JPH01315144A - Silicon wafer of excellent gettering capacity and its manufacture - Google Patents

Silicon wafer of excellent gettering capacity and its manufacture

Info

Publication number
JPH01315144A
JPH01315144A JP7976289A JP7976289A JPH01315144A JP H01315144 A JPH01315144 A JP H01315144A JP 7976289 A JP7976289 A JP 7976289A JP 7976289 A JP7976289 A JP 7976289A JP H01315144 A JPH01315144 A JP H01315144A
Authority
JP
Japan
Prior art keywords
oxide film
silicon
substrate
polycrystalline silicon
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7976289A
Other languages
Japanese (ja)
Other versions
JPH0648686B2 (en
Inventor
Oji Tachimori
日月 應治
Kazunori Ishizaka
石坂 和紀
Hideo Araki
英夫 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Siltronic Japan Corp
Original Assignee
Nippon Steel Corp
NSC Electron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, NSC Electron Corp filed Critical Nippon Steel Corp
Priority to JP1079762A priority Critical patent/JPH0648686B2/en
Publication of JPH01315144A publication Critical patent/JPH01315144A/en
Publication of JPH0648686B2 publication Critical patent/JPH0648686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance a gettering capacity by forming a polycrystalline silicon layer on a single-crystal silicon substrate via a silicon oxide film having a specified thickness. CONSTITUTION:This silicon wafer is composed of the following: a single-crystal substrate; a silicon oxide film, with a thickness of 1 to 8Angstrom , formed on one surface of the substrate; a polycrystalline silicon layer formed on the silicon oxide film. In order to form the silicon oxide film on the surface of the singlecrystal silicon substrate, the substrate is heated in a gas containing molecular oxygen or in an atmosphere of steam. A thickness of the polycrystalline silicon layer formed on this silicon oxide film is 1000Angstrom to 5mum; its crystal particle is not amorphous and is 2mum or lower. When the single-crystal substrate is heated under a reduced pressure or under normal pressure in an atmosphere of gaseous silanes diluted by nitrogen gas or the like, the polycrystalline silicon layer of an excellent close contact force can be formed in a uniform thickness. By this setup, it is possible to obtain the silicon wafer whose gettering capacity is excellent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、集積回路等の電子デバイスに使用されるゲッ
タリング能力の優れたシリコンウェーハおよびその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon wafer with excellent gettering ability used for electronic devices such as integrated circuits, and a method for manufacturing the same.

(従来技術および発明が解決しようとする課題)シリコ
ンウエーハ−ヒの集積回路デバイスの製造時に、ウェー
ハのデバイス形成表面近辺に欠陥、汚染物または不純物
が存在するかあるいは導入されると、過度の電流漏れを
生じ、これらは得られる使用可能なデバイスの歩留りに
大きく影響する。
PRIOR ART AND PROBLEM TO BE SOLVED BY THE INVENTION During the manufacture of integrated circuit devices on silicon wafers, the presence or introduction of defects, contaminants, or impurities near the device-forming surface of the wafer can cause excessive current flow. leakage, which greatly affects the yield of usable devices obtained.

このh−害な欠陥、汚染物および不純物は、ある程度ま
ではデバイス形成領域から基質材料中の無害な領域に再
配置できることが技術上認識されている。デバイスの形
成前および形成中の両方で、活性デバイス領域からこの
欠陥、汚染物および不純物を拡散しかつトラップする方
法および工程を、エレクトロニクス工業技術の分野にお
いてゲッタリングと称する。
It is recognized in the art that these harmful defects, contaminants, and impurities can, to some extent, relocate from the device forming region to benign regions in the substrate material. The methods and processes for diffusing and trapping defects, contaminants, and impurities from active device regions both before and during device formation are referred to in the electronics industry as gettering.

このようなゲッタリング能力を付与るために、例えばシ
ランガスの熱分解によりシリコンウェーハの裏面に多結
晶のシリコン層を気相成長させる方法は、公知である(
特開昭58−138.035号、同昭59−186,3
31号および同昭52−120.777号)。
In order to provide such gettering ability, a method is known in which a polycrystalline silicon layer is grown in a vapor phase on the back surface of a silicon wafer by, for example, thermal decomposition of silane gas (
JP-A-58-138.035, JP-A No. 59-186, 3
No. 31 and No. 1977-120.777).

ところで、多結晶シリコン層によるゲッタリングは、単
結晶シリコン中の不純物が多結晶シリコンの結晶粒界に
トラップされることにより行なわれる。そこで、ゲッタ
リング能力を高めるためには、単結晶シリコン基体に多
結晶シリコン層が密着して形成され、しかも結晶粒界の
面積が大きな多結晶シリコン層であることが要求される
。この結晶粒界の面積を大きくするためには、個々の結
晶粒を小さ(し、しかも粒子の大きさを均一化すること
が望まれる。
By the way, gettering by the polycrystalline silicon layer is performed by trapping impurities in the single crystal silicon at the crystal grain boundaries of the polycrystalline silicon. Therefore, in order to improve the gettering ability, it is required that the polycrystalline silicon layer be formed in close contact with the single crystal silicon substrate and that the polycrystalline silicon layer has a large area of crystal grain boundaries. In order to increase the area of this crystal grain boundary, it is desirable to make each crystal grain small (and to make the grain size uniform).

しかるに、特開昭52−120,777号に開示れてい
るシリコンウェーハでは、その実施例1において、シリ
コンウェーハの裏面の厚さ2,700への酸化膜の片側
半分をエッチオフして、該シリコンウェーハの裏面12
1.6ミクロンの多結晶シリコン膜を堆積させ、MOS
キャパシターのリーク電流の減少によってゲッタリング
の効果を評価した結果、酸化膜をエッチオフした側でリ
一り電流が約2桁減少したことが示されている。
However, in the silicon wafer disclosed in JP-A-52-120,777, in Example 1, one half of the oxide film on the back side of the silicon wafer is etched off to a thickness of 2,700 mm. Back side 12 of silicon wafer
A 1.6 micron polycrystalline silicon film is deposited and the MOS
The results of evaluating the gettering effect by reducing the leakage current of the capacitor showed that the leakage current was reduced by about two orders of magnitude on the side where the oxide film was etched off.

この実施例1では、明らかにシリコン基体と多結晶シリ
コン膜との間に酸化膜が存在しないことがゲッタリング
効果を付与させるために必要な条件であることが述べら
れている。
This Example 1 clearly states that the absence of an oxide film between the silicon substrate and the polycrystalline silicon film is a necessary condition for imparting the gettering effect.

