JPH0131412B2 - - Google Patents

Info

Publication number
JPH0131412B2
JPH0131412B2 JP57174375A JP17437582A JPH0131412B2 JP H0131412 B2 JPH0131412 B2 JP H0131412B2 JP 57174375 A JP57174375 A JP 57174375A JP 17437582 A JP17437582 A JP 17437582A JP H0131412 B2 JPH0131412 B2 JP H0131412B2
Authority
JP
Japan
Prior art keywords
absorbent
absorption tower
gas
sox concentration
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57174375A
Other languages
Japanese (ja)
Other versions
JPS5874127A (en
Inventor
Toshio Katsube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57174375A priority Critical patent/JPS5874127A/en
Publication of JPS5874127A publication Critical patent/JPS5874127A/en
Publication of JPH0131412B2 publication Critical patent/JPH0131412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は、ボイラ等の排ガス中に含まれる硫黄
酸化物(SOx)を石灰石等の吸収剤スラリーとの
気液接触により吸収除去する湿式排煙脱硫装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet flue gas desulfurization device that absorbs and removes sulfur oxides (SOx) contained in exhaust gas from a boiler or the like through gas-liquid contact with an absorbent slurry such as limestone. .

従来、湿式排煙脱硫装置において、排ガスは脱
硫フアン1により昇圧され冷却塔2に送られる。
冷却塔2で排ガスは、ポンプ3により冷却塔スプ
レ配管4を経て供給される冷却塔循環タンク5内
のスラリと気液接触し、排ガス温度が飽和温度迄
冷却すると共に除じん及び一部脱硫が行われる。
冷却後の排ガスは吸収塔7に入り、ここで吸収塔
循環タンク8より吸収塔循環ポンプ9、吸収剤ス
ラリー配管10を経て吸収塔7内に送られた吸収
剤スラリーとの気液接触により排ガス中のSOxが
吸収・除去される。スプレー21より噴霧された
吸収剤スラリーは、吸収塔7の底部に溜まり、該
吸収塔7を前記吸収剤循環タンク8とを連通する
リターン配管11を通つて吸収剤循環タンク8に
戻る。そして、再び吸収剤スラリー配管10を通
つてスプレー21より噴霧される。すなわち、吸
収剤スラリーは吸収剤スラリー配管10及びリタ
ーン配管11を通つて吸収剤循環タンク8と吸収
塔7間を循環される。22は撹拌機で、該撹拌機
22は吸収剤循環タンク8内の吸収剤スラリーす
なわち懸濁液を常時撹拌して固液分離するのを防
止するものである。
Conventionally, in a wet flue gas desulfurization apparatus, exhaust gas is pressurized by a desulfurization fan 1 and sent to a cooling tower 2.
In the cooling tower 2, the exhaust gas comes into gas-liquid contact with the slurry in the cooling tower circulation tank 5, which is supplied by the pump 3 via the cooling tower spray pipe 4, and the exhaust gas temperature is cooled to the saturation temperature, and dust removal and partial desulfurization are performed. It will be done.
The cooled exhaust gas enters the absorption tower 7, where it comes into contact with the absorbent slurry sent from the absorption tower circulation tank 8, through the absorption tower circulation pump 9, and the absorbent slurry piping 10 into the absorption tower 7, and becomes the exhaust gas. The SOx inside is absorbed and removed. The absorbent slurry sprayed by the sprayer 21 accumulates at the bottom of the absorption tower 7 and returns to the absorbent circulation tank 8 through the return pipe 11 that communicates the absorption tower 7 with the absorbent circulation tank 8 . Then, the absorbent slurry is sprayed by the spray 21 through the absorbent slurry pipe 10 again. That is, the absorbent slurry is circulated between the absorbent circulation tank 8 and the absorption tower 7 through the absorbent slurry piping 10 and the return piping 11. 22 is a stirrer, and the stirrer 22 constantly stirs the absorbent slurry or suspension in the absorbent circulation tank 8 to prevent solid-liquid separation.

