JPH01313739A - Method and device for inspecting peripheral surface of cylindrical body - Google Patents

Method and device for inspecting peripheral surface of cylindrical body

Info

Publication number
JPH01313739A
JPH01313739A JP14476288A JP14476288A JPH01313739A JP H01313739 A JPH01313739 A JP H01313739A JP 14476288 A JP14476288 A JP 14476288A JP 14476288 A JP14476288 A JP 14476288A JP H01313739 A JPH01313739 A JP H01313739A
Authority
JP
Japan
Prior art keywords
inspected
light receiving
light
circumferential surface
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14476288A
Other languages
Japanese (ja)
Inventor
Misao Otani
大谷 操
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP14476288A priority Critical patent/JPH01313739A/en
Publication of JPH01313739A publication Critical patent/JPH01313739A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires

Abstract

PURPOSE:To completely scan the overall length of the outside peripheral surface to be inspected of a cylindrical body without excess and shortage by giving an incident angle to the peripheral surface to be inspected and projecting a flat beam whose width is wider than length of the peripheral surface to be inspected in parallel to the rotation axis. CONSTITUTION:A cylindrical body W to be inspected is rotated by a rotation supporting device 1. The peripheral surface to be inspected is irradiated by a flat beam whose width is longer than length of the peripheral surface to be inspected at an incident angle in parallel to the rotation axis from a projecting part 2, and the whole surface of the peripheral surface is scanned. The irradiating light is reflected by the peripheral surface to be inspected, but both an irregularly reflected light from a flaw part and an irregularly reflected light from the outside of the peripheral surface to be inspected are received by a light receiving part 3, and a regularly reflected light is received by a light receiving part 4. A signal from the light receiving part 3 is brought to gate by AND with a signal from the flight receiving part 4, inputted to a width measuring part 11 after an irregularly reflected light signal from the outside of the outside peripheral surface to be inspected has been eliminated, and compared with a prescribed width value. When that which exceeds the prescribed width exists, its width is integrated successively by an integrator 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は1円筒体の周面、例えば微小パイプの外周面
の検査方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for inspecting the circumferential surface of a cylindrical body, for example, the outer circumferential surface of a micropipe.

〔従来の技術〕[Conventional technology]

従来の技術においては、円筒体の外周面の検査は、円筒
体を回転させ、その外周面の母線上に収束光を照射して
走査し、その乱反射光を検出することにより行われてい
る。
In conventional technology, the outer circumferential surface of a cylindrical body is inspected by rotating the cylindrical body, irradiating and scanning a convergent light onto the generatrix of the outer circumferential surface, and detecting the diffusely reflected light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術における検査による円筒体の外周面の検査は
、ノイズなしに、且つ被検査外周面全面を完全に走査す
ることができない。それは、走査光が円筒体の被検査外
周面の全長を完全に過不足なく走査することの困難、即
ち走査光の幅を被検査外周面の長さに完全に一致させる
ことの困難によるのである。
Inspection of the outer circumferential surface of a cylindrical body by conventional techniques cannot completely scan the entire outer circumferential surface to be inspected without noise. This is because it is difficult for the scanning light to scan the entire length of the outer circumferential surface of the cylindrical body to be inspected without too much or too little, that is, it is difficult to make the width of the scanning light completely match the length of the outer circumferential surface to be inspected. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明の円筒体周面検査方法は、被検査円筒体を回転
駆動しながら、その被検査円筒体の被検査周面に対し入
射角を与えて被検査円筒体の回転軸線に平行に被検査周
面の長さより広い幅のフラットビームを投光し、乱反射
光を入射フラットビームの入射角と異なる反射角の平面
上で、且つ被検査周面の長さより広い範囲において第1
受光部で受光すると共に、被検査周面における正反射光
を入射フラットビームの入射角と等しい反射角の平面上
において第2受光部で受光し、第1受光部の受光信号を
第2受光部の受光信号とのアンド条件でゲートして、第
1受光部の受光信号から被検査周面以外からの乱反射光
による成分を除去した上、その第1受光部からの受光信
号に基づいて判定を行い被検査円筒体の被検査周面の状
態を判断する。例えば、その受光信号の中、所定値以上
のものの数及び所定値以上のものの大きさの積分値とに
よって円筒体の被検査周面の状態を判断するのである。
The method for inspecting the circumferential surface of a cylindrical body according to the present invention provides an incident angle to the circumferential surface of the cylindrical body to be inspected while rotating the cylindrical body to be inspected, so that the cylindrical body to be inspected is parallel to the axis of rotation of the cylindrical body to be inspected. A flat beam with a width wider than the length of the circumferential surface is projected, and the diffusely reflected light is reflected on a plane with a reflection angle different from the incident angle of the incident flat beam, and in a range wider than the length of the circumferential surface to be inspected.
The light receiving section receives the light, and the second light receiving section receives the specularly reflected light from the peripheral surface to be inspected on a plane with a reflection angle equal to the incident angle of the incident flat beam, and the light receiving signal of the first light receiving section is transmitted to the second light receiving section. Gate with the light reception signal of The condition of the circumferential surface of the cylindrical body to be inspected is determined. For example, the state of the circumferential surface of the cylindrical body to be inspected is determined based on the number of received light signals exceeding a predetermined value and the integral value of the magnitude of the received light signals exceeding a predetermined value.