本発明者らは、前記実施例を、つぎの実験により追試し
た。すなわち、シリコンウェーハを1%弗酸に浸漬して
シリコンウェーハ表面上の酸化膜をエッチオフし、シリ
コンの単結晶の表面を露出させた。このウェーハを、表
面に酸化膜が成長しないように、常温で窒素ガスを20
ρ/分流通させた減圧 Chemical vapor
 deposition (CVD)炉に入れ、その後
、窒素ガスをQ、5Ω/分流通させながら40Paに減
圧して温度を常温から650°Cまで昇温させた。温度
が650℃に達した時点で、シランガス0.35ρ/分
をキャリヤーガスである窒素ガス0.5fJ/分の流れ
とともに流通させてシリコンウェーハの表面上に多結晶
シリコン膜を120分間にわたって堆積させた。堆積処
理の終ったシリコンウェーハの表面を金属顕微鏡および
走査電子顕微鏡で調べたところ、シリコンウェーハ表面
上に多結晶シリコン膜が成長しておらず、あるいは成長
しても部分的であった。また、部分的に成長したところ
をよく調べてみると、減圧CVD炉中で発生したパーテ
ィクルが付着した部分あるいは弗酸で酸化膜をエラオフ
した時に、液中のパーティクルが付着した部分に多結晶
シリコン膜が成長していることがわかった。この事実は
、つぎのように理解できる。すなわち、表面の酸化膜を
エッチオフし、シリコン単結晶の表面を露出したシリコ
ンウェーハの表面では、CVD反応がエピタキシー反応
になるため、多結晶シリコン膜は成長せず、パーティク
ル等のあるところでのみそれが成長核となるので、その
回りの多結晶シリコン膜が島状に成長するのである。
The present inventors re-tried the above-mentioned example through the following experiment. That is, the silicon wafer was immersed in 1% hydrofluoric acid to etch off the oxide film on the surface of the silicon wafer, exposing the surface of the silicon single crystal. This wafer was heated with nitrogen gas for 20 minutes at room temperature to prevent an oxide film from growing on the surface.
Reduced pressure chemical vapor flowing at ρ/min
After that, the pressure was reduced to 40 Pa and the temperature was raised from room temperature to 650° C. while flowing nitrogen gas at Q and 5 Ω/min. When the temperature reached 650° C., a polycrystalline silicon film was deposited on the surface of the silicon wafer for 120 minutes by flowing silane gas at 0.35 ρ/min together with a flow of nitrogen gas as a carrier gas at 0.5 fJ/min. Ta. When the surface of the silicon wafer after the deposition process was examined using a metallurgical microscope and a scanning electron microscope, it was found that no polycrystalline silicon film had grown on the surface of the silicon wafer, or even if it had grown, it was only partial. In addition, when we carefully examine the parts where it has grown, we find that polycrystalline silicon is found in areas where particles generated in the low-pressure CVD furnace have adhered, or where particles in the solution have adhered when the oxide film is etched off with hydrofluoric acid. It was found that a film was growing. This fact can be understood as follows. In other words, on the surface of a silicon wafer where the oxide film on the surface has been etched off and the surface of the silicon single crystal is exposed, the CVD reaction becomes an epitaxial reaction, so a polycrystalline silicon film does not grow, but only where there are particles, etc. serves as a growth nucleus, and the polycrystalline silicon film around it grows in an island shape.

また、特開昭58−138,035号に記載の方法では
、多結晶シリコン層は、単結晶シリコン基体の裏面に直
接形成されるので、前記のごときゲッタリング能力は未
だ充分ではない。
Furthermore, in the method described in JP-A-58-138,035, the polycrystalline silicon layer is formed directly on the back surface of the single-crystal silicon substrate, so the gettering ability as described above is not yet sufficient.

さらに、特開昭59−186,331号の方法では、単
結晶シリコン基の裏面に形成されている多結晶シリコン
層が酸素でドープされているが、この酸素ドー°プは、
多結晶シリコン層によるゲッタリング効果をむしろ損っ
ているのである。
Furthermore, in the method of JP-A-59-186,331, the polycrystalline silicon layer formed on the back surface of the single crystal silicon base is doped with oxygen;
This actually impairs the gettering effect of the polycrystalline silicon layer.

したがって、本発明の一目的は、ゲッタリング能力の優
れたシリコンウェーハおよびその製造方法を提供するこ
とにある。
Therefore, one object of the present invention is to provide a silicon wafer with excellent gettering ability and a method for manufacturing the same.

(課題を解決するための手段) 上記目的は、単結晶シリコン基体と、該基体の−h″の
表面に形成された厚さ1〜8への酸化シリコン膜と、該
酸化シリコン膜上に形成された多結晶シリコン層とより
なるゲッタリング能力の優れたシリコンウェーハにより
達成される。
(Means for Solving the Problems) The above object includes a single crystal silicon substrate, a silicon oxide film formed on the -h'' surface of the substrate to a thickness of 1 to 8, and a silicon oxide film formed on the silicon oxide film. This is achieved using a silicon wafer with excellent gettering ability made of a polycrystalline silicon layer.

[ユ記目的は、単結晶シリコン基体の少なくとも一方の
表面を酸化して厚さ1〜8への酸化シリコン膜を形成さ
せ、かつ該酸化シリコン膜をガス状シラン類と加熱下に
接触させて該酸化シリコン膜上に多結晶シリコン層を形
成させることを特徴とするゲッタリング能力の優れたシ
リコンウェーハの製造方法により達成させる。
[The purpose of this article is to oxidize at least one surface of a single crystal silicon substrate to form a silicon oxide film with a thickness of 1 to 8, and to contact the silicon oxide film with a gaseous silane under heating. This is achieved by a method for manufacturing a silicon wafer with excellent gettering ability, which is characterized by forming a polycrystalline silicon layer on the silicon oxide film.

(作用) 本発明によるゲッタリング能力の優れたシリコンウェー
ハは、単結晶基体と、該基体の一方の表面に形成された
厚さ1〜8への酸化シリコン膜と、該酸化シリコン膜上
に形成された多結晶シリコン層とよりなるものである。
(Function) The silicon wafer with excellent gettering ability according to the present invention includes a single crystal substrate, a silicon oxide film with a thickness of 1 to 8 formed on one surface of the substrate, and a silicon oxide film formed on the silicon oxide film. It consists of a polycrystalline silicon layer.

本発明で使用される単結晶シリコン基板は、単結晶基板
の表面をラッピングし、ついでケミカルエツチング処理
をして数十ミクロン以下の表面層をエツチング除去する
ことにより表面研磨されて゛なるもので表面研磨後の基
板の厚さは200〜2゜000ミクロン、好ましくは3
00〜1. 000ミクロンである。
The single-crystal silicon substrate used in the present invention is surface-polished by lapping the surface of the single-crystal substrate, followed by chemical etching to remove the surface layer of several tens of microns or less. The thickness of the subsequent substrate is between 200 and 2000 microns, preferably 3
00-1. 000 microns.

