合物の形成し
易さや他の材料との複合化の際の分散性が改良されるか
ら実施することが好ましい。
The carbon fiber thus obtained may be subjected to a purification treatment before or after the heat treatment for graphitization, if necessary, and may be pulverized using a ball mill, a rotor speed mill, a cutting mill, or another appropriate pulverizer. May be. Although such pulverization is not essential, it is preferable to carry out the pulverization because the ease of formation of an intercalation compound and the dispersibility at the time of compounding with another material are improved.

このようにして得た黒鉛繊維をフッ素化するに当って
は、温度200℃以下好ましくは−10〜120℃において、10
分間以上好ましくは48〜72時間、圧力100Torr以上好ま
しくは300〜1500Torrのフッ素ガスと接触させる方法が
用いられる。この際、フッ素化を促進するために例えば
フッ化銀などの触媒を用いることができる。
In fluorinating the graphite fiber thus obtained, at a temperature of 200 ° C. or less, preferably at −10 to 120 ° C.,
A method of contacting with fluorine gas at a pressure of 100 Torr or more, preferably 300 to 1500 Torr for at least 48 minutes and preferably for 48 to 72 hours is used. At this time, a catalyst such as silver fluoride can be used to promote fluorination.

上記のフッ素化を進めるにあたって、黒鉛繊維とフッ
素ガスとの接触温度が200℃を越えると共有結合型のフ
ッ化黒鉛が生成し、導電性の優れた繊維は得られない。
またフッ素ガスの圧力は少なくとも100Torrであること
が必要で、これより低いときには目的とするフッ素化層
間化合物が得られない。更に、黒鉛繊維とフッ素との接
触時間は10分間以上が必要であり、反応温度や圧力にも
よるが、例えば常温常圧で40時間あるいはそれ以上が適
当である。しかし、反応時間が長くなると結晶構造が目
的の範囲から外れるようになり、結果として導電性の低
下を招くから望ましくない。
In promoting the above fluorination, if the contact temperature between the graphite fiber and the fluorine gas exceeds 200 ° C., covalent bond type fluorinated graphite is generated, and a fiber having excellent conductivity cannot be obtained.
Further, the pressure of the fluorine gas needs to be at least 100 Torr, and if it is lower than this, the desired fluorinated intercalation compound cannot be obtained. Further, the contact time between the graphite fiber and fluorine needs to be 10 minutes or more, and depending on the reaction temperature and pressure, for example, 40 hours or more at room temperature and normal pressure is appropriate. However, if the reaction time becomes longer, the crystal structure becomes out of the intended range, and as a result, the conductivity is lowered, which is not desirable.

以上のような製造条件を適用することによって得られ
るフッ素化黒鉛繊維は、C5FないしC30Fの組成を有して
おり、その結晶のc軸方向の繰返し周期の長さIcは、5
〜24オングストロームである。
The fluorinated graphite fiber obtained by applying the production conditions as described above has a composition of C 5 F to C 30 F, and the length of the repetition period I c of the crystal in the c-axis direction is 5
~ 24 angstroms.

〔実施例1〕 アルコール中に粒径300オングストローム以下の金属
鉄触媒粒子を分散させた液をムライト質セラミックス板
上に塗布して得た触媒が分散付着している基板を横型管
状電気炉中に置き、温度を1000〜1100℃に調節してベン
ゼンと水素との混合ガスを導入して接触分解させ、長さ
2〜30mm、径5〜50μmの炭素繊維を得た。
[Example 1] A liquid obtained by dispersing metal iron catalyst particles having a particle size of 300 Å or less in alcohol was coated on a mullite ceramic plate, and a substrate on which a catalyst was dispersed and adhered was placed in a horizontal tubular electric furnace. Then, the temperature was adjusted to 1000 to 1100 ° C., and a mixed gas of benzene and hydrogen was introduced to perform catalytic decomposition to obtain carbon fibers having a length of 2 to 30 mm and a diameter of 5 to 50 μm.

