JPH01316449A - Coated laminate member - Google Patents

Coated laminate member

Info

Publication number
JPH01316449A
JPH01316449A JP14739088A JP14739088A JPH01316449A JP H01316449 A JPH01316449 A JP H01316449A JP 14739088 A JP14739088 A JP 14739088A JP 14739088 A JP14739088 A JP 14739088A JP H01316449 A JPH01316449 A JP H01316449A
Authority
JP
Japan
Prior art keywords
layer
sialon
base material
solid solution
type ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14739088A
Other languages
Japanese (ja)
Other versions
JPH0762232B2 (en
Inventor
Tokiaki Hayashi
林 常昭
Takayuki Shingiyouji
新行内 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP63147390A priority Critical patent/JPH0762232B2/en
Publication of JPH01316449A publication Critical patent/JPH01316449A/en
Publication of JPH0762232B2 publication Critical patent/JPH0762232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve adhesive strength between a base material and a ceramics layer by forming a sialon-type ceramics layer on a base material via an Al2O3 layer. CONSTITUTION:After the surface of a base material consisting of metal or alloy is subjected to mirror-finish polishing, a TiC layer is previously formed on the above surface and then an Al2O3 layer is formed on the above layer by an ion beam sputtering method, etc. Subsequently, a sialon-type ceramics layer is formed on the above. This sialon-type ceramics layer is formed of a single layer of one kind among a silicon oxynitride layer in which Al exists in the form of solid solution, a silicon carbonitride layer in which Al exists in the form of solid solution, and a sialon layer or an alternate multilayer consisting of two or more kinds among the above-mentioned layers. By this method, the adhesive strength between the base material and the sialon-type ceramics layer is improved and, as A result, the strength of the coated member can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被覆複合部材に関し、特に各種化学プラント、
ガスタービン部材、各種ロールなどの耐摩・耐熱・耐食
部材として有効なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coated composite member, particularly for use in various chemical plants,
It is effective as a wear-resistant, heat-resistant, and corrosion-resistant member for gas turbine members, various rolls, etc.

[従来の技術] 周知の如く、サイアロン系セラミックスは優れた耐摩耗
性、耐熱衝撃性及び高温強度を有し、その焼結部材の工
業的利用が広く図られてきている。
[Prior Art] As is well known, sialon ceramics have excellent wear resistance, thermal shock resistance, and high temperature strength, and sintered members thereof have been widely used industrially.

ところで、その焼結体部材の製造に当たっては高温(1
600〜1850℃)での処理が必要であり、必然的に
構成結晶粒子の粒成長が生じる。このため、ホットプレ
ス、他成分添加等により粒成長を抑制し、耐摩耗性、靭
性等の向上も図られているが、限度がある。
By the way, when producing the sintered body member, high temperatures (1
600 to 1850°C), which inevitably causes grain growth of the constituent crystal grains. For this reason, attempts have been made to suppress grain growth and improve wear resistance, toughness, etc. by hot pressing, addition of other ingredients, etc., but there are limits.

ところで、金属または合金からなる基体上にサイアロン
系セラミックスの薄膜コーティングを行なえば、比較的
低温で膜形成が可能で、サイアロン系セラミックスのア
モルファス層または結晶性でも粒子成長の抑えられた微
粒子で構成された成膜層を得ることができる。しかし、
サイアロン系セラミックスは熱膨張係数が一般的に金属
又は合金に比べて小さいため、サイアロン系セラミック
スをこれらの基体へ直接被覆すると、熱膨張率差による
歪みによりクラック等が発生して基体との密着性が低下
する。また、前記セラミックスを被覆した基体を高温で
使用した場合、界面に脆いシリサイドが形成され、強度
低下が起こる。
By the way, if a thin film of sialon ceramics is coated on a substrate made of metal or alloy, it is possible to form the film at a relatively low temperature. A deposited layer can be obtained. but,
Sialon-based ceramics generally have a smaller thermal expansion coefficient than metals or alloys, so if sialon-based ceramics are directly coated on these substrates, cracks will occur due to distortion due to the difference in thermal expansion coefficients, resulting in poor adhesion to the substrate. decreases. Furthermore, when the ceramic-coated substrate is used at high temperatures, brittle silicide is formed at the interface, resulting in a decrease in strength.

本発明は上記事情に鑑みてなされたもので、金属又は合
金からなる基体とサイアロン系セラミックス層間にA、
t’2o3層を介在させることにより、基体とサイアロ
ンセラミックス層との密着性を向上するとともに、強度
を向上しえる被覆複合部材を提供することを目的とする
The present invention has been made in view of the above circumstances, and includes A,
It is an object of the present invention to provide a coated composite member that can improve the adhesion between the base and the sialon ceramic layer and the strength by interposing the t'2o3 layer.