この単結晶シリコン基体の表面に形成される酸化シリコ
ン膜の厚さは1〜8人、好ましくは1〜5八である。す
なわち、Iへ以上の厚みを持つ酸化シリコン膜が単結晶
シリコン基体の表面に形成されると、その上に形成され
る多結晶シリコン層が単結晶シリコン基体の全面にわた
って均一にかつ高い密着性で形成される。この酸化シリ
コン膜の厚みが1八未満であると、その上に形成される
多結晶シリコン層が不均一に形成され、しかも密着力が
低下し、しかも多結晶シリコン層の結晶粒が大き(なる
。他方、酸化シリコン膜の厚みが8八を越えると、単結
晶シリコン基体中の不純物が多結晶シリコン層中に移動
する際に、酸化シリコン膜が障害となってゲッタリング
能力を低下させる。この点から、酸化シリコン膜の厚み
は1〜8Aが望ましい。
The thickness of the silicon oxide film formed on the surface of this single-crystal silicon substrate is 1 to 8 thick, preferably 1 to 58 thick. In other words, when a silicon oxide film with a thickness greater than I is formed on the surface of a single-crystal silicon substrate, the polycrystalline silicon layer formed thereon has uniform and high adhesion over the entire surface of the single-crystal silicon substrate. It is formed. If the thickness of this silicon oxide film is less than 18 cm, the polycrystalline silicon layer formed on it will be formed non-uniformly, the adhesion will be reduced, and the crystal grains of the polycrystalline silicon layer will become large ( On the other hand, if the thickness of the silicon oxide film exceeds 88 mm, the silicon oxide film becomes an obstacle when the impurities in the single crystal silicon substrate move into the polycrystalline silicon layer, reducing the gettering ability. From this point of view, the thickness of the silicon oxide film is preferably 1 to 8 Å.

単結晶シリコン基体の表面に酸化シリコン膜を形成する
ためには、まず、該単結晶シリコン基体の表面に付着し
ている酸化物や汚染物質を希弗酸で除去し、ついで脱イ
オン水でリンスし、さらに乾燥する。ついで、この単結
晶シリコン基体を分子状酸素含有ガスまた水蒸気雰囲気
中で加熱することにより酸化シリコン膜を形成させる。
In order to form a silicon oxide film on the surface of a single crystal silicon substrate, first remove oxides and contaminants adhering to the surface of the single crystal silicon substrate with dilute hydrofluoric acid, and then rinse with deionized water. and further dry. Next, a silicon oxide film is formed by heating this single crystal silicon substrate in a molecular oxygen-containing gas or water vapor atmosphere.

分子状酸素含有ガスとしては、純酸素ガス、酸素ガスと
不活性ガスとの混合ガス、空気、酸素リッチ空気等があ
る。また、単結晶シリコン基板を酸素プラズマ中に置い
ても酸化シリコン膜は形成され得る。
Examples of the molecular oxygen-containing gas include pure oxygen gas, a mixed gas of oxygen gas and an inert gas, air, and oxygen-rich air. Further, a silicon oxide film can also be formed by placing a single crystal silicon substrate in oxygen plasma.

さらに、単結晶シリコン基体を酸化性薬品中に浸漬する
か陽極酸化しても酸化シリコン膜は形成され得る。酸化
性薬品としては、例えば硝酸、重クロム酸またはその塩
、過マンガン酸またはその塩、過塩素酸またはその塩、
過酸化水素水等がある。
Furthermore, a silicon oxide film can be formed by immersing a single crystal silicon substrate in an oxidizing chemical or by anodic oxidation. Examples of oxidizing chemicals include nitric acid, dichromic acid or its salts, permanganic acid or its salts, perchloric acid or its salts,
There are hydrogen peroxide solutions, etc.

酸化シリコン膜の膜厚は酸化条件により左右され、例え
ば空気中で1気圧の圧力で単結晶シリコン基板を加熱し
て酸化シリコン膜を形成する場合には、酸化物膜の成長
速度と単結晶シリコン基板の温度とは、次の関係のよう
になる。
The thickness of the silicon oxide film depends on the oxidation conditions. For example, when forming a silicon oxide film by heating a single crystal silicon substrate in air at a pressure of 1 atm, the thickness of the oxide film and the single crystal silicon depend on the growth rate of the oxide film and the The relationship with the substrate temperature is as follows.

基板温度(℃)」赳 J肥 」川 」赳 ユ並酸化物膜
成長 0.1 0.14 0.22 0.33 0.4
6速度(八/m1n) したがって、空気中で酸化膜を形成させるには、300
〜700℃、好ましくは300〜500℃の温度で2〜
100分、好ましくは2〜50分間で加熱される。
Substrate temperature (°C) 0.1 0.14 0.22 0.33 0.4
6 speed (8/m1n) Therefore, to form an oxide film in air, 300
2 to 700°C, preferably 300 to 500°C.
It is heated for 100 minutes, preferably 2 to 50 minutes.

なお、本発明における酸化シリコン膜の膜厚の測定値は
、エリプソメータで測定した値である。
Note that the measured value of the film thickness of the silicon oxide film in the present invention is a value measured with an ellipsometer.

すなわち、単結晶シリコン基板を酸化処理した直後、す
なわち、多結晶シリコン層を形成する前にエリプソメー
タで測定した。このとき、っぎのように決めたゼロ点を
エリプソメータの表示値から差し引いた。単結晶シリコ
ン基板を1%弗酸中に浸漬して基板表面の自然酸化膜を
除去したのち、脱イオン水でリンスし、ついでスピン乾
燥し、直ちにエリプソメータで測定した時に得られる値
をゼロ点とした。なお、酸化物膜の屈折率は1.460
とした。
That is, the measurement was performed using an ellipsometer immediately after the single crystal silicon substrate was oxidized, that is, before the polycrystalline silicon layer was formed. At this time, the zero point determined as shown above was subtracted from the displayed value of the ellipsometer. After immersing a single crystal silicon substrate in 1% hydrofluoric acid to remove the natural oxide film on the substrate surface, rinsing with deionized water, then spin drying, and immediately measuring with an ellipsometer, the value obtained is taken as the zero point. did. Note that the refractive index of the oxide film is 1.460.
And so.

この酸化シリコン膜の上には、多結晶シリコン層が形成
される。該多結晶シリコン層の厚みは1゜000八〜5
μm1好ましくは5.0OOA 〜1゜5μmであり、
その結晶粒はアモルファスではなく、2ミクロン以下、
好ましくは0.05〜0゜5ミクロンである。
A polycrystalline silicon layer is formed on this silicon oxide film. The thickness of the polycrystalline silicon layer is 1°0008~5.
μm1 is preferably 5.0OOA to 1°5 μm,
Its crystal grains are not amorphous, but less than 2 microns,
Preferably it is 0.05 to 0.5 microns.