ここで脱硫装置に流入する排ガス量および排ガ
ス中のSOx濃度はボイラ負荷およびボイラで燃や
す燃料の性状により、各々定格から1/4定格程度
変動する。しかし脱硫装置では排ガス条件(ガス
量、SOx濃度)が変動しても一定の脱硫効率で運
転することが望ましい。
Here, the amount of exhaust gas flowing into the desulfurization equipment and the SOx concentration in the exhaust gas vary from the rated value to about 1/4 of the rated value, depending on the boiler load and the properties of the fuel burned in the boiler. However, it is desirable for desulfurization equipment to operate at a constant desulfurization efficiency even if the exhaust gas conditions (gas amount, SOx concentration) fluctuate.

脱硫装置は吸収剤スラリーのスプレ量を一定と
した場合、排ガス量が少ない程、また吸収塔入口
の排ガス中SOx濃度が低い程脱硫率が高く、排ガ
ス条件が一定の場合吸収剤スラリーのスプレ量が
多い程脱硫率が高くなる特性を持つている。従つ
て排ガス条件の変動に対応してスプレ量を変動さ
せることにより、脱硫率を一定に保つことは理論
的には可能である。しかしながらこのような脱硫
装置においては、液ガス比〔スプレ液量(/
h)/排ガス量(Nm3/h)〕は通常10(/N
m3)前後必要である。従つて例えば、排ガス量
500000Nm3/hを処理する場合、液ガス比を10
/Nm3とするとスプレ液量は5000m3/hと
膨大な量になる。この膨大なスプレ液量を一本の
吸収剤スラリー配管で流す場合、配管径は約40B
となる。
When the amount of absorbent slurry sprayed is constant, the desulfurization rate of the desulfurization equipment is higher as the amount of exhaust gas is lower and the SOx concentration in the exhaust gas at the entrance of the absorption tower is lower. The desulfurization rate increases as the amount increases. Therefore, it is theoretically possible to keep the desulfurization rate constant by varying the spray amount in response to variations in exhaust gas conditions. However, in such desulfurization equipment, the liquid-gas ratio [spray liquid volume (/
h)/exhaust gas amount (Nm3/h)] is usually 10(/N
m3) It is necessary before and after. Therefore, for example, the amount of exhaust gas
When processing 500000Nm3/h, the liquid gas ratio is 10
/Nm3, the amount of spray liquid will be a huge amount of 5000m3/h. When this huge amount of spray liquid is passed through a single absorbent slurry pipe, the pipe diameter is approximately 40B.
becomes.

しかし吸収剤は酸性成分からなり、かつスラリ
ー状となつているので、耐蝕性および耐摩耗性を
有する大口径の配管が必要となる。従つて、大口
径の配管に吸収剤スラリーの流量を調節する調節
弁を設けることは実際には困難であるため、従来
は排ガス条件の変動に拘らず、一定のスプレ量で
運転されていた。したがつて、従来装置における
入口ガス量と脱硫率との関係を示す第2図から明
らかなように処理ガス量500000Nm3/hで設計
した装置において、処理ガス量が200000Nm3/
hまで減少した場合、脱硫率は97%に上昇する。
この結果、定格以下の運転では脱硫率が高くなり
過ぎ、その分だけ石灰石および硫酸を消費するば
かりでなく、副生石膏を多量に生成することにな
る。
However, since the absorbent is composed of acidic components and is in the form of a slurry, a large-diameter pipe with corrosion resistance and wear resistance is required. Therefore, it is actually difficult to provide a control valve for regulating the flow rate of the absorbent slurry in a large-diameter pipe, and conventionally, the system has been operated at a constant spray amount regardless of fluctuating exhaust gas conditions. Therefore, as is clear from Figure 2, which shows the relationship between inlet gas amount and desulfurization rate in conventional equipment, in an equipment designed with a processing gas amount of 500,000 Nm3/h, the processing gas amount is 200,000 Nm3/h.
When reduced to h, the desulfurization rate increases to 97%.
As a result, if the desulfurization rate is lower than the rated value, the desulfurization rate becomes too high, and not only limestone and sulfuric acid are consumed accordingly, but also a large amount of by-product gypsum is produced.