次に、この炭素繊維を電気炉に入れ、アルゴン雰囲気
下で2950〜3000℃に30分間保持して黒鉛化した。得られ
た黒鉛繊維Xは、X線回折装置および電子顕微鏡によっ
て、炭素六角網面が繊維軸に平行で年輪状に配向した三
次元結晶構造を有しており、格子定数d002が3.36オング
ストローム、結晶サイズc軸方向Lc(002)が1000オン
グストローム以上であることが確かめられた。
Next, the carbon fiber was placed in an electric furnace, and kept at 2950 to 3000 ° C. for 30 minutes in an argon atmosphere to be graphitized. The obtained graphite fiber X has a three-dimensional crystal structure in which a carbon hexagonal mesh plane is parallel to the fiber axis and is oriented in an annual ring shape by an X-ray diffractometer and an electron microscope, and the lattice constant d 002 is 3.36 Å, It was confirmed that the crystal size L c (002) in the c-axis direction was 1000 Å or more.

このようにして得た黒鉛繊維X1gと粉末状のフッ化銀
約1mgとを軽く混ぜニッケル反応管内のニッケルボート
に入れ、充分に真空に引いたのち室温下で高純度フッ素
ガスを導入し、圧力を760Torrに保って72時間反応させ
た。その後反応管内にアルゴンを導入して内部のガスを
置換しながらフッ素をアルミナ充填吸着塔に導いて吸着
し、フッ素化黒鉛繊維Aを回収した。
Lightly mix the graphite fiber X1g thus obtained and powdered silver fluoride (about 1mg) into a nickel boat in a nickel reaction tube, sufficiently evacuate the mixture, and introduce high-purity fluorine gas at room temperature. At 760 Torr for 72 hours. Thereafter, while introducing argon into the reaction tube to replace the internal gas, fluorine was guided to the alumina-filled adsorption tower to be adsorbed, and the fluorinated graphite fiber A was recovered.

得られたフッ素化黒鉛繊維Aを元素分析したところ、
C8.3Fの組成を有していることが判った。またX線回折
法により結晶のc軸方向の繰返し周期の長さIcを測定し
たところ、9.42オングストロームと12.6オングストロー
ムの値が得られ、層間化合物のステージ数が2と3との
混合であることが判った。
Upon elemental analysis of the obtained fluorinated graphite fiber A,
It was found to have a composition of C 8.3 F. Also, when the length I c of the repetition period in the c-axis direction of the crystal was measured by the X-ray diffraction method, values of 9.42 angstroms and 12.6 angstroms were obtained, and the number of stages of the intercalation compound was a mixture of two and three. I understood.

次に、このフッ素化黒鉛繊維Aの電気抵抗を直流4端
子法で測定し、更に大気中に3か月放置したのちに再度
電気抵抗を測定することにより安定性を調べた。また25
0℃に保持して30分後および3時間後の電気抵抗を測定
することにより高温安定性を調べた。
Next, the electric resistance of the fluorinated graphite fiber A was measured by a direct current four-terminal method, and after standing in the air for three months, the electric resistance was measured again to examine the stability. Also 25
The high temperature stability was determined by measuring the electrical resistance 30 minutes and 3 hours after holding at 0 ° C.

これらの測定結果を未処理の黒鉛繊維Xについての測
定結果と対比して、第1表に示した。
These measurement results are shown in Table 1 in comparison with the measurement results for the untreated graphite fiber X.