酸化シリコン膜の上に多結晶シリコン層を形成させるに
は、窒素ガス、アルゴンガス等によって希釈したガス状
シラン類の雰囲気中で前記単結晶基板を570〜800
℃、好ましくは580〜700℃の温度で0.1〜7時
間、好ましくは0゜3〜2時間減圧下または常圧下で加
熱することにより行なわれる。このような方法としては
、例えば減圧CVD法がある。本発明で使用されるシラ
ン類としては、モノシラン(S I H4) 、ジクロ
ロシラン(SiH2C12)、モノクロロシラン(Si
H3c1)等がある。
In order to form a polycrystalline silicon layer on the silicon oxide film, the single crystal substrate is heated to a temperature of 570 to 800 nm in an atmosphere of gaseous silane diluted with nitrogen gas, argon gas, etc.
The reaction is carried out by heating at a temperature of 580 to 700°C for 0.1 to 7 hours, preferably 0.3 to 2 hours under reduced pressure or normal pressure. Such a method includes, for example, a low pressure CVD method. Silanes used in the present invention include monosilane (S I H4), dichlorosilane (SiH2C12), and monochlorosilane (SiH2C12).
H3c1) etc.

本発明によるシリコンウェーハは、単結晶シリコン基体
の表面に、特定の厚みを有する酸化シリコン膜が形成さ
れているので、多結晶シリコン層が優れた密着力で均一
な厚みに形成される。しかも、酸化シリコン膜は多結晶
シリコン層の成長のために必要な成長核を無数に与える
ので、酸化シリコン膜なしの場合には、汚れなどを核と
して島状に多結晶シリコン層が成長するので一概に成長
速度が規定できず、島状に成長した部分では数十へ/分
の成長速度で、また成長していない場合ではほとんどゼ
ロ(測定できない)であるのに対し、酸化シリコン膜が
ある場合には150A/分と多結晶シリコン層の成長速
度が向上する。また、酸化シリコン膜がない場合には、
島状に成長した部分で多結晶シリコンの結晶粒径が3〜
10ミクロンであるのに対して、本発明においては結晶
粒径が約0.1〜0.4ミクロン(断面TEM観察の結
果)と小さくかつ均一である。また、単結晶シリコン基
体の表面に僅かな汚染があっても、多結晶シリコン膜が
形成された後に汚れ模様は生じない。
In the silicon wafer according to the present invention, a silicon oxide film having a specific thickness is formed on the surface of a single crystal silicon substrate, so that a polycrystalline silicon layer is formed with excellent adhesion and a uniform thickness. Moreover, since the silicon oxide film provides countless growth nuclei necessary for the growth of the polycrystalline silicon layer, in the case without the silicon oxide film, the polycrystalline silicon layer would grow in island shapes using dirt etc. as nuclei. The growth rate cannot be determined unconditionally; in the case of island-like growth, the growth rate is several tens of minutes per minute, and in the case of no growth, it is almost zero (unmeasurable), whereas in the case of silicon oxide films, In this case, the growth rate of the polycrystalline silicon layer increases to 150 A/min. In addition, if there is no silicon oxide film,
The crystal grain size of polycrystalline silicon in the island-like grown part is 3~
10 microns, whereas in the present invention, the crystal grain size is as small and uniform as about 0.1 to 0.4 microns (as a result of cross-sectional TEM observation). Furthermore, even if there is slight contamination on the surface of the single-crystal silicon substrate, no contamination pattern will appear after the polycrystalline silicon film is formed.

また、本発明によるシリコどウェーハを使用すると、例
えばIC製造工程の最初に行なわれる900°C以上の
熱処理によって、酸化シリコン膜は島状に凝縮して消滅
し、単結晶基体と多結晶シリコン膜とが直接接するよう
になる。
Further, when using the silicon wafer according to the present invention, the silicon oxide film condenses into islands and disappears due to heat treatment at 900°C or higher performed at the beginning of the IC manufacturing process, and the single crystal substrate and polycrystalline silicon film are removed. come into direct contact with.

本発明において、ゲッタリング能力の測定は、つぎのよ
うにして行なった。
In the present invention, gettering ability was measured as follows.

単結晶シリコン基体の一つの表面に酸化シリコン膜およ
び該膜上に多結晶シリコン層が形成されており、他方の
面が鏡面に研磨されているシリコンウェーハにおいて、
該鏡面を1,000°Cに加熱されている純酸素ガス中
で酸化して約300への酸化物膜を形成し、ついで該酸
化物膜上に直径1mm、厚さ5,000への円盤状のア
ルミニウムの電極を蒸着により形成する。このようにし
て基板上に形成されたMOSキャパシターの小数キャリ
ヤーの生成ライフタイムを測定することによリゲッタリ
ング能力が評価される。小数キャリヤーの生成ライフタ
イムの測定については、E、H,N1collian 
and J、R,Brewws著 MOS Physi
cs and Technology(John Wi
ley & 5ons)を参照されたし。
In a silicon wafer in which a silicon oxide film and a polycrystalline silicon layer are formed on one surface of a single crystal silicon substrate, and the other surface is polished to a mirror surface,
The mirror surface is oxidized in pure oxygen gas heated to 1,000°C to form an oxide film with a diameter of about 300 mm, and then a disk with a diameter of 1 mm and a thickness of 5,000 mm is formed on the oxide film. A shaped aluminum electrode is formed by vapor deposition. The regettering ability is evaluated by measuring the generation lifetime of minority carriers of the MOS capacitor thus formed on the substrate. For measurement of generation lifetime of fractional carriers, E, H, N1 collian
and J, R, Brewers MOS Physi
cs and Technology (John Wi
ley & 5ons).

シリコン基板が金属不純物で汚染されると、小数キャリ
ヤーの生成ライフタイムは短くなる。金属不純物がゲッ
タリングされると、ライフタイムは回復して長くなる。
When a silicon substrate becomes contaminated with metal impurities, the generation lifetime of minority carriers is shortened. Once the metal impurities are gettered, the lifetime is restored and extended.

通常MOSキャパシターを製作する酸化工程で周辺雰囲
気から自然に極微量の金属不純物が導入されるのを防ぐ
ことはできない。
Normally, it is impossible to prevent extremely small amounts of metal impurities from being naturally introduced from the surrounding atmosphere during the oxidation process used to manufacture MOS capacitors.