本発明の目的は、排ガス条件の変動に拘らず一
定の脱硫率で運転することができる湿式排煙脱硫
装置を提供することにある。
An object of the present invention is to provide a wet flue gas desulfurization device that can be operated at a constant desulfurization rate regardless of fluctuating exhaust gas conditions.

本発明は吸収塔に排ガスを導入するライン途中
に脱硫処理される排ガスのガス性状検知器として
ガス流量検知器とSOx濃度検知器とを設け、当該
各検知器に対応して吸収剤スラリー配管を少くと
も2以上の分岐管に分岐させ、該各分岐管を吸収
剤循環タンク側に連通させるとともに該各分岐管
の途中に前記両検知器のうちの互いに異なる一方
の検知器からの検知信号に基いて個々に独立に作
動する弁を設け、処理済排ガスのSOx濃度を測定
し、この測定値と設定値との差により前記各弁の
開度を補正する補正用SOx濃度検知器を吸収塔か
ら流出する処理済排ガスの流路に設けたものであ
る。そして、これにより、排ガスのガス性状に合
わせて吸収剤スラリーのスプレー量を調節するこ
とができるのは勿論、各分岐管の各弁を排ガス性
状のうちの排ガス流量とSOx濃度のかけ合せでは
なく、単独ですなわち一因子だけにより個々独立
に作動制御して、これら各弁による流量制御範囲
を小さくすることを可能にして小径管用の弁の使
用を可能にすると共に、多因子のかけ合せによる
弁制御の場合に生じるハンチングの問題の発生を
防止し、更には該弁を補正用SOx濃度からの検知
信号によりその開度を補正してより適切な流量制
御を行なえるようにしたものである。
The present invention provides a gas flow rate detector and an SOx concentration detector as gas property detectors for the flue gas to be desulfurized in the line that introduces the flue gas into the absorption tower, and connects absorbent slurry piping to each detector. branched into at least two or more branch pipes, and each branch pipe communicated with the absorbent circulation tank side, and a detection signal from one of the two detectors, which is different from the other, is transmitted in the middle of each branch pipe. The absorption tower is equipped with a correction SOx concentration detector that measures the SOx concentration of the treated exhaust gas and corrects the opening degree of each valve based on the difference between this measured value and the set value. This is installed in the flow path for treated exhaust gas flowing out from the pipe. This not only makes it possible to adjust the amount of absorbent slurry sprayed according to the gas properties of the exhaust gas, but also allows each valve in each branch pipe to be adjusted based on the exhaust gas flow rate and SOx concentration of the exhaust gas properties. , it is possible to control the operation individually, that is, by only one factor, to reduce the range of flow rate control by each valve, making it possible to use valves for small diameter pipes, and to control the operation of valves by combining multiple factors. This prevents the problem of hunting that occurs during control, and also corrects the opening degree of the valve using a detection signal from the correcting SOx concentration to perform more appropriate flow rate control.

