JPH01314855A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH01314855A
JPH01314855A JP14630088A JP14630088A JPH01314855A JP H01314855 A JPH01314855 A JP H01314855A JP 14630088 A JP14630088 A JP 14630088A JP 14630088 A JP14630088 A JP 14630088A JP H01314855 A JPH01314855 A JP H01314855A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
auxiliary
pressure
pressure reducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14630088A
Other languages
Japanese (ja)
Other versions
JP2573028B2 (en
Inventor
Kunimori Sekigami
邦衛 関上
Takao Shiina
椎名 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14630088A priority Critical patent/JP2573028B2/en
Publication of JPH01314855A publication Critical patent/JPH01314855A/en
Application granted granted Critical
Publication of JP2573028B2 publication Critical patent/JP2573028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To reduce refrigerant sound without increasing the resistance of discharging gas not more than required by providing a heat exchanger at the refrigerant input side of an auxiliary pressure reducing unit provided with a bypass passage for introducing part of high pressure refrigerant from a high pressure side to a low pressure side. CONSTITUTION:A bypass passage 9 for introducing part of high pressure refrigerant is connected between the discharge tube 2 and the suction tube 7 of a refrigerant compressor 1, and a motor-driven expansion valve to become an auxiliary pressure reducing unit 10 and a heat exchanger 12 with a heat sink fin 11 at the refrigerant input side of the unit 10 are disposed in the passage 9. For example, when a room is not so necessary to be cooled, if the rotating speed of a fan is extremely reduced, the blowing air amount to a condenser 3 is unavoidably reduced, its temperature becomes high, and the refrigerant pressure increases. However, since the exchanger 12 and the unit 10 are disposed in the passage 9, the valve of the unit 10 is opened, and the rise of the high pressure of a refrigerant circuit is suppressed by the short-circuit of part of the refrigerant to an air/liquid separator 8 through the exchanger 12 and the unit 10 to be partly heat dissipated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は冷凍サイクルを持つ冷凍装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a refrigeration system having a refrigeration cycle.

〈従来の技術〉 従来用いられているこの種の冷凍装置としては、圧Mi
llからの高圧吐出ガスをそのまま補助減圧器を通して
低圧側にバイパスさせると流速が速いなめ、極めて高い
冷媒音が発生する。従って、この流速を遅くするために
減圧器として、キャピラリーチューブと電磁弁などを用
いるバイパス短絡とする構成としている(例えば、実公
昭47−40823号公報参照)。
<Prior art> This type of refrigeration equipment conventionally used has a pressure Mi
If the high-pressure discharged gas from the 11 is directly bypassed to the low-pressure side through the auxiliary pressure reducer, the flow rate will be high and extremely high-pitched refrigerant noise will be generated. Therefore, in order to slow down this flow rate, a bypass short circuit is used as a pressure reducer using a capillary tube and a solenoid valve (for example, see Japanese Utility Model Publication No. 47-40823).

〈発明が解決しようとする課題〉 しかし、このような短絡方式では、抵抗が大きくなり必
要流量の吐出ガスが流れない欠陥を生じる。
<Problems to be Solved by the Invention> However, in such a short-circuit method, resistance increases and a defect occurs in that the required flow rate of discharged gas does not flow.

本発明は上記実情に紫み、吐出ガスの抵抗を必要以上に
大きくすることなく冷媒音を減少させる冷凍装置を提供
することを目的としたものである。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention aims to provide a refrigeration system that reduces refrigerant noise without unnecessarily increasing the resistance of discharged gas.