したがって、ゲッタリング能力に差のある複数個のシリ
コン基板を同時に処理すれば、自ずと小数キャリヤーの
生成ライフタイムに差が出るのでゲッタリング能力が相
対的に比較できる。
Therefore, if a plurality of silicon substrates having different gettering abilities are processed simultaneously, there will naturally be a difference in the generation lifetime of fractional carriers, so the gettering abilities can be compared relatively.

(実施例) つぎに、実施例を挙げて本発明をさらに詳細に説明する
(Example) Next, the present invention will be described in further detail by giving examples.

実施例1〜4 厚さ600ミクロンの単結晶シリコン基板を1%弗酸に
浸漬して表面に付着していた自然酸化物膜を除去、つい
で、脱イオン水でリンスし、さらにスピンドライヤーで
乾燥した。乾燥終了後の単結晶基板を直ちに400℃の
空気雰囲気の電気炉中に7分、22分、36分および4
3分分間−てそれぞれ1人、3A、5Aおよび6への酸
化シリコン膜を形成させた。ついで、減圧CVD法によ
り、シリコン(SiH4)ガスを窒素ガスをキャリヤー
として650℃で熱分解させて、酸化シリコン膜の1−
に多結晶シリコン層を約1ミクロン堆積させた。
Examples 1 to 4 A single crystal silicon substrate with a thickness of 600 microns was immersed in 1% hydrofluoric acid to remove the native oxide film attached to the surface, then rinsed with deionized water, and further dried with a spin dryer. did. Immediately after drying, the single crystal substrate was placed in an electric furnace in an air atmosphere at 400°C for 7 minutes, 22 minutes, 36 minutes, and 4 minutes.
Silicon oxide films were formed for 1 person, 3A, 5A, and 6 for 3 minutes, respectively. Next, by low pressure CVD method, silicon (SiH4) gas is thermally decomposed at 650°C using nitrogen gas as a carrier, and 1-
A layer of polycrystalline silicon was deposited to a thickness of about 1 micron.

このように、多結晶シリコン層を堆積したつ工−ハは両
面に多結晶シリコン層および酸化シリコン膜が堆積して
いるので、その−面を研磨して多結晶シリコン層とその
下の酸化シリコン膜を除去して単結晶シリコン基板を露
出させ、さらにこれを鏡面に仕上げた。このようにして
製作したシリコンウェーハの鏡面側に、前記のごときM
OSキャパシターを形成させて、小数キャリヤーのライ
フタイムの値によってゲッタリング能力の評価を行なっ
た。その結果を第1表に示す。
In this way, since the polycrystalline silicon layer and the silicon oxide film are deposited on both sides of the structure in which the polycrystalline silicon layer is deposited, the polycrystalline silicon layer and the silicon oxide film underneath are polished. The film was removed to expose the single-crystal silicon substrate, which was then polished to a mirror surface. On the mirror surface side of the silicon wafer manufactured in this way, the M
An OS capacitor was formed and the gettering ability was evaluated based on the lifetime value of the decimal carrier. The results are shown in Table 1.

なお、これらのシリコンウェーハについて、金属顕微鏡
および走査電子顕微鏡および透過電子顕微鏡を用いて観
察したところ、多結晶シリコン層の成長速度は150八
/分、結晶粒径は0.1〜0.4ミクロンであった。さ
らに、このシリコンウェーハを暗室で集光灯で暗視野に
して散乱光で見たところ、白模様は全くみられなかった
In addition, when these silicon wafers were observed using a metallurgical microscope, a scanning electron microscope, and a transmission electron microscope, the growth rate of the polycrystalline silicon layer was 1508/min, and the crystal grain size was 0.1 to 0.4 microns. Met. Furthermore, when this silicon wafer was viewed in a dark room using a condensing light in the dark field and using scattered light, no white pattern was observed.

比較例1 実施例1〜4の方法において、単結晶シリコン基板の表
面に酸化シリコン膜を形成しない以外は、実施例1と同
様の方法を行なってシリコンウェーハを得た。この単結
晶シリコン基板の表面に多結晶シリコン層を形成してな
るシリコンウェーハについて、実施例1〜4と同様な方
法によりゲッタリング能力の評価を行なった。その結果
を第1表に示す。
Comparative Example 1 A silicon wafer was obtained in the same manner as in Example 1 except that a silicon oxide film was not formed on the surface of the single crystal silicon substrate in the method of Examples 1 to 4. The gettering ability of the silicon wafer formed by forming a polycrystalline silicon layer on the surface of this single crystal silicon substrate was evaluated by the same method as in Examples 1 to 4. The results are shown in Table 1.

なお、これらのシリコンウェーハについて、金属顕微鏡
および走査電子顕微鏡および透過電子顕微鏡を用いたと
ころ、島状に成長した部分で数十六方の成長速度で多結
晶シリコン層が成長していたが、成長していない部分で
はほとんどゼロであり、汚れ等を核として多結晶シリコ
ン層が成長するので、−taには成長速度が規定できな
かった。
Furthermore, when these silicon wafers were examined using a metallurgical microscope, a scanning electron microscope, and a transmission electron microscope, it was found that polycrystalline silicon layers were growing at a growth rate of several tens of six directions in the areas where the island-like growth occurred. It is almost zero in the areas where it is not exposed, and since the polycrystalline silicon layer grows using dirt and the like as nuclei, it was not possible to specify the growth rate for -ta.

また、結晶粒径は、島状に成長した部分では3〜10ミ
クロンであった。さらに、このシリコンウェーハを暗室
で集光灯で暗視野にして散乱光で見たところ、星状、島
状あるいは液体が流れたような白い模様が見えた。星状
のものは減圧CVD炉内で発生したパーティクルを成長
核として、その周りに多結晶シリコン層が成長したもの
であり、島状のものは星状のものが集ったものあるいは
シリコンウェーハとボート(ウェーハを載置する石英治
具)との接触点から成長した多結晶シリコン層等であり
、流体が流れたような模様はウェーハ表面の酸化物膜を
エッチオフしたのち、脱イオン水でリンスしてリンス槽
から引き上げた時につ工−ハ表面に残されたパーティク
ルを成長核として成長した多結晶シリコン層である。減
圧CVD炉に100枚チャージして95枚にはなんらか
の白模様が見られた。白模様が見られなかったウェーハ
には多結晶シリコン層が堆積されていなかった。
Further, the crystal grain size was 3 to 10 microns in the island-shaped portion. Furthermore, when this silicon wafer was viewed in a dark room using a condensing light in the dark field and using scattered light, white patterns that looked like stars, islands, or flowing liquid could be seen. Star-shaped particles are particles generated in a low-pressure CVD furnace as growth nuclei, and a polycrystalline silicon layer has grown around them. Island-shaped particles are a collection of star-shaped particles or a silicon wafer. This is a polycrystalline silicon layer that has grown from the point of contact with the boat (a quartz jig that holds the wafer). This is a polycrystalline silicon layer that grows using particles left on the surface of the substrate when it is rinsed and pulled out of the rinsing bath as growth nuclei. 100 sheets were charged in the low pressure CVD furnace, and 95 sheets had some kind of white pattern. Wafers on which no white pattern was observed did not have a polycrystalline silicon layer deposited on them.