以下、添付図面によつて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第3図と第4図はそれぞれ本発明の一例を示す
概略的構成図である。第3図において、第1図の
従来例と異なるのは、脱硫フアン1から冷却塔2
に至るラインの途中にガス流量検知器12および
SOx濃度検知器13が設けられている。すなわ
ち、本実施例ではガス性状検知器をガス流量検知
器12とSOx濃度検知器13とにより形成した場
合を示した。このように排ガスのガス流量とSOx
濃度を個々に検知すれば脱硫処理を極めて高精度
に行うことができる。また、吸収剤スラリー配管
10より分岐し、吸収剤循環タンク8に至る2本
の分岐管14,15が設けられるとともにこの分
岐管14,15の途中にそれぞれ流量調整弁1
6,17が介設されている。流量調整弁16はガ
ス流量検知器12からの信号だけに基づき制御さ
れ、一方、流量調整弁17はSOx濃度検知器13
からの信号だけに基づいて制御されるようになつ
ている。第3図中、18は吸収塔7の出口排ガス
中のSOx濃度を検出する補正用SOx濃度検知器
で、該検知器18は処理済排ガス中のSOx濃度の
測定値と設定濃度値との差により前記弁16,1
7の開度を補正するためのものである。本検知器
18によつて脱硫処理をより一層高精度に行うこ
とができる。その他第3図において、第1図と同
一部分は同一符号で示している。
FIGS. 3 and 4 are schematic configuration diagrams each showing an example of the present invention. In Fig. 3, the difference from the conventional example shown in Fig. 1 is that from the desulfurization fan 1 to the cooling tower 2.
A gas flow rate detector 12 and
A SOx concentration detector 13 is provided. That is, in this embodiment, the gas property detector is formed by the gas flow rate detector 12 and the SOx concentration detector 13. In this way, the gas flow rate of exhaust gas and SOx
If the concentration is detected individually, desulfurization treatment can be performed with extremely high precision. Further, two branch pipes 14 and 15 are provided which branch from the absorbent slurry pipe 10 and reach the absorbent circulation tank 8, and a flow rate regulating valve 1 is provided in each of the branch pipes 14 and 15.
6 and 17 are interposed. The flow rate adjustment valve 16 is controlled based only on the signal from the gas flow rate detector 12, while the flow rate adjustment valve 17 is controlled based on the signal from the SOx concentration detector 13.
It is designed to be controlled solely based on signals from the In Fig. 3, 18 is a correction SOx concentration detector that detects the SOx concentration in the exhaust gas at the outlet of the absorption tower 7, and the detector 18 is the difference between the measured value of the SOx concentration in the treated exhaust gas and the set concentration value. The valve 16,1
This is for correcting the opening degree of No.7. This detector 18 allows the desulfurization process to be performed with even higher precision. Other parts in FIG. 3 that are the same as those in FIG. 1 are designated by the same reference numerals.

次に、上記実施例の作用を説明する。ガス流量
を設定して流量検知器12により分岐管14から
吸収塔循環タンク8に戻される吸収剤スラリーの
戻り流量を設定して流量調整弁16の開度を指令
する。更に、この開度は吸収塔7の出口SOx濃度
の設定値と補正用SOx濃度検知器18の測定値と
の差により補正される。
Next, the operation of the above embodiment will be explained. The gas flow rate is set, the return flow rate of the absorbent slurry returned from the branch pipe 14 to the absorption tower circulation tank 8 is set by the flow rate detector 12, and the opening degree of the flow rate regulating valve 16 is commanded. Furthermore, this opening degree is corrected by the difference between the set value of the SOx concentration at the outlet of the absorption tower 7 and the measured value of the SOx concentration detector 18 for correction.

一方、流量調整弁17はSOx濃度検知器13に
より検出される入口SOx濃度に基づいて設定され
た流量により開度が指令される。更に、この開度
は吸収塔7の出口SOx濃度の設定値と補正用SOx
濃度検知器18の測定値との差により補正され
る。
On the other hand, the opening degree of the flow rate regulating valve 17 is commanded based on the flow rate set based on the inlet SOx concentration detected by the SOx concentration detector 13. Furthermore, this opening degree is determined by the set value of the SOx concentration at the outlet of absorption tower 7 and the SOx for correction.
It is corrected based on the difference from the measured value of the concentration detector 18.