〔実施例2〕 1000〜1100℃に温度調節した縦型管状電気炉中に、下
方から水素を流しながら粒径約300オングストロームの
金属鉄触媒粒子を浮遊させておき、これにベンゼンと水
素の混合ガスを下方から導入して接触分解させ、長さ0.
01〜1mm、径0.1〜0.5μmの炭素繊維を得た。次に、こ
の炭素繊維を遊星型ボールミル(フリッチュ・ジャパン
株式会社、P−5型)を用いて回転数500rpmで20分間粉
砕した。
Example 2 Metallic iron catalyst particles having a particle size of about 300 angstroms were suspended in a vertical tubular electric furnace controlled at a temperature of 1000 to 1100 ° C. while flowing hydrogen from below, and mixed with benzene and hydrogen. Gas is introduced from below and catalytically decomposed to a length of 0.
Carbon fibers having a diameter of from 0.1 to 1 mm and a diameter of from 0.1 to 0.5 μm were obtained. Next, this carbon fiber was ground using a planetary ball mill (Fritsch Japan KK, P-5 type) at a rotation speed of 500 rpm for 20 minutes.

この粉砕炭素繊維を電気炉に入れ、アルゴン雰囲気下
で2960〜3000℃に30分間保持して黒鉛化した。得られた
繊維は、X線回折装置および電子顕微鏡によって、炭素
六角網面が繊維軸に平行で年輪状に配向した三次元結晶
構造を有しており、格子定数d002が3.37〜3.40オングス
トローム、結晶サイズc軸方向Lc(002)が310オングス
トロームである配向性に優れた黒鉛繊維であることが確
かめられた。
This ground carbon fiber was placed in an electric furnace, and kept at 2960 to 3000 ° C. for 30 minutes in an argon atmosphere to be graphitized. The obtained fiber has a three-dimensional crystal structure in which a carbon hexagonal net plane is parallel to the fiber axis and oriented in a ring shape by an X-ray diffractometer and an electron microscope, and has a lattice constant d 002 of 3.37 to 3.40 angstroms, It was confirmed that the graphite fiber was excellent in orientation and had a crystal size c-axis direction L c (002) of 310 Å.

このようにして得た黒鉛繊維Yを実施例1と同様の手
順によりフッ素化し、フッ素化黒鉛繊維Bを回収した。
The graphite fiber Y thus obtained was fluorinated in the same procedure as in Example 1, and the fluorinated graphite fiber B was recovered.

得られたフッ素化黒鉛繊維Bを元素分析したところ、
C8.3Fの組成を有していることが判った。またX線回折
法により結晶のc軸方向の繰返し周期の長さIcを測定し
たところ、9.42オングストロームと12.6オングストロー
ムの値が得られ、層間化合物のステージ数が2と3との
混合であることが判った。
Upon elemental analysis of the obtained fluorinated graphite fiber B,
It was found to have a composition of C 8.3 F. Also, when the length I c of the repetition period in the c-axis direction of the crystal was measured by the X-ray diffraction method, values of 9.42 angstroms and 12.6 angstroms were obtained, and the number of stages of the intercalation compound was a mixture of two and three. I understood.

このようなフッ素化黒鉛繊維Bの粉末1gを直径1cmの
絶縁材料製の円筒中に入れ、上下から黄銅製の電極で挟
み、1t/cm2までの圧力で圧縮しながら上下電極間の電気
抵抗を測定し、充填密度が1.6g/cm3のときの体積抵抗率
を求めた。更に大気中に3か月放置したのちに再度電気
抵抗を測定して安定性を調べた。また250℃で30分後お
よび3時間後の電気抵抗を測定して高温安定性を調べ
た。
1 g of such a powder of the fluorinated graphite fiber B is placed in a cylinder made of an insulating material having a diameter of 1 cm, sandwiched between brass electrodes from above and below, and compressed under a pressure of 1 t / cm 2 to obtain an electric resistance between the upper and lower electrodes. Was measured, and the volume resistivity when the packing density was 1.6 g / cm 3 was determined. Furthermore, after being left in the air for three months, the electric resistance was measured again to examine the stability. The electrical resistance was measured after 30 minutes and 3 hours at 250 ° C., and the high-temperature stability was examined.