比較例2 実施例1〜4の方法において、酸化シリコン膜の膜厚を
10八にした以外は実施例1と同様の方法を行なってシ
リコンウェーハを得、さらに同様の方法でゲッタリング
能力の評価を行なった。その結果を第1表に示す。
Comparative Example 2 A silicon wafer was obtained in the same manner as in Example 1 except that the thickness of the silicon oxide film was changed to 108 in the method of Examples 1 to 4, and the gettering ability was evaluated in the same manner. I did it. The results are shown in Table 1.

第1表 香 リ  酸化シリコン膜 ゲッタリング能力厚み(八
)     (mS) 比較例1     0    1. 0〜1,4実施例
1     1    3.0〜8.5実施例2   
  3    3.3〜6.7実施例3     5 
   2.6〜5.2実施例4     6    1
.8〜3.7比較例2     10   1.2〜1
.6第1表から明らかなように、本発明によるシリコン
ウェーハ(実施例1〜4)は、従来のもの(比較例1)
と比較して小数のキャリヤの発生寿命が長く、ゲッタリ
ング能力が著しく優れていることがわかる。また、酸化
シリコン膜を設けていない比較例1のウェーハにおいて
は、単結晶シリコン基体上に多結晶シリコンの結晶粒が
成長する部位と成長しない部位とができ、かつ結晶粒径
は平均3ミクロン以上であり、中には10ミクロン以−
ヒのものも生成している。これに対して、酸化シリコン
膜の厚みが1八以上である実施例1〜4のウェーハの場
合には、単結晶シリコン基体の全面にわたって多結晶シ
リコンの結晶粒が成長し、その結晶粒径は0.1〜0.
4ミクロンの均一なものである。
1st surface Silicon oxide film Gettering ability thickness (8) (mS) Comparative example 1 0 1. 0-1,4 Example 1 1 3.0-8.5 Example 2
3 3.3-6.7 Example 3 5
2.6-5.2 Example 4 6 1
.. 8-3.7 Comparative Example 2 10 1.2-1
.. 6 As is clear from Table 1, the silicon wafers according to the present invention (Examples 1 to 4) are different from the conventional silicon wafers (Comparative Example 1).
It can be seen that the lifetime of generation of a small number of carriers is longer than that of the conventional method, and the gettering ability is significantly superior. In addition, in the wafer of Comparative Example 1 in which no silicon oxide film was provided, there were regions where polycrystalline silicon crystal grains grew and regions where they did not grow on the single crystal silicon substrate, and the crystal grain size was on average 3 microns or more. Some of them are 10 microns or more.
They are also producing H. On the other hand, in the case of the wafers of Examples 1 to 4 in which the silicon oxide film has a thickness of 18 or more, polycrystalline silicon crystal grains grow over the entire surface of the single crystal silicon substrate, and the crystal grain size is 0.1~0.
It has a uniform diameter of 4 microns.

参考例 実施例3で得られた5への膜厚の酸化シリコン膜および
1ミクロンの層厚の多結晶シリコン層を有するシリコン
ウェーへのを900℃の水蒸気雰囲気中で2時間の条件
で酸化したのち、透過電子顕微鏡で断面を観察するとと
もに組成分析を行なったところ、単結晶シリコン基体と
多結晶シリコン層との界面には連続的な酸化物膜は見ら
れず、米粒のように島状に点在する酸化物が見られた。
Reference Example A silicon wafer having a silicon oxide film with a thickness of 5 mm and a polycrystalline silicon layer with a thickness of 1 micron obtained in Example 3 was oxidized in a steam atmosphere at 900° C. for 2 hours. Later, when the cross section was observed using a transmission electron microscope and the composition was analyzed, no continuous oxide film was found at the interface between the single crystal silicon substrate and the polycrystalline silicon layer, but an island-like film like a grain of rice was found. Scattered oxides were observed.

そして、界面の大部分において単結晶シリコン基体と多
結晶シリコン層が密着し、多結晶シリコン層の一部は固
相エピタキシャル成長していた。
The single crystal silicon substrate and the polycrystalline silicon layer were in close contact with each other at most of the interface, and a portion of the polycrystalline silicon layer was grown by solid phase epitaxial growth.

例えば、ICの製造工程ではウェルを形成したり、ある
いは素子領域を厚い酸化膜で絶縁分離するために窒化膜
をマスクとして使用するが、通常、この窒化11mの下
に酸化膜を形成する。この酸化膜をパッド酸化膜という
が、IC製造工程では、最初のウェーハの洗浄工程の直
後に、このパッド酸化膜を形成する工程がくることが多
い。パッド酸化の代表的な例は、例えば1,000℃の
ドライ酸素雰囲気中で1時間、あるいは900℃の水蒸
気雰囲気中で2時間である。これらの条件によっておよ
そ500八厚のパッド酸化膜が形成される。
For example, in an IC manufacturing process, a nitride film is used as a mask to form a well or to insulate and isolate an element region with a thick oxide film, and an oxide film is usually formed under the nitride layer 11m. This oxide film is called a pad oxide film, and in the IC manufacturing process, the process of forming this pad oxide film often occurs immediately after the first wafer cleaning process. Typical pad oxidation is, for example, 1 hour in a dry oxygen atmosphere at 1,000°C or 2 hours in a steam atmosphere at 900°C. Under these conditions, a pad oxide film approximately 500 mm thick is formed.

参考例から明らかなように、本発明によるシリコンウェ
ーハにおいてはこのようなパッド酸化膜は形成する工程
を経過することによって単結晶シリコン基体と多結晶シ
リコン層との間の1〜8への酸化膜が消滅し、単結晶シ
リコン基体と多結晶シリコン層とが密着する。
As is clear from the reference example, in the silicon wafer according to the present invention, such a pad oxide film is formed by forming oxide films 1 to 8 between the single crystal silicon substrate and the polycrystalline silicon layer. disappears, and the single-crystal silicon substrate and polycrystalline silicon layer come into close contact.