く課題を解決するための手段〉 本発明は、圧縮機と凝縮器と減圧器及び蒸発器とを環状
に接続して冷媒回路を構成すると共に、この冷媒回路の
高圧側より低圧側へ高圧冷媒の一部を導くバイパス路に
補助減圧器を設けた冷凍装置において、このバイパス路
には前記補助減圧器の冷媒流入側に高圧冷媒の一部を冷
却する熱交換器を設けたものである。
Means for Solving the Problems> The present invention connects a compressor, a condenser, a pressure reducer, and an evaporator in a ring to form a refrigerant circuit, and supplies high-pressure refrigerant from the high-pressure side to the low-pressure side of the refrigerant circuit. In a refrigeration system in which an auxiliary pressure reducer is provided in a bypass path that guides a portion of the high-pressure refrigerant, the bypass path is provided with a heat exchanger that cools a portion of the high-pressure refrigerant on the refrigerant inflow side of the auxiliary pressure reducer.

上記熱交換器が、放熱用フィン付き熱交換器である。The heat exchanger is a heat exchanger with heat radiation fins.

また、熱交換器が、補助減圧器の冷媒流入側に配す熱交
換器と冷媒流出側に配す補助熱交換器とする。
Further, the heat exchangers are a heat exchanger placed on the refrigerant inflow side of the auxiliary pressure reducer and an auxiliary heat exchanger placed on the refrigerant outflow side.

また、熱交換器を、圧縮機に戻る吸込管に介在の気液分
離器内に配設してもよい。
Alternatively, the heat exchanger may be arranged in a gas-liquid separator interposed in the suction pipe returning to the compressor.

また、熱交換器が、熱交換器と補助熱交換器とを二重と
した二重管式熱交換器でもよい。
Alternatively, the heat exchanger may be a double-tube heat exchanger that includes a heat exchanger and an auxiliary heat exchanger.

更に、二重管式熱交換器が、熱交換器と補助熱交換器間
に補助減圧器を接続しすると共に、外周に放熱用フィン
を設けた二重管式熱交換器としてもよい。
Further, the double-pipe heat exchanger may be a double-pipe heat exchanger in which an auxiliary pressure reducer is connected between the heat exchanger and the auxiliary heat exchanger, and heat radiation fins are provided on the outer periphery.

く作用〉 上記のような構成のなめに、圧縮機よりの吐出ガスの一
部を、バイパス路の熱交換器で冷却し補助減圧器(電動
式膨脂弁)に導き、前記凝縮器、減圧器、蒸発器を経た
吸込ガスと一緒に気液分離器より圧縮機に戻る冷媒回路
としてなるため、吐出ガスが冷却し冷媒の密度が上昇し
、同一重量流量を流す場合、減圧器を通過する流速は減
少する。このため、冷媒音は大巾に減少する。
Due to the above structure, a part of the gas discharged from the compressor is cooled by the heat exchanger in the bypass path and guided to the auxiliary pressure reducer (electric expansion valve). The refrigerant circuit returns from the gas-liquid separator to the compressor together with the suction gas that has passed through the gas-liquid separator and evaporator, so the discharge gas is cooled and the density of the refrigerant increases, and when flowing at the same weight flow rate, it passes through the pressure reducer. The flow rate decreases. Therefore, refrigerant noise is greatly reduced.

〈実施例〉 以下、本発明を実施例の図面に基すいて説明すれば、次
の通りである。
<Example> The present invention will be described below based on the drawings of the example.

第1図はバイパス路にあって熱交換器を補助減圧器の手
前に配した実施例を示し、1は冷媒の圧縮機で8、この
吐出管2の先端に凝縮器3を接続し、該凝縮器3に配管
4を持って減圧器5となるキャピラリーチューブ、蒸発
器6を経て吸込管7より気液分離器8から前記圧縮81
1に戻る冷媒回路を構成してなる。この場合、前記吐出
管2と吸込管7間に高圧冷媒の一部を導くバイパス路9
を接続し、該バイパス路9には補助減圧器10となる電
動式壽脹弁と、該補助減圧器10の冷媒流入側に放熱用
フィン11付き熱交換器12を配設してなる。
Fig. 1 shows an embodiment in which a heat exchanger is placed in front of an auxiliary pressure reducer in a bypass path, 1 is a refrigerant compressor 8, a condenser 3 is connected to the tip of this discharge pipe 2, The compressor 81 is connected to the condenser 3 through a capillary tube that connects a pipe 4 to a pressure reducer 5, passes through an evaporator 6, and then from a suction pipe 7 to a gas-liquid separator 8.
It constitutes a refrigerant circuit that returns to 1. In this case, a bypass passage 9 for guiding a part of the high-pressure refrigerant between the discharge pipe 2 and the suction pipe 7
The bypass passage 9 is provided with an electric expansion valve serving as an auxiliary pressure reducer 10, and a heat exchanger 12 with heat radiation fins 11 is disposed on the refrigerant inflow side of the auxiliary pressure reducer 10.