これらの測定結果を未処理の黒鉛繊維Yについての測
定結果と対比して、第2表に示した。
These measurement results are shown in Table 2 in comparison with the measurement results for the untreated graphite fiber Y.

〔実施例3〕 1000〜1100℃に温度調節した縦型管状電気炉中に粒径
約100オングストロームの金属鉄触媒粒子を浮遊させて
おき、これにベンゼン、水素、一酸化炭素および二酸化
炭素の混合ガスを下方から導入して接触分解させ、長さ
0.01〜3mm、径1〜5μmの炭素繊維を得た。次に、こ
の炭素繊維を実施例2と同様の方法で粉砕し、黒鉛化し
て黒鉛繊維Zを得、更にフッ素化して、フッ素化黒鉛繊
維Cの粉末を得た。
Example 3 Metallic iron catalyst particles having a particle size of about 100 angstroms were suspended in a vertical tubular electric furnace controlled at a temperature of 1000 to 1100 ° C., and benzene, hydrogen, carbon monoxide and carbon dioxide were mixed therein. Gas is introduced from below and catalytically decomposed to a length
Carbon fibers having a diameter of 0.01 to 3 mm and a diameter of 1 to 5 μm were obtained. Next, the carbon fiber was pulverized and graphitized in the same manner as in Example 2 to obtain a graphite fiber Z, and further fluorinated to obtain a powder of a fluorinated graphite fiber C.

このフッ素化黒鉛繊維Cの粉末の組成及び結晶構造
は、実施例2で得たフッ素化黒鉛繊維Bと全く同様であ
った。
The composition and crystal structure of the powder of the fluorinated graphite fiber C were exactly the same as those of the fluorinated graphite fiber B obtained in Example 2.

更に、このフッ素化黒鉛繊維Cの粉末について実施例
2と同様にして体積抵抗率を測定し、また大気中安定性
および高温安定性を調べた。
Further, the volume resistivity of the powder of the fluorinated graphite fiber C was measured in the same manner as in Example 2, and the stability in air and the stability at high temperature were examined.

これらの測定結果を未処理の黒鉛繊維Zについての測
定結果と対比して、第2表を示した。
Table 2 shows a comparison of these measurement results with the measurement result of the untreated graphite fiber Z.

〔実施例4〕 実施例1と同様の手順によって得た黒鉛繊維Xを用
い、フッ素の圧力を700Torrに保って48時間反応させた
他は実施例1と同様の方法によってフッ素化をおこなっ
て、フッ素化黒鉛繊維Dを得た。
[Example 4] Using the graphite fiber X obtained by the same procedure as in Example 1, fluorination was performed in the same manner as in Example 1, except that the reaction was performed for 48 hours while maintaining the pressure of fluorine at 700 Torr. A fluorinated graphite fiber D was obtained.

得られたフッ素化黒鉛繊維Dを元素分析したところ、
C20.2Fの組成を有していることが判った。またX線回折
法により結晶c軸方向の繰返し周期の長さIcを測定した
ところ、16.42オングストロームと19.80オングストロー
ムの値が得られ、層間化合物のステージ数が4と5との
混合であることが判った。
Upon elemental analysis of the obtained fluorinated graphite fiber D,
It was found to have a composition of C 20.2 F. The Measurement of the length I c of the repetition period of the crystal c-axis direction by X-ray diffraction method, obtained a value of 16.42 Å and 19.80 Å, that the number of stages of the intercalation compound is a mixture of 4 and 5 understood.

次に、このフッ素化黒鉛繊維Dの電気抵抗を、実施例
1と同様の直流4端子法で測定した。
Next, the electrical resistance of the fluorinated graphite fiber D was measured by the same DC four-terminal method as in Example 1.

この測定結果をフッ素化黒鉛繊維Aおよび未処理の黒
鉛繊維Xについての測定結果と対比して、第3表に示し
た。
The measurement results are shown in Table 3 in comparison with the measurement results for the fluorinated graphite fiber A and the untreated graphite fiber X.