この発明の円筒体周面検査装置は、被検査円筒体を回転
駆動するように支承する回転支承装置、被検査円筒体の
被検査周面に対して入射角を与えて被検査円筒体の回転
軸線に平行に被検査周面の長さより広い幅のフラットビ
ームを投光する投光部、前記入射角と異なる反射角の、
且つ被検査周面の長さより広い範囲の乱反射光を受光す
る第1受光部、前記入射角と等しい反射角の被検査周面
における正反射光を受光する第2受光部、及び前記両受
光部の受光信号に対する判断制御装置から構成され、前
記判断制御装置が第1受光部の受光信号を第2受光部の
受光信号とのアンド条件でゲートするゲート及びゲート
からの出力信号に基づいて判定を行う判定部を具備して
いる。
The cylindrical body circumferential surface inspection device of the present invention includes a rotary support device that supports a cylindrical body to be inspected so as to rotate the cylindrical body to be inspected; a light projecting unit that projects a flat beam parallel to the axis and having a width wider than the length of the circumferential surface to be inspected; a reflection angle different from the incident angle;
and a first light receiving section that receives diffusely reflected light in a wider range than the length of the circumferential surface to be inspected, a second light receiving section that receives specularly reflected light on the circumferential surface to be inspected with a reflection angle equal to the incident angle, and both of the light receiving sections. a gate that gates the light reception signal of the first light receiving section with an AND condition of the light reception signal of the second light receiving section, and the judgment control device makes the judgment based on the output signal from the gate. The system is equipped with a determination unit that performs the determination.

そうして、前記判断制御装置において、受光信号の中の
所定値以上のものの数を計数するカウンタ及び所定値以
上のものの大きさを積分する積分器、又はそのいずれか
一方が具備され、判定部は前記の数及び前記の積分値、
又はそのいずれか−方を所定の判定値と比較して円筒体
の被検査周面の状態を判断するのである。
The judgment control device is provided with a counter for counting the number of received light signals exceeding a predetermined value and/or an integrator for integrating the magnitude of signals exceeding the predetermined value; is the above number and the above integral value,
The condition of the circumferential surface of the cylindrical body to be inspected is determined by comparing either one of them with a predetermined determination value.