次にこの作用を説明すると、先ず例えば空胴使用で室外
側となる圧!11allにて圧縮された高圧冷媒は、実
線矢印の如く凝縮器3へ向かい低温とし、更に減圧器5
にて適当に減圧し低温減圧とされ、室内となる蒸発器6
位置での吸熱作用にて該室内を冷やすものとなり、且つ
気液分離器8を経て圧縮機1に戻る冷凍サイクルを得る
Next, to explain this effect, first of all, for example, when using a cavity, the pressure on the outdoor side! The high-pressure refrigerant compressed in 11all heads to the condenser 3 as shown by the solid line arrow, where it is lowered in temperature, and then to the pressure reducer 5.
The pressure is appropriately reduced at low temperature, and the evaporator 6 is placed indoors.
A refrigeration cycle is obtained which cools the room by absorbing heat at the position and returns to the compressor 1 via the gas-liquid separator 8.

ここにおいて、例えば室内をあまり冷房しなくてもよい
とき、ファン(図示せず)の回転数を極端に落とせば、
必然的に凝縮器3への送風量が減少し温度が高くなり冷
媒圧力も上昇するようになるが、この場合、冷凍サイク
ルにおける高圧側と低圧側をバイパス路9にて連結し、
該バイパスls9に熱交換器12と補助減圧器10を配
してなるため、該補助減圧器10の弁が開き冷媒の一部
が放熱となる熱交換器12゜補助減圧器10を経て気液
分離器8に戻る短絡にて、冷媒回路の高圧圧力の上昇が
抑えられるものとなる。
Here, for example, when there is no need to cool the room much, if the rotation speed of the fan (not shown) is extremely reduced,
Inevitably, the amount of air blown to the condenser 3 will decrease, the temperature will rise, and the refrigerant pressure will also rise, but in this case, the high pressure side and low pressure side of the refrigeration cycle are connected by a bypass path 9
Since the bypass ls9 is equipped with a heat exchanger 12 and an auxiliary pressure reducer 10, the valve of the auxiliary pressure reducer 10 opens and a part of the refrigerant is released as heat. The short circuit back to the separator 8 suppresses the rise in high pressure in the refrigerant circuit.

なお、このバイパス路9は、必要によっては前記のよう
に吐出管2から分岐せず、同図二点鎖線配管の如<at
縮器3の途中がら分岐のバイパス路9aとしてもよく、
また、バイパス路の他端は吸込管7でなく蒸発器6の入
口側に接続するバイパス路9bとしてもよい、このよう
に、圧縮機1の吐出ガスの一部を蒸発器6に戻す構成と
すれば、該蒸発器6の除霜作用も果たすものとなる。ま
た、バイパス路9の熱交換器12の構造は、ガス冷媒の
一部を冷やすだけの長さがあれば、外周に放熱用フィン
11を敢えて設けなくてもよい。
Note that, if necessary, this bypass path 9 may not be branched from the discharge pipe 2 as described above, but may be connected to the
It may also be a bypass path 9a that branches off midway through the compressor 3.
Further, the other end of the bypass path may be a bypass path 9b connected to the inlet side of the evaporator 6 instead of the suction pipe 7. In this way, a part of the gas discharged from the compressor 1 is returned to the evaporator 6. Then, the evaporator 6 will also have a defrosting effect. Moreover, the structure of the heat exchanger 12 of the bypass path 9 does not need to be intentionally provided with the heat radiation fins 11 on the outer periphery as long as it has a length sufficient to cool a part of the gas refrigerant.