〔比較例1〕 実施例1と同様の手順によって得た黒鉛繊維Xを用
い、フッ素の圧力を760Torrに保って24時間反応させた
他は実施例1と同様の方法によってフッ素化をおこなっ
て、フッ素化黒鉛繊維Eを得た。
[Comparative Example 1] Using the graphite fiber X obtained by the same procedure as in Example 1, fluorinated by the same method as in Example 1 except that the reaction was carried out for 24 hours while maintaining the pressure of fluorine at 760 Torr, A fluorinated graphite fiber E was obtained.

得られたフッ素化黒鉛繊維Eを元素分析したところ、
C40.3Fの組成を有していることが判った。またX線回折
法により結晶のc軸方向の繰返し周期の長さIcを測定し
たところ、黒鉛繊維Xの構造が強く残っており、周期性
構造を持つ層間化合物の生成は確認できなかった。
Upon elemental analysis of the obtained fluorinated graphite fiber E,
It was found to have a composition of C 40.3 F. Further, when the length I c of the repetition period in the c-axis direction of the crystal was measured by the X-ray diffraction method, the structure of the graphite fiber X remained strong, and formation of an intercalation compound having a periodic structure could not be confirmed.

また、このフッ素化黒鉛繊維Eの電気抵抗を実施例1
と同様の直流4端子法で測定した結果を、第3表に合わ
せて示した。
Further, the electric resistance of the fluorinated graphite fiber E was measured in Example 1.
Table 3 also shows the results of the measurement by the DC four-terminal method similar to the above.

〔実施例5〕 実施例1と同様の手順によって得た黒鉛繊維Xを用
い、フッ素の圧力を760Torrに保って室温で144時間反応
させた他は実施例1と同様の方法によってフッ素化をお
こなって、フッ素化黒鉛繊維Fを得た。
[Example 5] Using the graphite fiber X obtained by the same procedure as in Example 1, fluorination was carried out in the same manner as in Example 1, except that the reaction was carried out at room temperature for 144 hours while maintaining the pressure of fluorine at 760 Torr. Thus, a fluorinated graphite fiber F was obtained.

得られたフッ素化黒鉛繊維Fを元素分析したところ、C
5.7Fの組成を有していることが判った。またX線回折法
により結晶のc軸方向の繰返し周期の長さIcを測定した
ところ、非常に強い5.14オングストロームと弱い9.38オ
ングストロームの値が得られ、層間化合物はステージ数
1が大部分であり、少量のステージ数2が混在している
ものであることが判った。
Elemental analysis of the obtained fluorinated graphite fiber F showed that C
It was found to have a composition of 5.7 F. When the repetition period I c of the crystal in the c-axis direction was measured by X-ray diffraction, very strong values of 5.14 angstroms and weak 9.38 angstroms were obtained. It was found that a small number of stages 2 were mixed.

このフッ素化黒鉛繊維Fの電気抵抗を実施例1と同様
の直流4端子法で測定した結果を、第3表に合わせて示
した。
The results of measuring the electrical resistance of this fluorinated graphite fiber F by the same direct current four-terminal method as in Example 1 are shown in Table 3.

〔実施例6〕 実施例2と同様の手順によって得た黒鉛繊維Yを用
い、実施例4と同様の方法によってフッ素化をおこなっ
て、フッ素化黒鉛繊維Gを得た。
Example 6 A fluorinated graphite fiber G was obtained by using the graphite fiber Y obtained by the same procedure as in Example 2 and fluorinating it by the same method as in Example 4.