また、排ガスの流量等の多い高負荷時には前記
弁16,17の制御によりスプレー21からの吸
収剤スラリーの噴霧量が多くなるため、リターン
配管11を通つて吸収剤循環タンク8への戻り量
も多くなる。従つて、リターン配管11からのこ
の多量の戻りにより当該吸収剤循環タンク8内は
激しく撹拌される。一方、低負荷時には弁16,
17の開度が増してスプレー21からの噴霧量は
減少する。従つて、リターン配管11から吸収剤
循環タンク8への戻り量は減少し撹拌力は減少す
る。しかし、分岐管14,15からの多量の戻り
により当該吸収剤循環タンク8内は激しく撹拌さ
れる。すなわち、高負荷時も低負荷時も循環され
る吸収剤スラリーにより吸収剤循環タンク8内は
同様に激しく撹拌される。従つて撹拌機22は従
来に比して小型化することができる。
In addition, when the load is high and the flow rate of exhaust gas is high, the amount of absorbent slurry sprayed from the spray 21 increases by controlling the valves 16 and 17, so the amount returned to the absorbent circulation tank 8 through the return pipe 11 also increases. There will be more. Therefore, due to this large amount of return from the return pipe 11, the inside of the absorbent circulation tank 8 is violently agitated. On the other hand, when the load is low, the valve 16,
As the opening degree of the sprayer 17 increases, the amount of spray from the sprayer 21 decreases. Therefore, the amount returned from the return pipe 11 to the absorbent circulation tank 8 decreases, and the stirring force decreases. However, the interior of the absorbent circulation tank 8 is violently agitated due to the large amount of return from the branch pipes 14 and 15. That is, the inside of the absorbent circulation tank 8 is similarly vigorously agitated by the circulated absorbent slurry both under high load and under low load. Therefore, the stirrer 22 can be made smaller than conventional ones.

ここで分岐管14,15にそれぞれ流量計を設
置し、それぞれの流量計によつてスラリー流量を
測定し、この測定値を流量調整弁16,17にフ
イードバツクすれば、吸収剤スラリーの流量制御
をより精度よく行うことができる。
Here, if a flow meter is installed in each of the branch pipes 14 and 15, and the slurry flow rate is measured by each flow meter, and this measured value is fed back to the flow rate adjustment valves 16 and 17, the flow rate of the absorbent slurry can be controlled. This can be done more accurately.

本実施例によれば、吸収塔7に導入される排ガ
ス流量および排ガス中のSOx濃度(ガス性状)の
変動に対応して、吸収剤スラリーの戻り量を変動
させることによつて吸収塔7へのスプレー量を変
動させることができる。したがつて分岐管の本
数、およびこれらに設置される流量調整弁の個数
を適宜選定することによつて、排ガス量および排
ガス中のSOx濃度の変動の大きい大容量の脱硫装
置にも対応することができる。例えば入口ガス量
が500000Nm3/hの脱硫装置においては、管径
16Bの分岐管4本およびこれらにそれぞれ流管
調整弁を設けることによつて、液ガス比が10/
Nm3から6/Nm3まで変動しても一定の脱
硫率を得ることができる。
According to this embodiment, the amount of absorbent slurry returned to the absorption tower 7 is varied in response to fluctuations in the flow rate of the exhaust gas introduced into the absorption tower 7 and the SOx concentration (gas properties) in the exhaust gas. The amount of spray can be varied. Therefore, by appropriately selecting the number of branch pipes and the number of flow rate regulating valves installed in these, it is possible to support large-capacity desulfurization equipment with large fluctuations in the amount of exhaust gas and the concentration of SOx in the exhaust gas. I can do it. For example, in a desulfurization equipment with an inlet gas amount of 500,000 Nm3/h, a liquid-gas ratio of 10/
Even if the desulfurization rate varies from Nm3 to 6/Nm3, a constant desulfurization rate can be obtained.

第4図は本発明の他の実施例を示す概略構成図
であつて、第2図の流量調整弁16,17の代り
に全開・全閉の自動弁19,20を設けたもので
ある。この装置においても、ガス流量検知器12
によりガス流量を検知し、該ガス流量が設定ガス
量以下になつた場合に分岐管14に設けた自動弁
19を全開し、吸収剤循環タンク8に吸収剤スラ
リーを戻す。
FIG. 4 is a schematic diagram showing another embodiment of the present invention, in which automatic valves 19 and 20 that can open and close fully are provided in place of the flow rate regulating valves 16 and 17 shown in FIG. Also in this device, the gas flow rate detector 12
The gas flow rate is detected, and when the gas flow rate falls below the set gas amount, the automatic valve 19 provided in the branch pipe 14 is fully opened, and the absorbent slurry is returned to the absorbent circulation tank 8.