(発明の効果) 本発明によれば、特定された厚みを持つ酸化シリコン膜
を介して単結晶シリコン基体上に多結晶シリコン層を形
成してなるものであるから、多結晶シリコン層の密着性
および均一性が優れたものとなっており、しかも、多結
晶シリコン層の結晶粒の大きさが均一なため、従来の単
に多結晶シリコン層を形成したものに比較して結晶粒界
の面積が大き(、ゲッタリング能力が優れている。した
がって、高密度集積回路のデバイスとしての歩留りが高
い材料として使用され得る。
(Effects of the Invention) According to the present invention, since a polycrystalline silicon layer is formed on a single crystal silicon substrate via a silicon oxide film having a specified thickness, the adhesion of the polycrystalline silicon layer is improved. Furthermore, since the crystal grain size of the polycrystalline silicon layer is uniform, the area of the grain boundaries is smaller than that of conventional polycrystalline silicon layers. It has a large size and excellent gettering ability. Therefore, it can be used as a material with high yield as a device for high-density integrated circuits.

Claims (2)

【特許請求の範囲】[Claims] (1)単結晶シリコン基体と、該基体の一方の表面に形
成された厚さ1〜8Åの酸化シリコン膜と、該酸化シリ
コン膜上に形成された多結晶シリコン層とよりなるゲッ
タリング能力の優れたシリコンウェーハ。
(1) Gettering ability consisting of a single crystal silicon substrate, a silicon oxide film with a thickness of 1 to 8 Å formed on one surface of the substrate, and a polycrystalline silicon layer formed on the silicon oxide film. Superior silicon wafer.
(2)単結晶シリコン基体の少なくとも一方の表面を酸
化して厚さ1〜8Åの酸化シリコン膜を形成させ、かつ
該酸化シリコン膜をガス状シラン類と加熱下に接触させ
て該酸化シリコン膜上に多結晶シリコン層を形成させる
ことを特徴とするゲッタリング能力の優れたシリコンウ
ェーハの製造方法。
(2) Oxidizing at least one surface of a single crystal silicon substrate to form a silicon oxide film with a thickness of 1 to 8 Å, and contacting the silicon oxide film with a gaseous silane under heating to form the silicon oxide film. A method for manufacturing a silicon wafer with excellent gettering ability, characterized by forming a polycrystalline silicon layer thereon.
JP1079762A 1988-03-30 1989-03-30 Silicon wafer having excellent gettering ability and method of manufacturing the same Expired - Lifetime JPH0648686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1079762A JPH0648686B2 (en) 1988-03-30 1989-03-30 Silicon wafer having excellent gettering ability and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7837088 1988-03-30
JP63-78370 1988-03-30
JP1079762A JPH0648686B2 (en) 1988-03-30 1989-03-30 Silicon wafer having excellent gettering ability and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01315144A true JPH01315144A (en) 1989-12-20
JPH0648686B2 JPH0648686B2 (en) 1994-06-22

Family

ID=26419455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079762A Expired - Lifetime JPH0648686B2 (en) 1988-03-30 1989-03-30 Silicon wafer having excellent gettering ability and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0648686B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299426A (en) * 1992-02-21 1993-11-12 Mitsubishi Electric Corp Manufacture of semiconductor device and semiconductor substrate
US5374842A (en) * 1992-02-21 1994-12-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with a gettering sink material layer
EP0635879A2 (en) * 1993-07-22 1995-01-25 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
US5444001A (en) * 1992-12-25 1995-08-22 Nec Corporation Method of manufacturing a semiconductor device readily capable of removing contaminants from a silicon substrate
WO2010131412A1 (en) * 2009-05-15 2010-11-18 株式会社Sumco Silicon wafer and method for producing the same
JP2011009613A (en) * 2009-06-29 2011-01-13 Sumco Corp Epitaxial silicon wafer, and method of manufacturing the same
USRE43450E1 (en) 1994-09-29 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor thin film
JP2012199550A (en) * 2011-03-22 2012-10-18 Soytec Method of manufacturing base substrate for semiconductor type substrate on insulator
WO2016140850A1 (en) * 2015-03-03 2016-09-09 Sunedison Semiconductor Limited Method of depositing charge trapping polycrystalline silicon films on silicon substrates with controllable film stress
US10290533B2 (en) 2015-03-17 2019-05-14 Globalwafers Co., Ltd. Thermally stable charge trapping layer for use in manufacture of semiconductor-on-insulator structures
US10304722B2 (en) 2015-06-01 2019-05-28 Globalwafers Co., Ltd. Method of manufacturing semiconductor-on-insulator
US10332782B2 (en) 2015-06-01 2019-06-25 Globalwafers Co., Ltd. Method of manufacturing silicon germanium-on-insulator
US10546771B2 (en) 2016-10-26 2020-01-28 Globalwafers Co., Ltd. High resistivity silicon-on-insulator substrate having enhanced charge trapping efficiency
US10755966B2 (en) 2015-11-20 2020-08-25 GlobaWafers Co., Ltd. Manufacturing method of smoothing a semiconductor surface
US10796945B2 (en) 2014-11-18 2020-10-06 Globalwafers Co., Ltd. High resistivity silicon-on-insulator substrate comprising a charge trapping layer formed by He—N2 co-implantation
US10818540B2 (en) 2018-06-08 2020-10-27 Globalwafers Co., Ltd. Method for transfer of a thin layer of silicon
US10825718B2 (en) 2016-06-22 2020-11-03 Globalwafers Co., Ltd. Method of preparing an isolation region in a high resistivity silicon-on-insulator substrate
US11139198B2 (en) 2014-11-18 2021-10-05 Globalwafers Co., Ltd. High resistivity semiconductor-on-insulator wafer and a method of manufacturing
US11142844B2 (en) 2016-06-08 2021-10-12 Globalwafers Co., Ltd. High resistivity single crystal silicon ingot and wafer having improved mechanical strength

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120777A (en) * 1976-04-02 1977-10-11 Ibm Ic
JPS58138035A (en) * 1982-02-12 1983-08-16 Nec Corp Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120777A (en) * 1976-04-02 1977-10-11 Ibm Ic
JPS58138035A (en) * 1982-02-12 1983-08-16 Nec Corp Semiconductor device and manufacture thereof