〔作  用〕[For production]

被検査円筒体は、回転支承装置に支承され、回転される
。それと同時に投光部から被検査周面の長さより長い幅
のフラットビームが被検査周面に対し入射角をもって被
検査円筒体の回転軸線に平行に照射され、被検査円筒体
は、周面全面に亘って走査される。その照射光は、被検
査円筒体の被検査周面で反射されるのであるが、被検査
円筒体の被検査周面に疵、ピンホール等があった場合に
は、その部分において乱反射がされ、その反射光が被検
査周面外での乱反射光と共に円筒体第1受光部において
受光され、そうして、被検査周面での正反射光は、第2
受光部で受光される。第1受光部の受光信号は、ゲート
において第2受光部の受光信号とのアンド条件でゲート
され、被検査周面以外からの乱反射光の受光信号が除去
された上、出力される。
The cylindrical body to be inspected is supported by a rotary support device and rotated. At the same time, a flat beam with a width longer than the length of the circumferential surface to be inspected is irradiated from the light projector to the circumferential surface to be inspected at an incident angle parallel to the axis of rotation of the cylindrical body to be inspected. is scanned over. The irradiated light is reflected by the circumferential surface of the cylindrical body to be inspected, but if there is a flaw, pinhole, etc. on the circumferential surface of the cylindrical body to be inspected, diffuse reflection may occur at that part. , the reflected light is received by the first light receiving part of the cylinder together with the diffusely reflected light outside the circumferential surface to be inspected, and the specularly reflected light from the circumferential surface to be inspected is received by the second light receiving section.
The light is received by the light receiving section. The light receiving signal of the first light receiving section is gated with the light receiving signal of the second light receiving section at the gate, and the light receiving signal of diffusely reflected light from other than the circumferential surface to be inspected is removed before being output.

その受光信号は、規定の大きさ以上のものがあると、積
分器では、その値が順次積分され、積分値が得られ、カ
ウンタでは、その数がカウントされる。そのようにして
得られた積分値及び信号数、又はそのいずれか一方は、
判定部に入力され、判定部における所定判定値と比較さ
れ、かくして。
If the received light signal is larger than a specified value, the integrator sequentially integrates the received light signal to obtain an integrated value, and the counter counts the number. The integral value and/or number of signals obtained in this way are:
is input to the determination unit and compared with a predetermined determination value in the determination unit, thus.

その比較の結果により判定部から判定信号が出力される
Based on the comparison result, a determination signal is output from the determination section.

〔実 施 例〕〔Example〕

この発明の実施例における装置を第1図に従って説明す
る。
An apparatus according to an embodiment of the invention will be explained with reference to FIG.

第1図に示すように、被検査円筒体である微小パイプW
を回転駆動するように支承する回転支承装置1(例えば
、回転駆動用のステッピングモータを備えた両端支持セ
ンター、又は下側支承の並列回転ローラ等)の上方に投
光部2、第1受光部3及び第2受光部4が設置されてい
る。
As shown in Fig. 1, a micropipe W which is a cylindrical body to be inspected
A light emitter 2 and a first light receiver are provided above a rotary support device 1 (for example, a support center at both ends equipped with a stepping motor for rotational drive, or parallel rotating rollers on a lower support) that supports the 3 and a second light receiving section 4 are installed.

投光部2は、微小パイプWが回転支承装置1に支承され
た状態において微小パイプWの全長に亘って、且つ微小
パイプWの軸線りに平行にその外周面にレーザフラット
ビームを投光するものであり、微小パイプWの被検査外
周面を完全に照射するために被検査外周面の全長より長
くなっている。
The light projecting unit 2 projects a laser flat beam onto the outer peripheral surface of the micro pipe W over the entire length of the micro pipe W and parallel to the axis of the micro pipe W when the micro pipe W is supported by the rotation support device 1. In order to completely irradiate the outer circumferential surface of the micropipe W to be inspected, it is longer than the entire length of the outer circumferential surface to be inspected.

第1受光部3及び第2受光部4は、微小パイプWの全長
に亘っての外周面で反射された投光部2からのレーザフ
ラットビームを受光するものであり、それらの長さも投
光部2と同様である。
The first light receiving section 3 and the second light receiving section 4 receive the laser flat beam from the light projecting section 2 that is reflected on the outer circumferential surface of the micropipe W over the entire length, and their length also depends on the light emitting section. This is the same as part 2.