また、第2図はバイパス路の他の実施例を示すものであ
る。即ち、この場合のバイパス路9には前記第1実施例
の構成にあって補助減圧器10と吸込管7の間に更に補
助熱交換器13を接続したものである。
Further, FIG. 2 shows another embodiment of the bypass path. That is, in this case, the bypass path 9 has the same structure as the first embodiment, but an auxiliary heat exchanger 13 is further connected between the auxiliary pressure reducer 10 and the suction pipe 7.

このように、熱交換器12で凝m液化した冷媒が補助熱
交換器13で減圧された後、該補助熱交換器13で蒸発
気化するため、液冷媒が気液分能器8を経て圧縮機1に
戻ることはない。
In this way, the refrigerant condensed and liquefied in the heat exchanger 12 is depressurized in the auxiliary heat exchanger 13 and then vaporized in the auxiliary heat exchanger 13, so that the liquid refrigerant passes through the gas-liquid separator 8 and is compressed. There is no going back to aircraft 1.

即ち、液バツク防止となる。In other words, liquid back-up is prevented.

第3図は熱交換器を気液分能器に配する実施例である。FIG. 3 shows an embodiment in which a heat exchanger is arranged in a gas-liquid separator.

即ち、圧縮機1の吐出管2に分岐のバイパス路9に設け
る熱交換器12を気液分能器8内に設置したものである
。この場合は、熱交換器12にて気液分層器8内を加熱
し、圧縮機1に戻る液冷媒の液バツクがなくなる。
That is, a heat exchanger 12 provided in a bypass path 9 branching from the discharge pipe 2 of the compressor 1 is installed in the gas-liquid separator 8. In this case, the inside of the gas-liquid separator 8 is heated by the heat exchanger 12, and the liquid back of the liquid refrigerant that returns to the compressor 1 is eliminated.

第4図は第2実施例における熱交換器と補助熱交換器と
を一体構成とした場合である。これはバイパス路9の熱
交換器12の中に補助減圧器10を経て配する補助熱交
換器13を配設し、全体として二重管式熱交換器14と
したものである。この補助熱交換器13位置に流れた減
圧されてなる冷媒が効率的に蒸発気化され圧縮機1への
液バツクをなくすものである。
FIG. 4 shows a case where the heat exchanger and the auxiliary heat exchanger in the second embodiment are integrated. In this case, an auxiliary heat exchanger 13 is disposed in a heat exchanger 12 of a bypass passage 9 via an auxiliary pressure reducer 10, and the entire heat exchanger 14 is a double pipe type heat exchanger 14. The depressurized refrigerant flowing into the auxiliary heat exchanger 13 is efficiently evaporated and vaporized, thereby eliminating liquid backflow to the compressor 1.

更に、第5図は前記第4実施例における二重管式熱交換
器の他の実施例を示すものである。
Furthermore, FIG. 5 shows another embodiment of the double-tube heat exchanger according to the fourth embodiment.

これは二重管式熱交換器14の位置を吐出管2と吸込管
7間に接続するバイパス路9に直接介在する構成で、且
つ該二重管式熱交換器14の外周に放熱用フィン11′
を形成してなる。また、このときの補助減圧器10は熱
交換器12と補助熱交換器13間に介在してなる。この
ように熱交換器12部にフィン11′を突設し放熱効果
を最大としてなるため、補助熱交換器13での冷媒の蒸
発気化を確実にし液バツクの防止となる。
This is a configuration in which the position of the double-pipe heat exchanger 14 is directly interposed in the bypass passage 9 connecting between the discharge pipe 2 and the suction pipe 7, and heat radiation fins are provided on the outer periphery of the double-pipe heat exchanger 14. 11'
It forms. Further, the auxiliary pressure reducer 10 at this time is interposed between the heat exchanger 12 and the auxiliary heat exchanger 13. In this way, the fins 11' are protruded from the heat exchanger 12 to maximize the heat radiation effect, thereby ensuring the evaporation of the refrigerant in the auxiliary heat exchanger 13 and preventing liquid back up.

〈発明の効果〉 上述のように本発明の冷凍装置は、冷媒回路の高圧側よ
り低圧側への高圧冷媒の一部を導くバイパス路に、少な
くとも熱交換器と補助減圧器を配設し高圧冷媒の一部を
冷却する構成としたため、例えば空調使用にあって、室
内をあまり冷房しなくてのよいような場合の如きに冷媒
密度が上昇し、同一重量流量を流す場合、減圧器を通過
する流速は減少する。このため、冷媒音は大巾に減少す
るものとなる。即ち、バイパス路を有するため、冷媒回
路の高圧圧力の上昇が抑えられる。また、圧ta機の吐
出ガスの一部を蒸発器に戻すことにより、蒸発器の除霜
も可能となる。
<Effects of the Invention> As described above, the refrigeration system of the present invention has at least a heat exchanger and an auxiliary pressure reducer disposed in the bypass path that guides a portion of the high-pressure refrigerant from the high-pressure side to the low-pressure side of the refrigerant circuit. Since the refrigerant is configured to cool part of the refrigerant, the density of the refrigerant increases, for example when using an air conditioner and there is no need to cool the room as much, and when the same weight flow rate is flowing, the refrigerant passes through the pressure reducer. The flow rate decreases. Therefore, refrigerant noise is significantly reduced. That is, since the bypass passage is provided, an increase in high pressure in the refrigerant circuit can be suppressed. Furthermore, by returning a portion of the discharged gas from the pressure ta machine to the evaporator, the evaporator can also be defrosted.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は冷凍装置
の構成の概略図、第2図は同バイパス路の伯の実施例の
概略図、第3図、第4図。 第5図は同バイパス路のその他の実施例の概略図である
。 1・・・圧縮機、2・・・吐出管、3・・・凝縮器、5
・・・減圧器、6・・・蒸発器、7・・・吸込管、8・
・・気液分層器、9・・・バイパス路、10・・・補助
減圧器、11・・・放熱用フィン、12・・・熱交換器
、13・・・補助熱交換器、14・・・二重管式熱交換
器。 特許出願人   三洋電機株式会社
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic diagram of the configuration of a refrigeration system, FIG. 2 is a schematic diagram of an embodiment of the bypass, and FIGS. 3 and 4. FIG. 5 is a schematic diagram of another embodiment of the bypass. 1...Compressor, 2...Discharge pipe, 3...Condenser, 5
... pressure reducer, 6 ... evaporator, 7 ... suction pipe, 8.
... Gas-liquid separator, 9... Bypass path, 10... Auxiliary pressure reducer, 11... Heat radiation fin, 12... Heat exchanger, 13... Auxiliary heat exchanger, 14.・Double pipe heat exchanger. Patent applicant: Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 1、圧縮機と凝縮器と減圧器及び蒸発器とを環状に接続
して冷媒回路を構成すると共に、この冷媒回路の高圧側
より低圧側へ高圧冷媒の一部を導くバイパス路に補助減
圧器を設けた冷凍装置において、このバイパス路には前
記補助減圧器の冷媒流入側に高圧冷媒の一部を冷却する
熱交換器を設けたことを特徴とする冷凍装置。 2、熱交換器が、放熱用フィン付き熱交換器である請求
項1記載の冷凍装置。 3、熱交換器が、補助減圧器の冷媒流入側に配す熱交換
器と冷媒流出側に配す補助熱交換器である請求項1記載
の冷凍装置。 4、熱交換器を、圧縮機に戻る吸込管に介在の気液分離
器内に配設した請求項1記載の冷凍装置。 5、熱交換器が、熱交換器と補助熱交換器とを二重とし
た二重管式熱交換器である請求項1記載の冷凍装置。 6、二重管式熱交換器が、熱交換器と補助熱交換器間に
補助減圧器を接続しすると共に、外周に放熱用フィンを
設けた二重管式熱交換器である請求項1記載の冷凍装置
[Claims] 1. A refrigerant circuit is constructed by connecting a compressor, a condenser, a pressure reducer, and an evaporator in a ring, and a portion of the high-pressure refrigerant is guided from the high-pressure side to the low-pressure side of the refrigerant circuit. A refrigeration system including an auxiliary pressure reducer in a bypass path, characterized in that the bypass path is provided with a heat exchanger for cooling a part of high-pressure refrigerant on the refrigerant inflow side of the auxiliary pressure reducer. 2. The refrigeration system according to claim 1, wherein the heat exchanger is a heat exchanger with heat radiation fins. 3. The refrigeration system according to claim 1, wherein the heat exchanger is a heat exchanger disposed on the refrigerant inflow side of the auxiliary pressure reducer and an auxiliary heat exchanger disposed on the refrigerant outflow side of the auxiliary pressure reducer. 4. The refrigeration system according to claim 1, wherein the heat exchanger is disposed within a gas-liquid separator interposed in the suction pipe returning to the compressor. 5. The refrigeration system according to claim 1, wherein the heat exchanger is a double-tube heat exchanger having a double heat exchanger and an auxiliary heat exchanger. 6. Claim 1, wherein the double-pipe heat exchanger is a double-pipe heat exchanger in which an auxiliary pressure reducer is connected between the heat exchanger and the auxiliary heat exchanger, and heat radiation fins are provided on the outer periphery. Refrigeration equipment as described.
JP14630088A 1988-06-14 1988-06-14 Refrigeration equipment Expired - Lifetime JP2573028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14630088A JP2573028B2 (en) 1988-06-14 1988-06-14 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14630088A JP2573028B2 (en) 1988-06-14 1988-06-14 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH01314855A true JPH01314855A (en) 1989-12-20
JP2573028B2 JP2573028B2 (en) 1997-01-16