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299426A (en) * 1992-02-21 1993-11-12 Mitsubishi Electric Corp Manufacture of semiconductor device and semiconductor substrate
US5374842A (en) * 1992-02-21 1994-12-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with a gettering sink material layer
US5516706A (en) * 1992-02-21 1996-05-14 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device with a gettering sink material layer
US5444001A (en) * 1992-12-25 1995-08-22 Nec Corporation Method of manufacturing a semiconductor device readily capable of removing contaminants from a silicon substrate
EP0635879A2 (en) * 1993-07-22 1995-01-25 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
EP0635879A3 (en) * 1993-07-22 1996-10-23 Toshiba Kk Semiconductor silicon wafer and process for producing it.
US5738942A (en) * 1993-07-22 1998-04-14 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
USRE43450E1 (en) 1994-09-29 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor thin film
WO2010131412A1 (en) * 2009-05-15 2010-11-18 株式会社Sumco Silicon wafer and method for producing the same
JP2011009613A (en) * 2009-06-29 2011-01-13 Sumco Corp Epitaxial silicon wafer, and method of manufacturing the same
JP2012199550A (en) * 2011-03-22 2012-10-18 Soytec Method of manufacturing base substrate for semiconductor type substrate on insulator
US11139198B2 (en) 2014-11-18 2021-10-05 Globalwafers Co., Ltd. High resistivity semiconductor-on-insulator wafer and a method of manufacturing
US10796945B2 (en) 2014-11-18 2020-10-06 Globalwafers Co., Ltd. High resistivity silicon-on-insulator substrate comprising a charge trapping layer formed by He—N2 co-implantation
US11699615B2 (en) 2014-11-18 2023-07-11 Globalwafers Co., Ltd. High resistivity semiconductor-on-insulator wafer and a method of manufacture
WO2016140850A1 (en) * 2015-03-03 2016-09-09 Sunedison Semiconductor Limited Method of depositing charge trapping polycrystalline silicon films on silicon substrates with controllable film stress
EP3367424A1 (en) * 2015-03-03 2018-08-29 Sunedison Semiconductor Limited Charge trapping polycrystalline silicon films on silicon substrates with controllable film stress
US10283402B2 (en) 2015-03-03 2019-05-07 Globalwafers Co., Ltd. Method of depositing charge trapping polycrystalline silicon films on silicon substrates with controllable film stress
US10784146B2 (en) 2015-03-03 2020-09-22 Globalwafers Co., Ltd. Method of depositing charge trapping polycrystalline silicon films on silicon substrates with controllable film stress
US10658227B2 (en) 2015-03-03 2020-05-19 Globalwafers Co., Ltd. Method of depositing charge trapping polycrystalline silicon films on silicon substrates with controllable film stress
US10290533B2 (en) 2015-03-17 2019-05-14 Globalwafers Co., Ltd. Thermally stable charge trapping layer for use in manufacture of semiconductor-on-insulator structures
US10332782B2 (en) 2015-06-01 2019-06-25 Globalwafers Co., Ltd. Method of manufacturing silicon germanium-on-insulator
US10510583B2 (en) 2015-06-01 2019-12-17 Globalwafers Co., Ltd. Method of manufacturing silicon germanium-on-insulator
US10304722B2 (en) 2015-06-01 2019-05-28 Globalwafers Co., Ltd. Method of manufacturing semiconductor-on-insulator
US10755966B2 (en) 2015-11-20 2020-08-25 GlobaWafers Co., Ltd. Manufacturing method of smoothing a semiconductor surface
US10818539B2 (en) 2015-11-20 2020-10-27 Globalwafers Co., Ltd. Manufacturing method of smoothing a semiconductor surface
US10985049B2 (en) 2015-11-20 2021-04-20 Globalwafers Co., Ltd. Manufacturing method of smoothing a semiconductor surface
US11655559B2 (en) 2016-06-08 2023-05-23 Globalwafers Co., Ltd. High resistivity single crystal silicon ingot and wafer having improved mechanical strength
US11655560B2 (en) 2016-06-08 2023-05-23 Globalwafers Co., Ltd. High resistivity single crystal silicon ingot and wafer having improved mechanical strength
US11142844B2 (en) 2016-06-08 2021-10-12 Globalwafers Co., Ltd. High resistivity single crystal silicon ingot and wafer having improved mechanical strength
US11380576B2 (en) 2016-06-22 2022-07-05 Globalwafers Co., Ltd. Method of preparing an isolation region in a high resistivity silicon-on-insulator substrate
US10825718B2 (en) 2016-06-22 2020-11-03 Globalwafers Co., Ltd. Method of preparing an isolation region in a high resistivity silicon-on-insulator substrate
US11587825B2 (en) 2016-06-22 2023-02-21 Globalwafers Co., Ltd. Method of preparing an isolation region in a high resistivity silicon-on-insulator substrate
US10546771B2 (en) 2016-10-26 2020-01-28 Globalwafers Co., Ltd. High resistivity silicon-on-insulator substrate having enhanced charge trapping efficiency
US11239107B2 (en) 2016-10-26 2022-02-01 Globalwafers Co., Ltd. High resistivity silicon-on-insulator substrate having enhanced charge trapping efficiency
US10832937B1 (en) 2016-10-26 2020-11-10 Globalwafers Co., Ltd. High resistivity silicon-on-insulator substrate having enhanced charge trapping efficiency
US10741437B2 (en) 2016-10-26 2020-08-11 Globalwafers Co., Ltd. High resistivity silicon-on-insulator substrate having enhanced charge trapping efficiency
US11443978B2 (en) 2018-06-08 2022-09-13 Globalwafers Co., Ltd. Method for transfer of a thin layer of silicon
US10818540B2 (en) 2018-06-08 2020-10-27 Globalwafers Co., Ltd. Method for transfer of a thin layer of silicon

Also Published As

Publication number Publication date
JPH0648686B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JPH01315144A (en) Silicon wafer of excellent gettering capacity and its manufacture
JP3292101B2 (en) Method for smoothing silicon single crystal substrate surface
JP3772088B2 (en) Semiconductor disk manufacturing method
US5763288A (en) Method for producing semiconductor substrate by wafer bonding
US4608095A (en) Gettering
KR100832944B1 (en) Manufacturing process for annealed wafer and annealed wafer
US5189508A (en) Silicon wafer excelling in gettering ability and method for production thereof
JP3287596B2 (en) Semiconductor substrate and processing method thereof
JP3085184B2 (en) SOI substrate and manufacturing method thereof
JP3285723B2 (en) Semiconductor heat treatment jig and surface treatment method thereof
JP2008159811A (en) Method for manufacturing soi wafer, and soi wafer
JPH11100299A (en) Production of thin film epitaxial wafer and thin film epitaxial wafer produced therewith
JPH09283529A (en) Manufacture and inspection of semiconductor substrate
JP2907095B2 (en) Method for manufacturing semiconductor device
JP4131105B2 (en) Silicon boat manufacturing method
JPS63129633A (en) Surface treatment for semiconductor
JP3036366B2 (en) Processing method of semiconductor silicon wafer
JP2774855B2 (en) Gettering effect enhanced silicon substrate and method of manufacturing the same
JP4029378B2 (en) Annealed wafer manufacturing method
JP3188810B2 (en) Silicon wafer manufacturing method
JP2602598B2 (en) Semiconductor substrate processing method
JP3535539B2 (en) Method for manufacturing semiconductor device
JP4305800B2 (en) Method for evaluating nitride on silicon wafer surface
JP2010040638A (en) Method of manufacturing soi substrate
JP4401466B2 (en) Silicon wafer manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 15