そうして、投光部2、第1受光部3及び第2受光部4の
微小パイプWに対する相対位置は、王者が微小パイプW
の同一母線Gにおいて交わる平面PL、P2.P3上に
別々に、且つ微小パイプWの軸線に平行に設置されてい
るのである。しかも、投光部2の平面P1と第2受光部
4の平面P3とは、母線G及び軸線りを含む平面POに
対し対称であり(平面P1及び平面P3が平面POとな
す角は、共にθである)、第1受光部3の平面P2は、
平面P1と平面P3との中間に位置する。平面P2は、
平面POと同一平面であることが好ましいが、必ずしも
それに限らない。
Then, the relative positions of the light projecting section 2, the first light receiving section 3, and the second light receiving section 4 with respect to the micropipe W are determined such that the winner is the micropipe W.
The planes PL, P2. They are installed separately on P3 and parallel to the axis of the micropipe W. Moreover, the plane P1 of the light projecting section 2 and the plane P3 of the second light receiving section 4 are symmetrical with respect to the plane PO including the generatrix G and the axis (the angles that the plane P1 and the plane P3 make with the plane PO are both θ), the plane P2 of the first light receiving section 3 is
It is located between plane P1 and plane P3. The plane P2 is
Although it is preferable that it is on the same plane as the plane PO, it is not necessarily limited thereto.

第1受光部3及び第2受光部4は、図示の制御回路に接
続されている。第1受光部3及び第2受光部4は、夫々
増幅器5,6、フィルタ7.8及び2値化回路9,10
に接続されており、2値化回路10は2値化回路9に接
続され、2値化回路9は、幅測定部比更には、積分器1
2、カウンタ13、′判定部14に接続され、判定部1
4がら検査信号が出力されるようになっている。
The first light receiving section 3 and the second light receiving section 4 are connected to the illustrated control circuit. The first light receiving section 3 and the second light receiving section 4 include amplifiers 5, 6, filters 7.8, and binarization circuits 9, 10, respectively.
The binarization circuit 10 is connected to the binarization circuit 9, and the binarization circuit 9 is connected to the width measurement section ratio and the integrator 1.
2, counter 13, 'connected to determination section 14;
4, a test signal is output.

上記の表面検査装置による検査操作及び表面検査装置の
作用について説明する。
The inspection operation using the above-mentioned surface inspection device and the operation of the surface inspection device will be explained.

先ず、微小パイプWは、回転支承装置1に支承され、且
つ回転される。それと同時に投光部2がらレーザフラッ
トビームが微小パイプWの被検査外周面全長に亙って照
射される。レーザフラットビームの長さは、被検査外周
面の長さより長いから、微小パイプWの全外周面は、完
全に走査される。その走査は、実際には、1/2度毎に
行われる。その照射光は、微小パイプWの外周面で反射
されるのであるが、微小パイプWの外周面に疵、ピンホ
ール等がない場合には、その反射光は、第2受光部4の
みにおいて受光される。しかし、微小パイプWの外周面
に疵、ピンホール等があった場合には、その部分におい
て乱反射がされ、その反射光が第1受光部3において受
光される。
First, the micropipe W is supported by the rotary support device 1 and rotated. At the same time, a laser flat beam is irradiated from the light projection unit 2 over the entire length of the outer peripheral surface of the micropipe W to be inspected. Since the length of the laser flat beam is longer than the length of the outer peripheral surface to be inspected, the entire outer peripheral surface of the micropipe W is completely scanned. The scan is actually done every 1/2 degree. The irradiated light is reflected by the outer peripheral surface of the micropipe W, but if there are no flaws, pinholes, etc. on the outer peripheral surface of the micropipe W, the reflected light is received only by the second light receiving section 4. be done. However, if there is a flaw, pinhole, etc. on the outer circumferential surface of the micropipe W, diffuse reflection occurs at that portion, and the reflected light is received by the first light receiving section 3.