得られたフッ素化黒鉛繊維Gを元素分析したところ、
C22.5Fの組成を有していることが判った。またX線回折
法により結晶のc軸方向の繰返し周期の長さIcを測定し
たところ、13.6、17.1および20.8オングストロームの値
が得られ、層間化合物のステージ数が3、4および5の
混合であることが判った。
When the obtained fluorinated graphite fiber G was subjected to elemental analysis,
It was found to have a composition of C 22.5 F. When the repetition period length I c of the crystal in the c-axis direction was measured by X-ray diffraction, values of 13.6, 17.1 and 20.8 angstroms were obtained. I found it to be.

このフッ素化黒鉛繊維Gの電気抵抗を実施例2と同様
の粉体法によって測定し、充填密度が1.6g/cm3のときの
体積抵抗率をフッ素化黒鉛繊維Bおよび未処理の黒鉛繊
維Yについての測定結果と対比して、第4表に示した。
The electrical resistance of the fluorinated graphite fiber G was measured by the same powder method as in Example 2, and the volume resistivity when the packing density was 1.6 g / cm 3 was determined by the fluorinated graphite fiber B and the untreated graphite fiber Y. The results are shown in Table 4 in comparison with the measurement results.

〔実施例7〕 実施例2と同様の手順によって得た黒鉛繊維Yを用
い、実施例5と同様の方法によってフッ素化をおこなっ
て、フッ素化黒鉛繊維Hを得た。
Example 7 A fluorinated graphite fiber H was obtained by using the graphite fiber Y obtained by the same procedure as in Example 2 and fluorinating it by the same method as in Example 5.

得られたフッ素化黒鉛繊維Hを元素分析したところ、
C6.3Fの組成を有していることが判った。またX線回折
法により結晶のc軸方向の繰返し周期の長さIcを測定し
たところ、弱い5.17オングストロームのピークと9.41お
よび12.78オングストロームの強いピークとが得られ、
層間化合物は大部分がステージ数2および3で、少量の
ステージ数1が混合しているものであることが判った。
Upon elemental analysis of the obtained fluorinated graphite fiber H,
It was found to have a composition of C 6.3 F. The Measurement of the length I c of the repetition period of the c-axis direction of the crystal by X-ray diffraction method, obtained a peak strong peaks and 9.41 and 12.78 Å weak 5.17 angstroms,
It was found that most of the intercalation compounds had two or three stages, and a small number of stages were mixed.

このフッ素化黒鉛繊維Hの電気抵抗を実施例2と同様
の粉体法によって測定し、その結果を第4表に合わせて
示した。
The electrical resistance of the fluorinated graphite fiber H was measured by the same powder method as in Example 2, and the results are shown in Table 4.

〔実施例8〕 実施例3と同様の手順によって得た黒鉛繊維Zを用
い、実施例4と同様の方法によってフッ素化をおこなっ
てフッ素化黒鉛繊維Iを得た。
Example 8 A fluorinated graphite fiber I was obtained by using the graphite fiber Z obtained by the same procedure as in Example 3 and performing fluorination in the same manner as in Example 4.

得られたフッ素化黒鉛繊維Iを元素分析したところ、
C19.8Fの組成を有していることが判った。またX線回折
法により結晶のc軸方向の繰返し周期の長さIcを測定し
たところ、16.4オングストロームと19.8オングストロー
ムの値が得られ、層間化合物のステージ数が4と5の混
合であることが判った。
Upon elemental analysis of the obtained fluorinated graphite fiber I,
It was found to have a composition of C 19.8 F. When the repetition period length I c of the crystal in the c-axis direction was measured by X-ray diffraction, values of 16.4 Å and 19.8 Å were obtained, and the number of stages of the intercalation compound was a mixture of 4 and 5. understood.