一方、自動弁20はSOx濃度検知器13により
検知されたSOx濃度が設定SOx濃度以下になつた
場合に全開とする。この時吸収塔7の出口SOx濃
度が設定値より高くなつた場合自動弁19,20
を強制的に全閉とするインタロツクを設けること
が望ましい。
On the other hand, the automatic valve 20 is fully opened when the SOx concentration detected by the SOx concentration detector 13 falls below the set SOx concentration. At this time, if the SOx concentration at the outlet of the absorption tower 7 becomes higher than the set value, the automatic valves 19, 20
It is desirable to provide an interlock that forces the terminal to be fully closed.

本実施例において、第5図に示すように吸収塔
7に導入されるスプレ量の変化は不連続となるた
め、脱硫率も不連続に変化するがその範囲は一定
である。本実施例によれば、吸収剤はスラリー状
を呈しているが、自動弁の作動が全閉・全開であ
るので流量調整弁16,17の場合と比べると弁
の摩耗が少ない利点がある。
In this example, as shown in FIG. 5, since the amount of spray introduced into the absorption tower 7 changes discontinuously, the desulfurization rate also changes discontinuously, but within a constant range. According to this embodiment, although the absorbent is in the form of a slurry, since the automatic valve operates fully closed and fully open, there is an advantage that the valve wear is less compared to the case of the flow rate regulating valves 16 and 17.

以上述べたように本発明によれば入口ガス性状
の変化に拘わらず、脱硫装置を一定の脱硫率で運
用することができ、石灰石、硫酸の消費量を低減
できる。例えば入口ガス量500000Nm3/h、入
口SOx濃度1000ppm、計画脱硫率90%の脱硫装置
において、従来装置では、200000Nm3/hの運
転で97%の脱硫率となつていた。
As described above, according to the present invention, the desulfurization apparatus can be operated at a constant desulfurization rate regardless of changes in the inlet gas properties, and the consumption of limestone and sulfuric acid can be reduced. For example, in a desulfurization device with an inlet gas amount of 500,000 Nm3/h, an inlet SOx concentration of 1000 ppm, and a planned desulfurization rate of 90%, the conventional device achieved a desulfurization rate of 97% when operated at 200,000Nm3/h.

一方本発明装置により200000Nm3/hにおい
て90%の脱硫率で運転した場合、石灰石の使用量
を1時間当り約65Kg低減でき、200000Nm3/h
での運転が1日に夜間8時間、脱硫装置の運転を
年間300日とすると65×8×300=156000Kgとな
り、年間16トンの石灰石使用量が低減できる。同
様に硫酸は1時間当り約6Kg、年間で14400Kg低
減できる。
On the other hand, when the device of the present invention is operated at 200,000 Nm3/h with a desulfurization rate of 90%, the amount of limestone used can be reduced by approximately 65 kg per hour, and the amount of limestone used can be reduced by 200,000 Nm3/h.
If the operation is 8 hours a day at night and the desulfurization equipment is operated 300 days a year, the result is 65 x 8 x 300 = 156,000 kg, which means that the amount of limestone used can be reduced by 16 tons per year. Similarly, sulfuric acid can be reduced by approximately 6 kg per hour, or 14,400 kg per year.