夫々の第1受光部3及び第2受光部4で受光され、CC
Dイメージセンサ−により得られる信号は、増幅器5,
6で増幅、スケーリングされ、次いで、その増幅された
信号の波形に重畳されている高周波ノイズがローパスフ
ィルタであるフィルタ7.8によりカットされる(第2
図C9d)。
The light is received by each of the first light receiving section 3 and the second light receiving section 4, and the CC
The signal obtained by the D image sensor is transmitted through an amplifier 5,
6 is amplified and scaled, and then the high frequency noise superimposed on the waveform of the amplified signal is cut by a low-pass filter 7.8 (second
Figure C9d).

処で、レーザフラットビームの長さは、被検査外周面の
長さより長いから、被検査外周面の両端外の区域からの
反射光も第1受光部3により受光され、疵として誤判さ
れる虞れがある。
However, since the length of the laser flat beam is longer than the length of the outer circumferential surface to be inspected, there is a risk that reflected light from areas outside both ends of the outer circumferential surface to be inspected will also be received by the first light receiving section 3 and may be misjudged as a defect. There is.

しかし、第2受光部4では、被検査外周面での正反射の
反射光のみが受光されるので、第1受光部3及び第2受
光部4からの信号は、更に2値化回路9,10で2値化
されるのであるが(第2図C9d)、第1受光部3から
の信号は、2値化される際、第2受光部4からの信号と
のアンド条件でゲートされ、第1受光部3での被検査外
周面以外からの乱反射光による信号が除去された後1幅
測定部11に入力される。
However, since the second light receiving section 4 receives only the specularly reflected light from the outer peripheral surface to be inspected, the signals from the first light receiving section 3 and the second light receiving section 4 are further transmitted to the binarization circuit 9, 10 (C9d in FIG. 2). When the signal from the first light receiving section 3 is binarized, it is gated with the signal from the second light receiving section 4 under an AND condition. After signals caused by diffusely reflected light from other than the outer circumferential surface to be inspected at the first light receiving section 3 are removed, the signal is input to the width measuring section 11 .

従って、微小パイプWの被検査外周面のみが、しかも全
面的に正確に検査判定されることになるのであって、第
1受光部3からの信号は、幅測定部11で規定幅値と比
較され、規定幅以上のものがあると、積分器12では、
その幅が順次積分され、積分値Sが得られ、カウンタ1
3では、その数(規定されたものより大きい疵の数)C
nがカウントされる。そのようにして得られた積分値S
と信号数Cnとは、判定部15に入力され、判定部15
に記録されている判定値と比較される。判定部15にお
ける判定値は、予め準備されたマスターとなる微小パイ
プWOを測定して得られた値が入力されて記録されるの
である。
Therefore, only the outer circumferential surface of the micropipe W to be inspected and the entire surface can be accurately inspected, and the signal from the first light receiving section 3 is compared with the specified width value in the width measuring section 11. If the width exceeds the specified width, the integrator 12 will:
The width is sequentially integrated, an integral value S is obtained, and the counter 1
3, the number (number of flaws larger than the specified one) C
n is counted. The integral value S obtained in this way
and the number of signals Cn are input to the determination unit 15, and the determination unit 15
It is compared with the judgment value recorded in . The determination value in the determination unit 15 is input and recorded as a value obtained by measuring a master micropipe WO prepared in advance.

かくして、積分値S及び数Cnと判定値との比較の結果
により判定部15から合否の信号が出力される。
Thus, a pass/fail signal is output from the judging section 15 based on the result of comparing the integral value S and the number Cn with the judgment value.

その判定は、例えば、所定幅以上の疵が所定数以上あっ
ても、数に関係なく所定幅以上の疵の累積幅値が所定値
以上あっても、いずれにしても不合格とする。
In this determination, for example, even if there are a predetermined number or more of flaws that are larger than a predetermined width, or even if the cumulative width value of flaws that are larger than a predetermined width is greater than or equal to a predetermined value regardless of the number, the product will be rejected in any case.

その他、幅のみによる判定の場合や、数のみによる判定
の場合等、種々の形の判定が考えられる。
In addition, various types of determination can be considered, such as determination based only on width or determination based only on number.

更に、被検査材は、微小パイプに限らず、円筒体であれ
ばよく、この発明が外周面検査に限らず、場合によって
は内周面検査にも適用し得ることは容易に考えられよう
Furthermore, the material to be inspected is not limited to a small pipe, but may be any cylindrical body, and it is easy to imagine that the present invention may be applied not only to outer circumferential surface inspection but also to inner circumferential surface inspection in some cases.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、投光手段及び受光手段を被検査周面
の軸線長さに完全に一致させることなく、容易に被検査
周面全面を完全に走査し、全被検査周面からの乱反射光
のみを受光信号として検査し得て、それによりノイズな
しに、円筒体の周面の検査が正確に行われる。
According to this invention, the entire circumferential surface to be inspected can be easily completely scanned without making the light projecting means and the light receiving means completely coincident with the axial length of the circumferential surface to be inspected, and the diffused reflection from the entire circumferential surface to be inspected can be easily scanned. Only light can be inspected as a light reception signal, and thereby the circumferential surface of the cylindrical body can be accurately inspected without noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例における円筒体周面検査装
置の概略構成図、 第2図は、この発明の実施例における円筒体周面検査装
置の第1受光部及び第2受光部において出力された信号
のグラフである。 1:回転支承装置   2:投光器
FIG. 1 is a schematic configuration diagram of a cylindrical body circumferential surface inspection apparatus according to an embodiment of the present invention, and FIG. It is a graph of the output signal. 1: Rotating support device 2: Floodlight

Claims (2)

【特許請求の範囲】[Claims] (1)被検査円筒体を回転駆動しながら、その被検査円
筒体の被検査周面に対し入射角を与えて被検査円筒体の
回転軸線に平行に被検査周面の長さより広い幅のフラッ
トビームを投光し、乱反射光を入射フラットビームの入
射角と異なる反射角の平面上で、且つ被検査周面の長さ
より広い範囲において第1受光部で受光すると共に、被
検査周面における正反射光を入射フラットビームの入射
角と等しい反射角の平面上において第2受光部で受光し
、第1受光部の受光信号を第2受光部の受光信号とのア
ンド条件でゲートして、第1受光部の受光信号から被検
査周面以外からの乱反射光による成分を除去した上、そ
の第1受光部からの受光信号に基づいて判定を行い被検
査円筒体の被検査周面の状態を判断する円筒体周面検査
方法
(1) While rotating the cylindrical body to be inspected, give an incident angle to the circumferential surface of the cylindrical body to be inspected so that a width wider than the length of the circumferential surface is parallel to the axis of rotation of the cylindrical body to be inspected. A flat beam is emitted, and the first light receiving section receives the diffusely reflected light on a plane with a reflection angle different from the incident angle of the incident flat beam and in a range wider than the length of the circumferential surface to be inspected. The specularly reflected light is received by a second light receiving section on a plane with a reflection angle equal to the incident angle of the incident flat beam, and the light receiving signal of the first light receiving section is gated with an AND condition with the light receiving signal of the second light receiving section, The condition of the circumferential surface of the cylindrical body to be inspected is determined based on the received light signal from the first light receiving section after removing components due to diffusely reflected light from other than the circumferential surface to be inspected from the light receiving signal of the first light receiving section. Cylindrical body circumference inspection method to determine
(2)被検査円筒体を回転駆動するように支承する回転
支承装置、被検査円筒体の被検査周面に対して入射角を
与えて被検査円筒体の回転軸線に平行に被検査周面の長
さより広い幅のフラットビームを投光する投光部、前記
入射角と異なる反射角の、且つ被検査周面の長さより広
い範囲の乱反射光を受光する第1受光部、前記入射角と
等しい反射角の被検査周面における正反射光を受光する
第2受光部、及び前記両受光部の受光信号に対する判断
制御装置から構成され、前記判断制御装置が第1受光部
の受光信号を第2受光部の受光信号とのアンド条件でゲ
ートするゲート及びゲートからの出力信号に基づいて判
定を行う判定部を具備している円筒体周面検査装置
(2) A rotary support device that rotatably supports the cylindrical body to be inspected, and the circumferential surface to be inspected is parallel to the rotational axis of the cylindrical body to be inspected by giving an incident angle to the circumferential surface to be inspected of the cylindrical body to be inspected. a light projecting part that projects a flat beam with a width wider than the length; a first light receiving part that receives diffusely reflected light having a reflection angle different from the incident angle and in a range wider than the length of the circumferential surface to be inspected; It is composed of a second light receiving section that receives specularly reflected light from the circumferential surface to be inspected at the same reflection angle, and a judgment control device for the light reception signals of both the light receiving sections, and the judgment control device judges the light reception signal of the first light receiving section for the second light receiving section. A cylindrical body circumferential surface inspection device comprising a gate that performs an AND condition with the light reception signal of two light receiving sections, and a determination section that performs a determination based on the output signal from the gate.
JP14476288A 1988-06-14 1988-06-14 Method and device for inspecting peripheral surface of cylindrical body Pending JPH01313739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14476288A JPH01313739A (en) 1988-06-14 1988-06-14 Method and device for inspecting peripheral surface of cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14476288A JPH01313739A (en) 1988-06-14 1988-06-14 Method and device for inspecting peripheral surface of cylindrical body