Family

ID=15404562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14630088A Expired - Lifetime JP2573028B2 (en) 1988-06-14 1988-06-14 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2573028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043820B1 (en) * 2008-10-07 2011-06-22 박삼수 The condensation device to have a swelling and evaporation facility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109566B1 (en) * 2014-02-18 2018-08-08 Mitsubishi Electric Corporation Air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043820B1 (en) * 2008-10-07 2011-06-22 박삼수 The condensation device to have a swelling and evaporation facility

Also Published As

Publication number Publication date
JP2573028B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US11940186B2 (en) CO2 refrigeration system with magnetic refrigeration system cooling
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP4463466B2 (en) Ejector cycle
EP1315938B1 (en) Method and arrangement for defrosting a vapor compression system
JP2012180963A (en) Refrigeration cycle
JP4930214B2 (en) Refrigeration cycle equipment
JP2004108736A (en) Vapor compression type refrigerator
JP2001001754A (en) Air conditioner for vehicle
JP2010266198A (en) Ejector type refrigerating cycle
CN107490091A (en) Air conditioner
JPH01314855A (en) Refrigerator
JP4352327B2 (en) Ejector cycle
JPH07151413A (en) Separate type air conditioner
CN215337200U (en) Flow dividing device and air conditioner
JP4008981B2 (en) Refrigerant circuit structure of compression heat transfer device
CN214469038U (en) Energy-saving control system for reducing exhaust temperature and air conditioner thereof
JPH04313673A (en) Refrigerator
TWI291010B (en) An ice water machine with a temperature regulator for condenser
US20240219080A1 (en) Co2 refrigeration system with magnetic refrigeration system cooling
KR100360233B1 (en) Refrigerating cycle apparatus having vortex tube and air conditioner having the same
JP2006071197A (en) Heat pump device
JPH05332624A (en) Condensing unit of freezer
JP3172296B2 (en) Refrigeration equipment
JP2017141987A (en) Refrigeration cycle device
JPH06313636A (en) Refrigerating equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12