叙上のように本発明によれば、排ガスのガス性
状に合わせて吸収剤スラリーのスプレー量を調整
することができ、一定の脱硫率で運転できるの
で、石灰石や硫酸の消費量や少なく副生石膏の生
成も少なくできるのは勿論、各分岐管の各弁を排
ガス性状のうちの排ガス流量とSOx濃度のかけ合
せではなく単独ですなわち一因だけにより個々独
立に作動制御するようにしたので、個々の弁の流
量制御範囲を小さくすることが可能となり、従つ
て、小径管の弁の使用が可能となつて、吸収剤ス
ラリーのスプレー量の調整を簡単かつ確実に行な
うことができる。更に多因子のかけ合せにより一
つの弁を制御する場合、多因子の相反する方向へ
の急激な変動によりハンチングが生じ、耐久性を
低下させる問題があるが、本発明では一因子一弁
制御であるため、このハンチングの問題は生じな
い。また、処理済排ガス中のSOx濃度を検知し
て、その設定値からのずれにより弁の開度を補正
制御するため、きわめて高精度に制御を行なうこ
とができる。
As mentioned above, according to the present invention, the spray amount of the absorbent slurry can be adjusted according to the gas properties of the exhaust gas, and the operation can be performed at a constant desulfurization rate. Not only can the generation of SOx be reduced, but the operation of each valve in each branch pipe is controlled individually, based on only one factor, rather than a combination of the exhaust gas flow rate and SOx concentration among the exhaust gas properties. It becomes possible to reduce the flow rate control range of the valve, and therefore, it becomes possible to use a valve with a small diameter pipe, and the spray amount of the absorbent slurry can be easily and reliably adjusted. Furthermore, when one valve is controlled by a combination of multiple factors, there is a problem in that hunting occurs due to rapid fluctuations in multiple factors in contradictory directions, reducing durability.However, in the present invention, one factor, one valve control Therefore, this hunting problem does not occur. Furthermore, since the SOx concentration in the treated exhaust gas is detected and the valve opening degree is corrected and controlled based on the deviation from the set value, control can be performed with extremely high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の排煙脱硫装置を示す概略的構成
図、第2図は従来装置における入口ガス量と脱硫
率との関係を示す図、第3図および第4図はそれ
ぞれ本発明の実施例を示す概略的構成図、第5図
は第4図に示す実施例のスプレー量と脱硫率と負
荷(ガス流量、SOx濃度)との関係を示す図であ
る。 1……脱硫フアン、2……冷却塔、5……冷却
塔循環タンク、7……吸収塔、8……吸収塔循環
タンク、12……ガス流量検知器、13……SOx
濃度検知器、14,15……分岐管、16,17
……流量調整弁、18……補正用SOx濃度検知
器、19,20……自動弁。
Fig. 1 is a schematic configuration diagram showing a conventional flue gas desulfurization equipment, Fig. 2 is a diagram showing the relationship between inlet gas amount and desulfurization rate in the conventional equipment, and Figs. 3 and 4 are diagrams showing the implementation of the present invention, respectively. A schematic configuration diagram showing an example, FIG. 5 is a diagram showing the relationship between the spray amount, desulfurization rate, and load (gas flow rate, SOx concentration) in the embodiment shown in FIG. 4. 1... Desulfurization fan, 2... Cooling tower, 5... Cooling tower circulation tank, 7... Absorption tower, 8... Absorption tower circulation tank, 12... Gas flow rate detector, 13... SOx
Concentration detector, 14, 15...Branch pipe, 16, 17
...Flow rate adjustment valve, 18...SOx concentration detector for correction, 19,20...Automatic valve.

Claims (1)