Publications (1)

Publication Number Publication Date
JPH01313739A true JPH01313739A (en) 1989-12-19

Family

ID=15369813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14476288A Pending JPH01313739A (en) 1988-06-14 1988-06-14 Method and device for inspecting peripheral surface of cylindrical body

Country Status (1)

Country Link
JP (1) JPH01313739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204144A (en) * 1990-11-30 1992-07-24 Nissan Motor Co Ltd Surface-defect inspecting apparatus
JPH04204148A (en) * 1990-11-30 1992-07-24 Nissan Motor Co Ltd Surface-defect inspecting apparatus
JP2000205847A (en) * 1999-01-18 2000-07-28 Kawasaki Steel Corp Method and device for inspecting surface flaw

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204144A (en) * 1990-11-30 1992-07-24 Nissan Motor Co Ltd Surface-defect inspecting apparatus
JPH04204148A (en) * 1990-11-30 1992-07-24 Nissan Motor Co Ltd Surface-defect inspecting apparatus
JP2000205847A (en) * 1999-01-18 2000-07-28 Kawasaki Steel Corp Method and device for inspecting surface flaw

Similar Documents

Publication Publication Date Title
US4674875A (en) Method and apparatus for inspecting surface defects on the magnetic disk file memories
JPH03267745A (en) Surface property detecting method
JPH01313741A (en) Method and device for inspecting surface of disk
US4506981A (en) Method for detection of blown beads in pneumatic tires
US4719360A (en) Method for determination of concentration of smoke emanating from combustion engine and apparatus for working said method
JP2005024327A (en) Surface inspection method and surface inspection device
JPH01313739A (en) Method and device for inspecting peripheral surface of cylindrical body
JPH0375547A (en) Floppy-disk inspecting method
JPH04122839A (en) Inspecting method of surface
JP3618545B2 (en) Defect inspection method
JP2858194B2 (en) O-ring inspection method
JPS6344151A (en) Appearance inspector
JPH08159722A (en) Product dimension measuring instrument
JPS6180009A (en) Surface-flaw inspection of magnetic disk and apparatus thereof
JPS6324243B2 (en)
JPH08271240A (en) Device and method for testing hollow fiber module
JPS59180413A (en) Surface-defect inspecting method
JP3406951B2 (en) Surface condition inspection device
JPH02163639A (en) Disk inspection device
JP2525846B2 (en) Surface defect inspection equipment
JPH0854345A (en) Inspecting device
JPS63314449A (en) Defect detection for mouth of bottle
JPH0483148A (en) Quality checking device for vegetables and fruits
JPS5919803A (en) Razor edge appearance inspecting device
JPS6353453A (en) Defect inspecting device for disc