このフッ素化黒鉛繊維Iの電気抵抗を実施例2と同様
の粉体法によって測定し、その結果をフッ素化黒鉛繊維
Cおよび未処理の黒鉛繊維Zについての測定結果と対比
して、第4表に合わせて示した。
The electrical resistance of the fluorinated graphite fiber I was measured by the same powder method as in Example 2, and the results were compared with the measurement results for the fluorinated graphite fiber C and the untreated graphite fiber Z. Indicated according to

〔発明の効果〕 本発明のフッ素化黒鉛繊維は、金属より軽くかつ従来
の炭素材料より高い導電性を有しており、従来の黒鉛層
間化合物に較べて高い安定性を保持している。しかも合
成樹脂等への分散性がよく、少量でも効果的に導電性を
付与でき、複合材料などに利用するに好適なものであ
る。
[Effect of the Invention] The fluorinated graphite fiber of the present invention is lighter than metal and has higher conductivity than conventional carbon materials, and maintains higher stability than conventional graphite intercalation compounds. Moreover, it has good dispersibility in synthetic resins and the like, and can effectively impart conductivity even in a small amount, and is suitable for use in composite materials and the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山梨 秀則 静岡県御殿場市川島田252 矢崎部品株 式会社内 (56)参考文献 特開 昭58−191221(JP,A) 特開 昭62−235204(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hidenori Yamanashi 252 Kawashimada, Gotemba-shi, Shizuoka Prefecture Inside Yazaki Parts Co., Ltd. (56) References JP-A-58-191221 (JP, A) JP-A-62-235204 (JP) , A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素六角網面が繊維軸に対して実質的に平
行でかつ年輪状に配向した三次元結晶構造を有する黒鉛
繊維とフッ素との層間化合物からなり、結晶のc軸方向
の繰返し周期の長さが5〜24オングストロームの範囲で
混在していることを特徴とするフッ素化黒鉛繊維。
1. An intercalation compound of fluorine and graphite fiber having a three-dimensional crystal structure in which a hexagonal carbon plane of a carbon is substantially parallel to a fiber axis and oriented in an annual ring shape, wherein the crystal is repeated in the c-axis direction. A fluorinated graphite fiber characterized in that the cycle length is mixed in the range of 5 to 24 angstroms.
【請求項2】基体上に担持した触媒の存在下に非酸化性
雰囲気中で炭化水素化合物を熱分解して得た気相成長炭
素繊維を黒鉛化して炭素六角網面が繊維軸に対して実質
的に平行でかつ年輪状に配向した三次元結晶構造を有す
る黒鉛繊維を得、ついで圧力が300〜1500Torrのフッ素
ガスと−10〜120℃の温度で接触させることを特徴とす
る、特許請求の範囲第(1)項に記載された性状を有す
るフッ素化黒鉛繊維の製造法。
2. A vapor-grown carbon fiber obtained by thermally decomposing a hydrocarbon compound in a non-oxidizing atmosphere in the presence of a catalyst supported on a substrate is graphitized so that the carbon hexagonal mesh plane is oriented with respect to the fiber axis. A graphite fiber having a three-dimensional crystal structure which is substantially parallel and oriented in a ring shape is obtained, and is then brought into contact with fluorine gas having a pressure of 300 to 1500 Torr at a temperature of -10 to 120 ° C. A process for producing a fluorinated graphite fiber having the properties described in item (1).
【請求項3】高温帯域中に浮遊した超微粒子金属触媒と
炭化水素化合物とを接触させて得た気相成長炭素繊維を
黒鉛化して炭素六角網面が繊維軸に対して実質的に平行
でかつ年輪状に配向した三次元結晶構造を有する黒鉛繊
維を得、ついで圧力が300〜1500Torrのフッ素ガスと−1
0〜120℃の温度で接触させることを特徴とする、特許請
求の範囲第(1)項に記載された性状を有するフッ素化
黒鉛繊維の製造法。
3. A vapor-grown carbon fiber obtained by contacting an ultrafine metal catalyst suspended in a high-temperature zone with a hydrocarbon compound is graphitized so that the carbon hexagonal mesh is substantially parallel to the fiber axis. A graphite fiber having a three-dimensional crystal structure oriented in an annual ring shape is obtained, and then fluorine gas at a pressure of 300 to 1500 Torr and −1
The method for producing a fluorinated graphite fiber having the properties described in claim (1), wherein the fiber is contacted at a temperature of 0 to 120 ° C.
JP2239971A 1989-10-02 1990-09-12 Fluorinated graphite fiber and its manufacturing method Expired - Fee Related JP2733568B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/587,936 US5106606A (en) 1989-10-02 1990-09-25 Fluorinated graphite fibers and method of manufacturing them
EP19900118749 EP0421306A3 (en) 1989-10-02 1990-09-28 Fluorinated graphite fibers and method of manufacturing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25532889 1989-10-02
JP1-255328 1989-10-02