【特許請求の範囲】[Claims] 1 塔内に1段又は2段以上のスプレーを設けた
吸収塔を備え、前記スプレーと石灰石等の吸収剤
スラリーよりなる懸濁液が貯溜されている吸収剤
循環タンクとを吸収剤スラリー配管により連通
し、前記吸収塔と前記吸収剤循環タンクとを連通
し、この吸収塔内に供給される排ガス中の硫黄酸
化物を前記スプレーより噴霧される吸収剤スラリ
ーと接触させて除去する湿式排煙脱硫装置におい
て、前記吸収塔に排ガスを導入するライン途中に
脱硫処理される排ガスのガス性状検知器としてガ
ス流量検知器とSOx濃度検知器とを設け、当該各
検知器に対応して前記吸収剤スラリー配管を少く
とも2以上の分岐管に分岐させ、該各分岐管を前
記吸収剤循環タンク側に連結させるとともに該各
分岐管の途中に前記両検知器のうちの互いに異な
る一方の検知器からの検知信号に基いて個々独立
に作動する弁を設け、処理済排ガスのSOx濃度を
測定し、この測定値と設定値との差により前記各
弁の開度を補正する補正用SOx濃度検知器を吸収
塔から流出する処理済排ガスの流路に設けたこと
を特徴とする湿式排煙脱流装置。
1.Equipped with an absorption tower having one or more stages of spray in the tower, and connecting the spray to an absorbent circulation tank in which a suspension consisting of an absorbent slurry such as limestone is stored through absorbent slurry piping. Wet flue gas communicates with the absorption tower and the absorbent circulation tank, and removes sulfur oxides in the exhaust gas supplied into the absorption tower by contacting with the absorbent slurry sprayed from the spray. In the desulfurization equipment, a gas flow rate detector and an SOx concentration detector are provided as gas property detectors for the flue gas to be desulfurized in the middle of the line that introduces the flue gas into the absorption tower, and the absorbent The slurry piping is branched into at least two or more branch pipes, each branch pipe is connected to the absorbent circulation tank side, and one of the two detectors, which is different from the other, is connected to the middle of each branch pipe. A correction SOx concentration detector is equipped with valves that operate independently based on the detection signals of the SOx concentration detector, which measures the SOx concentration of the treated exhaust gas, and corrects the opening degree of each valve based on the difference between this measured value and a set value. A wet flue gas deflow device, characterized in that it is provided in a flow path of treated flue gas flowing out from an absorption tower.
JP57174375A 1982-10-04 1982-10-04 Wet desulfurizing device for waste gas Granted JPS5874127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57174375A JPS5874127A (en) 1982-10-04 1982-10-04 Wet desulfurizing device for waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174375A JPS5874127A (en) 1982-10-04 1982-10-04 Wet desulfurizing device for waste gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55173627A Division JPS5799321A (en) 1980-12-09 1980-12-09 Wet-type desulfurizer for exhaust gas

Publications (2)

Publication Number Publication Date
JPS5874127A JPS5874127A (en) 1983-05-04
JPH0131412B2 true JPH0131412B2 (en) 1989-06-26

Family

ID=15977508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174375A Granted JPS5874127A (en) 1982-10-04 1982-10-04 Wet desulfurizing device for waste gas

Country Status (1)

Country Link
JP (1) JPS5874127A (en)

Also Published As

Publication number Publication date
JPS5874127A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
US4681746A (en) Method of regulating the amount of reducing agent added during catalytic reduction of NOx contained in flue gases
US2090142A (en) Wet purification of gases
EP3842125A1 (en) Automatic ammonia-adding system and method for ammonia-based desulfurization device
EP1386654B1 (en) Method for controlling oxidation in flue gas desulfurization
US3693557A (en) Additive feed control for air pollution control systems
CA2077206A1 (en) Corrosion control for wet oxidation systems
JPH0131412B2 (en)
US5980846A (en) Gas refining system
CN205216550U (en) High -efficient semidry method desulfurizing tower and desulfurization system based on dynamic response district
JP3337382B2 (en) Exhaust gas treatment method
EP0555172B1 (en) Process of treating flue gas
CN209020156U (en) A kind of wet desulphurization device
US4533531A (en) Exhaust fume desulfurization process
JP2948330B2 (en) Tank oxidation wet desulfurization method
JPS5936528A (en) Control device for supply rate of lime in stack gas desulfurization process by wet lime-gypsum method
JP2684735B2 (en) Carbonate concentration control method
JPS58214320A (en) Method for adjusting concentration of recirculating slurry of absorbing tower
SU1437082A1 (en) Method of controlling the process of desorption
JPS5992014A (en) Desulfurization of waste gas
WO1981000843A1 (en) Sulfur oxide removal from gas
JPH01180219A (en) Absorbing liquid slurry control device for wet type flue gas desulfurization apparatus
JPS58112025A (en) Controlling method of waste gas desulfurizing apparatus
JPS5932575Y2 (en) Sulfur dioxide reduction device coupled with Claus reactor
JPS62102820A (en) Wet type stack gas desulfurizing apparatus
Nannen et al. Status of the EPRI flue gas desulfurization development program