[課題を解決するための手段] 本発明者等は、サイアロン系セラミックスについて種々
研究したところ、このセラミックスのすぐれた特性を生
かすために、金属又は合金からなる基体との間に中間層
、即ちサイアロン系セラミックスとの結合力が非常に強
いA1203層を介在させることを見出した。ところで
、A、1?2 o3がすべての金属又は合金と“なじみ
”が良い訳ではないので、その構成には工夫が必要であ
る。具体的には、鉄系の金属又は合金からなる基体の場
合は、基体上に予めTI C層を形成しその上にA12
03層を形成してからサイアロン系セラミックス層を被
覆する。また、Al系の金属又は合金からなる基体の場
合は、Alを共通成分とじて含んでいるため、比較的密
着性の良いA1203層の形成が可能である。
[Means for Solving the Problems] The present inventors have conducted various studies on sialon ceramics, and found that in order to take advantage of the excellent properties of this ceramic, an intermediate layer, that is, sialon, is formed between the substrate made of metal or an alloy. It was discovered that an A1203 layer having a very strong bonding force with ceramics is interposed. By the way, since A, 1?2 o3 is not "compatible" well with all metals or alloys, it is necessary to devise a structure for it. Specifically, in the case of a substrate made of iron-based metal or alloy, a TIC layer is formed on the substrate in advance, and A12 is applied on top of the TIC layer.
After forming the 03 layer, a sialon ceramic layer is coated. Furthermore, in the case of a substrate made of an Al-based metal or alloy, since Al is included as a common component, it is possible to form an A1203 layer with relatively good adhesion.

本発明において、サイアロン系セラミックス層としては
、Al固溶の酸窒化けい素(以下、(S 1.A〕)O
Nで示す)層1.あるいはAl固溶の炭酸窒化けい素(
以下、(Sl、A〕)CONで示す)層が挙げられる。
In the present invention, the sialon ceramic layer is made of silicon oxynitride (hereinafter referred to as (S1.A)) dissolved in Al solid solution.
(denoted as N) layer 1. Or silicon carbonate nitride in solid solution with Al (
Hereinafter, a layer (denoted as (Sl, A])CON) may be mentioned.

ここで、これらの2種のけい素化合物層はサイアロン系
セラミックスとの密着性が高くかつ優れた耐摩性を有し
ている。従って、A1303層の上に(S i、A))
ON層、あるいは(S i、A)>CON層を単層でコ
ーティングした被覆体でも優れた耐摩部材が構成され、
更にサイアロン系セラミックス層をコーティングするこ
とによりサイアロン系セラミックスの特性を生かした密
着性に優れた被覆部材が得られる。
Here, these two types of silicon compound layers have high adhesion to the sialon ceramics and excellent wear resistance. Therefore, on top of the A1303 layer (S i, A))
A coating coated with a single layer of ON layer or (S i, A)>CON layer also constitutes an excellent wear-resistant member.
Furthermore, by coating with a sialon ceramic layer, a coated member with excellent adhesion that takes advantage of the characteristics of sialon ceramics can be obtained.

なお、上記サイアロン系セラミックス層は2種以上の交
互複層として用いてもよい。
Note that the above-mentioned sialon ceramic layer may be used as an alternating multilayer of two or more types.

前記(Sl、A))ON層あるいは(Sl、lt’)C
ON層は、CVD法で成膜可能であるが、上記組成のタ
ーゲットを使用したイオンビームスパッタ法でON又は
CON雰囲気又はこれらイオンを利用した照射によりよ
り微細で欠陥の少ない良好な膜形成が可能である。また
、サイアロン系セラミックス層の生成に当たっても前記
と同様な方法で同様な効果を引出すことができ、耐摩耗
性、機械的強度により優れた密着性の良い被覆形成が可
能である。
Said (Sl, A)) ON layer or (Sl, lt')C
The ON layer can be formed by the CVD method, but it is possible to form a finer film with fewer defects by ion beam sputtering using a target with the above composition in an ON or CON atmosphere or by irradiation using these ions. It is. Further, when forming a sialon ceramic layer, the same effect can be obtained by the same method as described above, and it is possible to form a coating with good adhesion and excellent wear resistance and mechanical strength.

[作用] 本発明において、A1203層を介してサイアロン系セ
ラミックス層の形成を行なえば、強固な被覆構造体が得
られるとともに、A1209層がSlの拡散を防ぐバリ
ア層となり、高温で使用した場合でも脆いシリサイド層
が形成されるのを防ぎ高温強度の低下を防ぐことができ
る。以下、本発明の実施例について説明する。
[Function] In the present invention, by forming the sialon ceramic layer through the A1203 layer, a strong coating structure can be obtained, and the A1209 layer acts as a barrier layer to prevent diffusion of Sl, even when used at high temperatures. It is possible to prevent the formation of a brittle silicide layer and prevent a decrease in high temperature strength. Examples of the present invention will be described below.

[実施例1] まず、寸法40ma+X 100avX 2+sm厚の
Al板の片面をAlコ03研磨剤を使用して、鏡面研磨
した後、アセトン中にて超音波洗浄し、乾燥した。
[Example 1] First, one side of an Al plate having dimensions of 40 ma + x 100 av x 2 + sm thick was mirror-polished using Alco 03 polishing agent, and then ultrasonically cleaned in acetone and dried.

つづいて、前記Alをイオン注入装置内に取付け、加速
電圧120KvでO+イオンを2 X 10 ”イオン
/C■2のドーズ量までイオン−注入した。次に、Al
コ03ターゲツトを用いたイオンビームスパッタ法でA
1203を蒸着し、厚さ1.5pのA1203層を蒸着
した。次いで、このAl2O3層上に、夫々ターゲット
を用いたイオンビームスパッタ法で下記組成式に示すα
−サイアロン層、β−サイアロン層及びα/β容量比3
0/70及びa、β−サイアロン層を1.5p成模し、
被覆複合部材を作製した。
Next, the Al was installed in an ion implanter, and O+ ions were implanted at an accelerating voltage of 120 Kv to a dose of 2 x 10'' ions/C2.
A by ion beam sputtering method using CO03 target
1203 was deposited, and a 1.5p thick layer of A1203 was deposited. Next, on this Al2O3 layer, α shown in the following compositional formula was applied by ion beam sputtering using targets.
-sialon layer, β-sialon layer and α/β capacity ratio 3
0/70 and a, β-sialon layer 1.5p formed,
A coated composite member was produced.

(1)、α−サイアロン層: Mx  (Si、A)) +2 (0,N) +b(但
し、0<x≦2、M : L 1.Na、c a、Mg
、Y。
(1), α-sialon layer: Mx (Si, A)) +2 (0, N) +b (however, 0<x≦2, M: L 1.Na, ca, Mg
,Y.

希土類元素のうち1種又は2種以上を示す)(2)、β
−サイアロン層: 組成式S Lb−zAl z Oz Na−z(0< 
Z≦463)実施例1に係る被覆複合部材よれば、AI
板上にA1203層を介してサイアロン層を形成した構
造となっているため、上述したいずれのサイアロン層も
クラック発生による剥離は生じなかった。
Indicates one or more rare earth elements) (2), β
- Sialon layer: Composition formula S Lb-zAl z Oz Na-z (0<
Z≦463) According to the coated composite member according to Example 1, AI
Since the structure was such that the sialon layer was formed on the plate through the A1203 layer, none of the above-mentioned sialon layers peeled off due to cracking.

なお、比較例として、前述した表面研磨処理したAl板
上に上記各種サイアロン層を同様の方法で直接蒸着させ
た成膜層はいずれもクラック発生による剥離が認められ
、密着性に明瞭な差があることが確認された。
As a comparative example, the various sialon layers described above were deposited directly on the surface-polished Al plate using the same method, and peeling due to cracking was observed, and there was a clear difference in adhesion. It was confirmed that there is.

[実施例2] まず、寸法40smX 100mmX :2+■厚のス
テンレス鋼(SUS304)板の片面をAlコ03研磨
剤を使用して、鏡面研磨した後、アセトン中にて超音波
洗浄し、乾燥した。つづいて、前記鋼板をイオン注入装
置内に取付け、加速電圧160KVでTI+イオンを2
 X 101フイオン/c12のドーズ量までイオン注
入し、ひきつづき加速電圧55KVでC+イオンをI 
X 10 ′フイオン/c112のドーズ量までイオン
注入した。次に、Al203ターゲットを用いたイオン
ビームスパッタ法でAl203を蒸着し、厚さ1.5p
のA1203層を形成した。次いで、前記 A1203層を形成した鋼板を真空中にて800℃で1
時間加熱した後、室温まで冷却した。この後、前記A、
l?203層に厚さ2.5pの(Sl。
[Example 2] First, one side of a stainless steel (SUS304) plate with dimensions of 40 sm x 100 mm x : 2 + ■ thickness was mirror-polished using Alco 03 abrasive, and then ultrasonically cleaned in acetone and dried. . Next, the steel plate was installed in an ion implanter, and 2 TI+ ions were implanted at an accelerating voltage of 160 KV.
Ion implantation was performed up to a dose of X 101 ions/c12, and C+ ions were subsequently
Ion implantation was carried out to a dose of X 10' ion/c112. Next, Al203 was deposited by ion beam sputtering using an Al203 target to a thickness of 1.5p.
An A1203 layer was formed. Next, the steel plate on which the A1203 layer was formed was heated at 800°C for 1 time in a vacuum.
After heating for an hour, it was cooled to room temperature. After this, the above A,
l? 203 layers with a thickness of 2.5p (Sl.

17’) ON層を形成し、更に厚さ2.5pの(S 
1.A))CON層、及び厚さ2.5pの(Si、A、
1?)CON層を化学蒸着法により成膜し、被覆複合部
材を作製した。
17') Form an ON layer, and further layer (S) with a thickness of 2.5p.
1. A)) CON layer and 2.5p thick (Si, A,
1? ) A CON layer was formed by chemical vapor deposition to produce a coated composite member.

実施例2に係る被覆複合部材を600℃で加熱した後室
温までの冷却サイクルを100回繰返したが、鋼板及び
被覆層間での割れや剥離は認められなかった。また、比
較例として、前述のように表面研磨処理した鋼板上に(
Sl、A、t’)ON層、(Sl、A))CON層を直
接前記と同条件で成膜したものは、成膜後の観察で成膜
層内でクラック発生による剥離が一部に見られた。
A cycle of heating the coated composite member according to Example 2 at 600° C. and then cooling it to room temperature was repeated 100 times, but no cracking or peeling was observed between the steel plate and the coating layer. In addition, as a comparative example, (
When the Sl, A, t') ON layer and (Sl, A)) CON layer were directly formed under the same conditions as above, observation after the film formation revealed that some peeling due to cracks occurred within the formed layer. It was seen.

[実施例3] まず、Fe系焼結合金(F e−2,5−lMo−13
Cr−IMb)からなる基体(140m / mΦX3
m/m)の片面をAl203研磨材を使用して研磨した
後、研磨した後アセトン中にて超音波洗浄し、乾燥した
。つづいて、前記試料をイオン注入装置内に取付け、加
速電圧160KVでTI+イオンをlXl0”イオン/
C12のドーズ量までイオン注入した。次に、前記基体
上にスパッタ法で厚さ約1.5pのTI C層を成膜し
た後、厚さ約2pのA、e203層を成膜した。次いで
、このAl203層上に、スパッタ法により厚さ1.5
pの(S 1.A))ON層とこれと同厚さのβ−サイ
アロン層とを夫々積層して成膜し、被覆複合部材を作製
した。
[Example 3] First, Fe-based sintered alloy (Fe-2,5-lMo-13
Cr-IMb) (140m/mΦX3
m/m) was polished using an Al203 abrasive, and after polishing, it was ultrasonically cleaned in acetone and dried. Next, the sample was installed in an ion implantation device, and TI+ ions were introduced into the ion implanter at an acceleration voltage of 160 KV.
Ions were implanted to a dose of C12. Next, a TIC layer with a thickness of about 1.5p was formed on the substrate by sputtering, and then an A, e203 layer with a thickness of about 2p was formed. Next, on this Al203 layer, a layer with a thickness of 1.5
A coated composite member was produced by laminating and forming a (S1.A)ON layer of p and a β-sialon layer of the same thickness.

実施例3に係る被覆複合部材によれば、ピオンディスク
法による摩耗テスト(摺動速度4cII/s)を行なっ
たところ、摩耗量は10. 5 X 10−8as/K
gであった。一方、比較例として、上aa F e系焼
結合金基体研磨材(比較例1)、温度1750℃。
According to the coated composite member according to Example 3, when a wear test was conducted using the pion disk method (sliding speed: 4 cII/s), the amount of wear was 10. 5 x 10-8as/K
It was g. On the other hand, as a comparative example, an aa Fe-based sintered alloy base abrasive material (comparative example 1) was used at a temperature of 1750°C.

圧力500Kg/ca+2.保持時間60分の条件でホ
ットプレス法にて作製したβ−サイアロン基体研磨材(
比較例2 ) 、S 13 N 、+基体研磨材(比較
例3)を夫々用意し、実施例3と同様な条件で摩耗テス
トを行なったところ、摩耗量は夫々40X10−8.1
2.5X10−8.15 X 10−0−8(/Kgで
あった。これらの結果より、本発明品の耐摩耗性が良好
であることが確認された。
Pressure 500Kg/ca+2. β-sialon-based abrasive material (
Comparative Example 2), S 13 N, + base abrasive material (Comparative Example 3) were prepared, and a wear test was conducted under the same conditions as in Example 3. As a result, the amount of wear was 40X10-8.1.
It was 2.5×10-8.15×10-0-8 (/Kg). These results confirmed that the abrasion resistance of the product of the present invention was good.