Publications (2)

Publication Number Publication Date
JPH03220322A JPH03220322A (en) 1991-09-27
JP2733568B2 true JP2733568B2 (en) 1998-03-30

Family

ID=17277261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239971A Expired - Fee Related JP2733568B2 (en) 1989-10-02 1990-09-12 Fluorinated graphite fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2733568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566959B1 (en) 2014-08-13 2015-11-16 충남대학교산학협력단 Method for manufacturing flame-proof cellulose-based carbone fibers and cellulose-based carbone fibers manufactured by the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191221A (en) * 1982-05-01 1983-11-08 Showa Denko Kk Fluorocarbon type fiber
JPS62235204A (en) * 1986-04-04 1987-10-15 Asahi Chem Ind Co Ltd Fluorinated graphite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566959B1 (en) 2014-08-13 2015-11-16 충남대학교산학협력단 Method for manufacturing flame-proof cellulose-based carbone fibers and cellulose-based carbone fibers manufactured by the same

Also Published As

Publication number Publication date
JPH03220322A (en) 1991-09-27

Similar Documents

Publication Publication Date Title
Inagaki Carbon materials science and engineering: from fundamentals to applications
CA2561917C (en) Ultrathin carbon fibers with various structures
Kuznetsov et al. Nanodiamond graphitization and properties of onion-like carbon
Li et al. Large-scale synthesis of crystalline β-SiC nanowires
Osikoya et al. Synthesis, characterization and adsorption studies of chlorine–doped carbon nanotubes
US5106606A (en) Fluorinated graphite fibers and method of manufacturing them
Kumari et al. Improving the mechanical and thermal properties of semi-coke based carbon/copper composites reinforced using carbon nanotubes
Hu et al. Carbon nanostructures: morphologies and properties
Kudashov et al. Gas-phase synthesis of nitrogen-containing carbon nanotubes and their electronic properties
JP2733568B2 (en) Fluorinated graphite fiber and its manufacturing method
JPH0674349B2 (en) Conductive resin composition
JP3484174B2 (en) Multi-walled carbon nanotube and method for producing the same
JPS61132600A (en) Whisker-shaped carbonaceous material
Elbakoush et al. Characterization and thermal degradation study of carbonization the polyimide (PMDA/ODA)/Fe composite films
JP2505913B2 (en) Fluorinated graphite fiber and method for producing the same
Inagaki Structure and texture of carbon materials
EP0299874B1 (en) Method of producing bromine-treated graphite fibers
Petitjean et al. New data on graphite intercalation compounds containing HClO4: synthesis and exfoliation
TWI430943B (en) A method for preparing graphite nanosheets
US5151261A (en) Method of producing bromine-treated graphite fibers
JPH01104880A (en) Production of bromine treated graphite fiber
JPS61225320A (en) Metal-containing carbonaceous fiber and production thereof
Dresselhaus et al. Intercalation of graphite fibers
Hamzah et al. Preparation and Characterization of Ni/C Particles as Filler in Bipolar Plate for Proton Exchange Membrane Fuel Cells.
Zhang et al. Hollow Graphitic Carbon Nanospheres Synthesized by Rapid Pyrolytic Carbonization

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees