JPH01314207A - Optical circuit and production thereof - Google Patents

Optical circuit and production thereof

Info

Publication number
JPH01314207A
JPH01314207A JP63147244A JP14724488A JPH01314207A JP H01314207 A JPH01314207 A JP H01314207A JP 63147244 A JP63147244 A JP 63147244A JP 14724488 A JP14724488 A JP 14724488A JP H01314207 A JPH01314207 A JP H01314207A
Authority
JP
Japan
Prior art keywords
refractive index
crystal substrate
substrate
recess
optical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63147244A
Other languages
Japanese (ja)
Other versions
JP2703926B2 (en
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63147244A priority Critical patent/JP2703926B2/en
Publication of JPH01314207A publication Critical patent/JPH01314207A/en
Application granted granted Critical
Publication of JP2703926B2 publication Critical patent/JP2703926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent optical characteristics from being affected by environment by forming the optical circuit of the recesses formed on a substrate surface and the light guides formed alongside the recesses. CONSTITUTION:The crystal substrate recesses 3 are formed by etching the crystal substrate 1. Thermal diffusion or ion exchange of a metal is then executed from the surface of the crystal substrate recesses 3 to form regions 10 having the refractive index higher than the refractive index of the crystal substrate 1. The high-refractive index regions 10 under the recesses 3 are etched. The high-refractive index layers 10 are, therefore, enclosed by low-refractive index regions 6 in the cross direction (direction parallel with the substrate 1 surface direction) and the depth direction is the crystal substrate itself; therefore, the optical circuit consisting of the three-dimensional light guides 2 is obtd. The optical circuit which decreases the influence of environmental temp. and environmental atm. pressure on the optical characteristics of the guided light and assures always the stable optical characteristics of the guided light is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光導波路を用いた光回路とその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical circuit using an optical waveguide and a method for manufacturing the same.

(従来の技術) 結晶基板に金属の熱拡散またはイオン交換により形成さ
れる三次元光導波路を自由自在にめぐらす光回路は、光
通信ネットワーク、光交換システムや光情報システムに
おける光データ伝送路の応用がある。第3図は従来の三
次元光導波路を用いた光回路の断面図である。従来の三
次元光導波路2は、結晶基板1に金属の熱拡散またはイ
オン交換により、結晶基板1表面に結晶基板の屈折率よ
り高い領域を形成することにより製作される。
(Prior art) Optical circuits that freely route three-dimensional optical waveguides formed on a crystal substrate by thermal diffusion or ion exchange of metals are used as optical data transmission lines in optical communication networks, optical switching systems, and optical information systems. There is. FIG. 3 is a cross-sectional view of an optical circuit using a conventional three-dimensional optical waveguide. The conventional three-dimensional optical waveguide 2 is manufactured by forming a region on the surface of the crystal substrate 1 with a refractive index higher than that of the crystal substrate 1 by thermal diffusion or ion exchange of a metal.

(発明が解決しようとする課題) この三次元光導波路構造では、導波光が基板表面近傍に
集中するため、導波光の光学特性は、環境温度、環境気
圧に敏感であるため変動しやすいという欠点がある。ま
た、結晶基板表面に、熱衝撃や外圧などにより微小クラ
ックが発生した場合に、即座に光回路はその機能を果た
さなくなる欠点がある。
(Problems to be Solved by the Invention) In this three-dimensional optical waveguide structure, the guided light is concentrated near the substrate surface, so the optical characteristics of the guided light are sensitive to environmental temperature and atmospheric pressure and therefore easily fluctuate. There is. Another disadvantage is that if microcracks occur on the surface of a crystal substrate due to thermal shock, external pressure, etc., the optical circuit immediately ceases to perform its function.

本発明の目的は、環境温度、及び環境気圧によらず、ま
た結晶基板表面に熱衝撃や外圧などにより微小クラック
が発生した場合にも常に安定した導波光の光学特性が得
られる光回路を与えることとこの光回路の製造方法を与
えることにある。
An object of the present invention is to provide an optical circuit that can always provide stable optical characteristics of guided light, regardless of environmental temperature and atmospheric pressure, and even when microcracks occur on the surface of a crystal substrate due to thermal shock or external pressure. Another object of this invention is to provide a method for manufacturing this optical circuit.

(課題を解決するための手段) 本発明は、 (1)基板表面に形成された凹部と、この凹部の側方に
形成された光導波路とからなることを特徴とする光回路
(Means for Solving the Problems) The present invention provides: (1) An optical circuit comprising a recess formed on the surface of a substrate and an optical waveguide formed on the side of the recess.

(2)基板表面に形成された凹部と、この凹部直下に形
成された低屈折率領域と、この低屈折率領域側方に形成
された光導波路とからなることを特徴とする光回路。
(2) An optical circuit comprising a recess formed on the surface of a substrate, a low refractive index region formed directly below the recess, and an optical waveguide formed on the sides of the low refractive index region.

(3)基板表面に凹部を形成し、この凹部がら金属を熱
拡散するかまたはイオン交換によって光導波路を形成し
、前記凹部直下の基板をエツチングすることによって低
屈折率領域を形成することを特徴とする光回路の製造方
法。
(3) A low refractive index region is formed by forming a recess on the surface of the substrate, forming an optical waveguide by thermally diffusing metal through the recess or ion exchange, and etching the substrate immediately below the recess. A method for manufacturing an optical circuit.

である。It is.

(作用) 本発明の光回路では、光導波路が基板内部に設けられて
いるため光学特性が環境に作用されない。
(Function) In the optical circuit of the present invention, since the optical waveguide is provided inside the substrate, the optical characteristics are not affected by the environment.

すなわち、基板表面に凹部を設け、この凹部側方に高屈
折率層を形成しているため、高屈折率層は、基板表面か
ら凹部の深さ分内部に形成されることになる。また、凹
部直下の領域を低屈折率層とし、光導波路は凹部直下か
ら横にずれた形で形成される。また、低屈折率層の形成
方法としては、ドーピングによる方法もあるが、本願第
3の発明のようにエツチングにより形成する方が、横方
向の拡がり等により、高屈折率層領域を狭めてしまう心
配がなく有利である。エツチングによる場合には、三次
元光導波路側方からの環境による影響が考えられるが、
熱衝撃や外圧などによる微小クラックは、基板表面に発
生するので、少なくとも微小クラックによる影響は軽減
される。
That is, since a recess is provided on the substrate surface and a high refractive index layer is formed on the side of the recess, the high refractive index layer is formed inside the substrate surface by the depth of the recess. In addition, the region directly under the recess is a low refractive index layer, and the optical waveguide is formed laterally shifted from directly under the recess. Furthermore, as a method for forming the low refractive index layer, there is also a method using doping, but forming it by etching as in the third invention of the present application narrows the high refractive index layer region due to lateral expansion, etc. It's advantageous because you don't have to worry about it. In the case of etching, the influence of the environment from the side of the three-dimensional optical waveguide is considered.
Since microcracks caused by thermal shock, external pressure, etc. occur on the substrate surface, at least the influence of microcracks is reduced.

(実施例) 次に本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

第1図(a)、(b)は本発明の一実施例に係る三次元
光導波路を用いた光回路の断面図である。結晶基板1上
の2つの結晶基板凹部3から結晶基板1中への金属の熱
拡散またはイオン交換を行なうとそれぞれの金属の熱拡
散の横方向拡散、イオン交換の構法がり領域4が結晶基
板凹部間領域5で交わる。従って、結晶基板凹部間領域
5の屈折率は結晶基板1より大きくなる。結晶基板凹部
間領域5をはさむ結晶基板凹部3直下の領域b(今後低
屈折率領域と呼ぶ)を結晶基板凹部間領域5より低い屈
折率とすれば結晶基板凹部間領域5は、周囲の結晶基板
の領域より高屈折率となり、結晶基板凹部間領域5は三
次元光導波路2となる。この三次元光導波路2からなる
光回路は、結晶基板1の表面から深さWだけ埋め込んだ
位置に形成されるため、従来の結晶基板1の表面に形成
される三次元光導波路からなる光回路に比べ環境温度及
び環境気圧の影響を受けにくく、また結晶基板表面に熱
衝撃や外圧などにより微小クラックが発生した場合にも
影響を受けないため、常に安定した導波光の光学特性を
保持する光回路が得られる。
FIGS. 1(a) and 1(b) are cross-sectional views of an optical circuit using a three-dimensional optical waveguide according to an embodiment of the present invention. When thermal diffusion or ion exchange of metal is carried out from the two crystal substrate recesses 3 on the crystal substrate 1 into the crystal substrate 1, the construction method for lateral diffusion and ion exchange of the respective metals is such that the region 4 is located in the crystal substrate recess. They intersect in the interspace region 5. Therefore, the refractive index of the region 5 between the crystal substrate recesses is larger than that of the crystal substrate 1. If region b (hereinafter referred to as low refractive index region) directly under the crystal substrate recess 3 sandwiching the crystal substrate inter-recess region 5 is made to have a lower refractive index than the crystal substrate inter-recess region 5, the crystal substrate inter-recess region 5 will be The refractive index is higher than that of the substrate region, and the region 5 between the recesses of the crystal substrate becomes a three-dimensional optical waveguide 2. Since the optical circuit consisting of this three-dimensional optical waveguide 2 is formed at a position buried by a depth W from the surface of the crystal substrate 1, the optical circuit consisting of the three-dimensional optical waveguide formed on the surface of the conventional crystal substrate 1 is It is less affected by the environmental temperature and pressure than the conventional one, and is also unaffected by the occurrence of minute cracks on the surface of the crystal substrate due to thermal shock or external pressure, so it always maintains stable optical characteristics of guided light. A circuit is obtained.

本発明において、三次元光導波路2が形成される結晶基
板1表面からの深さWは、数μmから数μmまで許され
、最大深さWは結晶基板1の厚さtで限定される。また
、三次元光導波路2の幅dは低屈折率領域の長さlまた
は、結晶基板凹部間領域5の長さLを選定すれば自在に
設定できる。結晶基板1としては、LtNb03基板等
の強誘電体、ガラス基板などの誘電体、GaAs、 I
nPなどの化合物半導体、Siなどの半導体が用いられ
る。LiNbo3基板の場合金属熱拡散にはTiなどが
用いられ、イオン交換にはH十交換などが用いられる。
In the present invention, the depth W from the surface of the crystal substrate 1 on which the three-dimensional optical waveguide 2 is formed is allowed to range from several μm to several μm, and the maximum depth W is limited by the thickness t of the crystal substrate 1. Further, the width d of the three-dimensional optical waveguide 2 can be freely set by selecting the length l of the low refractive index region or the length L of the region 5 between the recesses of the crystal substrate. The crystal substrate 1 may be a ferroelectric material such as an LtNb03 substrate, a dielectric material such as a glass substrate, GaAs, I
Compound semiconductors such as nP and semiconductors such as Si are used. In the case of a LiNbo3 substrate, Ti or the like is used for metal thermal diffusion, and H10 exchange or the like is used for ion exchange.

この時の横拡散、横かりは、拡散深さdzに対して(0
,5〜1)dzまたはイオン交換深さdzに対して(0
,5〜1)dzとなる。
At this time, the lateral diffusion and lateral loading are (0
, 5 to 1) dz or ion exchange depth dz (0
, 5 to 1) dz.

第1図において、第1図(a)は1本の三次元光導波路
2からなる光回路を示し、第1図(b)は複数本の三次
元光導波路2からなる光回路を示している。
In FIG. 1, FIG. 1(a) shows an optical circuit consisting of one three-dimensional optical waveguide 2, and FIG. 1(b) shows an optical circuit consisting of a plurality of three-dimensional optical waveguides 2. .

次に、本発明による光回路の製造方法を図面を用いて説
明する。第2図は本発明の光回路の製造方法の一実施例
に係る工程図である。まず初めに、結晶基板1をエツチ
ングすることにより結晶基板凹部3を形成する。この時
、エツチングには、イオンビームエツチング、反応性イ
オンエツチング、反応性イオンビームエッチグや湿式エ
ツチングなどを用いる(工程A)。次に、結晶基板凹部
3表面から金属の熱拡散またはイオン交換を行ない、結
晶基板1より屈折率の高い領域10a(今後高屈折率層
と呼ぶ)を形成する(工程B)。次に結晶基板凹部3直
下の高屈折率層10をエツチングする。この時エツチン
グには工程Aと同様な手法を用いる(工程C)。以上の
工程により、高屈折率層10は横方向(結晶基板1表面
方向と平行方向)は低屈折率領域6にかこまれ、深さ方
向は結晶基板そのもののため三次元光導波路2からなる
本発明による光回路が得られる。
Next, a method for manufacturing an optical circuit according to the present invention will be explained using the drawings. FIG. 2 is a process diagram of an embodiment of the optical circuit manufacturing method of the present invention. First, a crystal substrate recess 3 is formed by etching the crystal substrate 1. As shown in FIG. At this time, ion beam etching, reactive ion etching, reactive ion beam etching, wet etching, etc. are used for etching (step A). Next, thermal diffusion or ion exchange of metal is performed from the surface of the crystal substrate recess 3 to form a region 10a (hereinafter referred to as a high refractive index layer) having a higher refractive index than the crystal substrate 1 (step B). Next, the high refractive index layer 10 directly under the crystal substrate recess 3 is etched. At this time, the same method as in step A is used for etching (step C). Through the above steps, the high refractive index layer 10 is surrounded by the low refractive index region 6 in the lateral direction (parallel to the surface direction of the crystal substrate 1), and is composed of the three-dimensional optical waveguide 2 in the depth direction due to the crystal substrate itself. An optical circuit according to the invention is obtained.

(発明の効果) 本発明による光回路とその製造を用いれば、導波光の光
学特性に対して環境温度及び環境気圧の影響が少なく、
また結晶基板表面に熱衝撃や外圧などにより微小クラッ
クが発生した場合にも影響かない、常に安定した導波光
の光学特性を保持する光回路が得られる。
(Effects of the Invention) By using the optical circuit and its manufacture according to the present invention, the influence of environmental temperature and atmospheric pressure on the optical characteristics of guided light is small;
Furthermore, an optical circuit can be obtained that is unaffected even when minute cracks occur on the surface of the crystal substrate due to thermal shock or external pressure, and always maintains stable optical characteristics of guided light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(aXb)は本発明の一実施例の光回路の断面図
、第2図は本発明の一実施例の光回路の製造方法、第3
図は従来例の光回路の断面図である。 1・・・結晶基板 2・・・三次元光導波路 3・・・結晶基板凹部 4・・・金属の熱拡散の横方向拡散領域またはイオン交
換の横広がり領域 5・・・結晶基板凹部間領域 6・・・低屈折率領域 10・・高屈折率層
FIG. 1 (aXb) is a sectional view of an optical circuit according to an embodiment of the present invention, FIG. 2 is a method for manufacturing an optical circuit according to an embodiment of the present invention, and FIG.
The figure is a sectional view of a conventional optical circuit. 1... Crystal substrate 2... Three-dimensional optical waveguide 3... Crystal substrate recess 4... Lateral diffusion region for metal thermal diffusion or lateral spread region for ion exchange 5... Region between crystal substrate recesses 6...Low refractive index region 10...High refractive index layer

Claims (3)