[発明の効果] 以上詳述した如く本発明によれば、金属又は合金からな
る基体とサイアロン系セラミックス層間にA1203層
を介在させることにより、基体とサイアロンセラミック
ス層との密着性を向上するとともに、強度を向上しえる
被覆複合部材を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, by interposing the A1203 layer between the base made of metal or alloy and the sialon ceramic layer, the adhesion between the base and the sialon ceramic layer is improved, and A coated composite member with improved strength can be provided.

出願人代理人  弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)金属又は合金からなる基体上にAl_2O_3層
を介してサイアロン系セラミックス層を形成したことを
特徴とする被覆複合部材。
(1) A coated composite member characterized in that a sialon ceramic layer is formed on a substrate made of metal or alloy through an Al_2O_3 layer.
(2)サイアロン系セラミックス層が、Al固溶の酸窒
化けい素層、Al固溶の炭酸窒化けい素層あるいはサイ
アロン層のうちの1種の単層または2種以上の交互複層
であることを特徴とする請求項1記載の被覆複合部材。
(2) The sialon ceramic layer is a single layer or an alternating multilayer of two or more of the following: a silicon oxynitride layer with solid solution of Al, a silicon carbonate nitride layer with solid solution of Al, or a sialon layer. The coated composite member according to claim 1, characterized in that:
JP63147390A 1988-06-15 1988-06-15 Coated composite member Expired - Lifetime JPH0762232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147390A JPH0762232B2 (en) 1988-06-15 1988-06-15 Coated composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147390A JPH0762232B2 (en) 1988-06-15 1988-06-15 Coated composite member

Publications (2)

Publication Number Publication Date
JPH01316449A true JPH01316449A (en) 1989-12-21
JPH0762232B2 JPH0762232B2 (en) 1995-07-05

Family

ID=15429180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147390A Expired - Lifetime JPH0762232B2 (en) 1988-06-15 1988-06-15 Coated composite member

Country Status (1)

Country Link
JP (1) JPH0762232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688889A1 (en) * 1994-06-24 1995-12-27 Institut Français du Pétrole Method for passivating nickel and iron based superalloy parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447880A (en) * 1987-08-18 1989-02-22 Nippon Steel Corp Stainless steel having ceramics layer on surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447880A (en) * 1987-08-18 1989-02-22 Nippon Steel Corp Stainless steel having ceramics layer on surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688889A1 (en) * 1994-06-24 1995-12-27 Institut Français du Pétrole Method for passivating nickel and iron based superalloy parts
FR2721622A1 (en) * 1994-06-24 1995-12-29 Inst Francais Du Petrole Passivation method for metal parts made of nickel and iron based superalloy.

Also Published As

Publication number Publication date
JPH0762232B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP4560964B2 (en) Amorphous carbon coated member
US4731303A (en) Cubic boron nitride coated material and producing method of the same
KR100669590B1 (en) Hard laminate coating, process and apparatus for producing the same
US5679448A (en) Method of coating the surface of a substrate and a coating material
JP4502475B2 (en) Hard coating, wear-resistant member and method for producing the same
JPH08119774A (en) Combined material having high hardness for tool
JP2013516331A (en) Coated cutting tool
JPH02138459A (en) Laminated hard material and production thereof
CN1859985A (en) Diamond coated article and method of its production
JP2004001215A (en) Cutter, manufacturing method and use
JP2825521B2 (en) Hard material protective layer for strongly loaded substrates and its preparation
WO1991005076A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
Bülbül et al. The effect of TiC transient layer on a DLC-based functionally gradient coating prepared by closed field unbalanced magnetron sputtering plating system
JPH01316449A (en) Coated laminate member
JP5212416B2 (en) Amorphous carbon coated member
KR20070105614A (en) Coating materials with excellent oxidation resistance for surface covering for using at high temperature
JPS61106478A (en) Diamond coated part
JP3249278B2 (en) Tool cover
CN108411265A (en) A kind of preparation method of low stress dense coating
JPH0587591B2 (en)
JPS5941466A (en) High speed cutting tool coated with hard layer
WO2023223646A1 (en) Wafer support
JPH0582473B2 (en)
JPH04168263A (en) Boron nitride coated laminated material
JPH07150337A (en) Production of nitride film