【特許請求の範囲】[Claims] (1)基板表面に形成された凹部と、この基板内の凹部
の側方に形成された光導波路とを備えたことを特徴とす
る光回路。
(1) An optical circuit comprising a recess formed on the surface of a substrate and an optical waveguide formed on the side of the recess within the substrate.
(2)基板表面に形成された凹部と、この凹部直下に形
成された低屈折率領域と、この低屈折率領域側方に形成
された光導波路とを備えたことを特徴とする光回路。
(2) An optical circuit comprising a recess formed on the surface of a substrate, a low refractive index region formed directly under the recess, and an optical waveguide formed on the side of the low refractive index region.
(3)基板表面に凹部を形成し、この凹部から金属を熱
拡散するかまたはイオン交換によって光導波路を形成し
、前記凹部直下の基板をエッチングすることによって低
屈折率領域を形成することを特徴とする光回路の製造方
法。
(3) A low refractive index region is formed by forming a recess on the substrate surface, forming an optical waveguide by thermally diffusing metal from the recess or ion exchange, and etching the substrate immediately below the recess. A method for manufacturing an optical circuit.
JP63147244A 1988-06-14 1988-06-14 Manufacturing of optical circuits Expired - Fee Related JP2703926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147244A JP2703926B2 (en) 1988-06-14 1988-06-14 Manufacturing of optical circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147244A JP2703926B2 (en) 1988-06-14 1988-06-14 Manufacturing of optical circuits

Publications (2)

Publication Number Publication Date
JPH01314207A true JPH01314207A (en) 1989-12-19
JP2703926B2 JP2703926B2 (en) 1998-01-26

Family

ID=15425842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147244A Expired - Fee Related JP2703926B2 (en) 1988-06-14 1988-06-14 Manufacturing of optical circuits

Country Status (1)

Country Link
JP (1) JP2703926B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936481A2 (en) * 1998-02-17 1999-08-18 Ngk Insulators, Ltd. A method of processing a substrate made of a ferroelectric single crystalline material
JP2021527854A (en) * 2018-05-22 2021-10-14 フルクサス, インク.Fluxus, Inc. Manufacture of waveguide structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165955A (en) * 1974-12-05 1976-06-08 Nippon Telegraph & Telephone DOHAGATAHIKARISEIGYOSOSHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165955A (en) * 1974-12-05 1976-06-08 Nippon Telegraph & Telephone DOHAGATAHIKARISEIGYOSOSHI

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936481A2 (en) * 1998-02-17 1999-08-18 Ngk Insulators, Ltd. A method of processing a substrate made of a ferroelectric single crystalline material
EP0936481A3 (en) * 1998-02-17 2000-10-25 Ngk Insulators, Ltd. A method of processing a substrate made of a ferroelectric single crystalline material
JP2021527854A (en) * 2018-05-22 2021-10-14 フルクサス, インク.Fluxus, Inc. Manufacture of waveguide structures

Also Published As

Publication number Publication date
JP2703926B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US6157765A (en) Planar waveguide optical amplifier
JP2894735B2 (en) Optical circuit
US5182787A (en) Optical waveguide structure including reflective asymmetric cavity
EP0304709B1 (en) Waveguide type optical device
EP0228886A2 (en) Optical waveguide utilizing a layered structure
JPH0460618A (en) Optical waveguide added with rare earth element and production thereof
KR0175074B1 (en) Optical weveguide device
US5289551A (en) Wye-branching optical circuit
WO2006136194A1 (en) Method for fabricating a turning mirror for optical devices
US6678454B2 (en) Birefringence-free passive optical component
JPH11218626A (en) Optical waveguide chip
JPH01314207A (en) Optical circuit and production thereof
Albares et al. Silicon-on-sapphire waveguides
US6483964B1 (en) Method of fabricating an optical component
US6650819B1 (en) Methods for forming separately optimized waveguide structures in optical materials
KR930010131B1 (en) Tapered semiconductor waveguides and method of making same
JP2003322737A (en) Optical waveguide
US5440656A (en) Waveguide type optical component having optical coupling sections with different coupling efficiencies
JP2605650B2 (en) Optical isolator
JPS6343105A (en) Single mode optical waveguide
JPH05313032A (en) Manufacture of optical waveguide
US6921491B2 (en) Method for forming a groove and method for manufacturing an optical waveguide element
US20020009264A1 (en) Waveguide structure having enhanced coupling with optical fibers
JP3112114B2 (en) Method for manufacturing semiconductor optical waveguide
JPH0720336A (en) Structure of optical waveguide and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees