JPH01313365A - Sintered body of metallized aln having high thermal conductivity and high-thermally conductive substrate - Google Patents

Sintered body of metallized aln having high thermal conductivity and high-thermally conductive substrate

Info

Publication number
JPH01313365A
JPH01313365A JP63143987A JP14398788A JPH01313365A JP H01313365 A JPH01313365 A JP H01313365A JP 63143987 A JP63143987 A JP 63143987A JP 14398788 A JP14398788 A JP 14398788A JP H01313365 A JPH01313365 A JP H01313365A
Authority
JP
Japan
Prior art keywords
aln
sintered body
metallized
sintered
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63143987A
Other languages
Japanese (ja)
Other versions
JP2659068B2 (en
Inventor
Akira Sasame
笹目 彰
Hitoshi Sakagami
坂上 仁之
Hisao Takeuchi
久雄 竹内
Koichi Sogabe
浩一 曽我部
Masaya Miyake
雅也 三宅
Akira Yamakawa
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63143987A priority Critical patent/JP2659068B2/en
Publication of JPH01313365A publication Critical patent/JPH01313365A/en
Application granted granted Critical
Publication of JP2659068B2 publication Critical patent/JP2659068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Details Of Resistors (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide the sintered AlN body having the high adhesive strength of the metallized layer, good electrical conductivity and high thermal conductivity by incorporating the sintered AlN body which is specified in the ratio of the quantity of solid soln. oxygen to the AlN in the metal layer consisting of W and/or Mo. CONSTITUTION:The paste formed by adding the compd. selected from groups IIa, IIIa, for example, CaO and Y2O3 as a sintering assistant and deoxidizing agent together with AlN powder to W or Mo paste is prepd. Said paste is coated on the surface of the sintered AlN body and the unsintered body thereof and is then calcined, by which the sintered body of the metallized AlN mentioned above is obtd. The metal layer of the sintered body of the metallized AlN mentioned above is required to contain the sintered AlN body having <=0.3wt.% quantity of solid soln. oxygen with respect to the AlN. The sintered body of the metallized AlN obtd. in such a manner exhibits the excellent thermal conductivity or low heat resistance and is, therefore, useful as the material for an insulating substrate, etc., in semiconductor industry.

Description

【発明の詳細な説明】 <ip業1.の利用分野〉 この発明はWまたは−もしくはWおよび出の両名からな
る金n層を具備した高熱伝導性にすぐれた金属化AlN
焼結体およびそれを用いた高熱伝導性基板に関づるもの
である。
[Detailed description of the invention] <IP industry 1. FIELD OF APPLICATION> The present invention is directed to metallized AlN with excellent high thermal conductivity and having a gold n-layer consisting of W or - or both W and
This invention relates to a sintered body and a highly thermally conductive substrate using the same.

〈従来の技術とその課題〉 最近のtslの進歩は1覚しく、集1I4raの向上が
茗しい。これにはICチップサイズの向、トも寄与して
おり、ICチップサイズの向上に伴ってパッケージ当り
の発熱量が増大している。このため、基板材料の成熟性
が重要視されるようになってきた。
<Conventional technology and its problems> The recent progress of TSL is remarkable, and the improvement of Collection 1I4RA is remarkable. The change in IC chip size also contributes to this, and as the IC chip size increases, the amount of heat generated per package increases. For this reason, the maturity of substrate materials has come to be considered important.

また、従来IC基板として用いられていたアルミプ焼結
体の熱伝導率では成熟性が不十分であり、ICチップの
発熱量の増大に対応できなくなりつつある。このためア
ルミプ基板に代るものとして、高熱伝導性のベリリア基
板が検討されているが、ベリリアは毒性が強く取扱いが
難しいという欠点がある。
In addition, the thermal conductivity of the aluminum sintered bodies conventionally used as IC substrates is not mature enough, and it is becoming impossible to cope with the increase in heat generation of IC chips. For this reason, a highly thermally conductive beryllia substrate is being considered as an alternative to the aluminum substrate, but beryllia has the drawback of being highly toxic and difficult to handle.

窒化アルミニウム(AlN>は、本来材質的に高熱伝導
性、高絶縁性を融資、毒性もないため、半導体1業にJ
jい(絶縁H料あるいはパック ジ祠料として注目を集
めている。そして、電力用トランジスタをはじめ各種の
IC用1.L板、バララージ等として用いるため、表面
に金属層を形成せしめる技術が数多く報告されでいる。
Aluminum nitride (AlN) is a material that has high thermal conductivity, high insulation properties, and is non-toxic, so it is widely used in the semiconductor industry.
(It is attracting attention as an insulating H material or a pack abrasive material.There are many technologies for forming a metal layer on the surface for use as 1.L plates, barrier boards, etc. for various ICs including power transistors. It has been reported.

例えば、非酸化物系セラミック体の金属化用組成物およ
び金属化方法(特公昭(32−27037号)、日本電
気Moの窒化アルミニウム技術(エレクトロニクス・セ
ラミックス誌、1986年11月号第28頁)などであ
る。そして前者にはメツキ、ろう付【ノ可能な強固な接
肴を4qることができる組成物ならびにそれを用いた金
属化方法につい(開示されており、AlNセラミックス
体(は金属化用[1成物どじでW、陶のほかに非酸化物
系しラミックスの構成要木物71、つまりAlNと金属
あるいは全屈酸化物を含有せしめてなる金属化用組成物
ならびにNN未焼結成形体にそのペーストを塗布して非
酸化性雰囲気中(・焼成する同時焼成法について説明さ
れている。
For example, composition and metallization method for metallizing non-oxide ceramic bodies (Tokukosho (No. 32-27037), Nippon Electric Mo's aluminum nitride technology (Electronics Ceramics Magazine, November 1986 issue, p. 28) The former discloses a composition that can provide a strong bond that can be plated or brazed, as well as a metallization method using the same. [1] In addition to W, ceramics, non-oxide-based and Lamix component wood 71, that is, metallizing compositions containing AlN and metals or total flexure oxides, and NN unfired A simultaneous firing method is described in which the paste is applied to the compact and fired in a non-oxidizing atmosphere.

後者では高熱伝導性のUNの多層配線基板について述べ
ており、AlNのグリーンシート上にW微粉末にN/へ
を添加したペーストを印刷し、+?1層を行なって脱バ
インダーし、常圧焼結を行ない、AlNの添加量による
Wの焼結性、電気抵抗NN焼結体の検討がなされ、Af
Nの添加ff11車吊%の場合が最良の結果を青で、引
張り強度も2Kg4以上のId+て゛実用的に1分な強
度であったと報告されている。
The latter describes a highly thermally conductive UN multilayer wiring board, in which a paste containing fine W powder and N/N is printed on an AlN green sheet, and a +? One layer was applied, the binder was removed, and pressureless sintering was performed, and the sinterability of W and electrical resistance NN sintered body were investigated depending on the amount of AlN added, and Af
It is reported that the best results were shown in blue when the N addition was ff11%, and the tensile strength was 2 Kg4 or higher, which was a practical strength of 1 minute.

このほかにも数例の報告があるが、W t> t、 <
はMoのペーストにAlNの添加もしくはその他に金属
、全屈酸化物も添加することで密着強度が高い良りfな
NN焼結体が得られるものと判断される。
There are several other cases reported, but W t > t, <
It is judged that a NN sintered body with high adhesion strength and good f can be obtained by adding AlN to the Mo paste, or by adding a metal or a total bending oxide.

従って本光明者らは上記同様の成分を含有りる金属1ヒ
層を具備したN/N塁板にハイパワーのS、トランジス
タをその金属化層上に搭載uしめで、熱抵抗を測定した
ところ予想外にその値が悪く、B(意検約を行なったと
ころ、金属化層の熱伝導が悪いという結果が得られた。
Therefore, we measured the thermal resistance of an N/N base plate with a metal layer containing the same components as above, and mounted a high-power S and transistor on the metallized layer. However, the value was unexpectedly poor, and when we conducted a test, we found that the heat conduction of the metallized layer was poor.

つまり、高熱伝導性を右づるAlN基板に大量に熱をn
1する木了を搭載uしめて放熱を図ろうと試みてし、素
子と基板に介在りる金属化層が熱伝導を1111害し、
本来の高放熱という作用を発揮することができなかった
In other words, a large amount of heat is transferred to the AlN substrate, which has high thermal conductivity.
Attempts were made to dissipate heat by mounting a metal layer on the device, but the metallized layer between the element and the substrate impairs heat conduction.
It was not possible to achieve the original high heat dissipation effect.

〈発明の目的〉 そこで、この発明は金属化層の接を強度が高く、良好な
導通性のほかに、新たに熱伝導が高いという特徴を兼ね
鮎えた金属化NN焼結体を提供することを目的とづるし
のである。
<Purpose of the Invention> Therefore, the present invention provides a metallized NN sintered body that has a high strength contact between metallized layers, good conductivity, and a new feature of high thermal conductivity. This is the purpose of writing.

く課題を解決覆るだめの手段〉 ソリ、ウネリが少なく、密着強度等が高い良好な金属化
APNvlIil1体を1!/るには、その金属化層に
AlNの成分を含めるのが一丁法とにえられる、1しか
しながら、金属化層に高熱伝力性を兼ねfIhえるには
極めて不1分で゛ある。
A solution to the problem > One piece of good metallized APNvlIil with less warping and waviness and high adhesion strength! One way to achieve this is to include an AlN component in the metallized layer.1However, it is extremely insufficient to provide the metallized layer with high thermal conductivity.

金属化層の桶造は、基本的に鶴よた(よ/およびWの焼
結体の空隙にAlNやAlN化合物が存在したものと見
做される。比、W中休の熱伝導率は120〜15014
/Inkと比較的にザぐれた値を有するが、添加物であ
る空隙に存イ1する低熱伝導率のAlN、bしくはその
化合物等にJ、つて棒端に低゛トする。
The structure of the metallized layer is basically considered to be that AlN or AlN compounds were present in the voids of the sintered body of Tsuru Yota (Yo/W). 120-15014
/Ink, but J is added to the low thermal conductivity AlN, b, or a compound thereof existing in the voids as an additive, and is lowered to the end of the rod.

従って、鶴、W 111体と同じレベル以−[の高熱伝
導性NN焼結体を含む金属化層を貝面することで、熱伝
導の優れた金属化NN焼結体が得られることを本発明者
らは見出したものである。
Therefore, it is clear that a metallized NN sintered body with excellent thermal conductivity can be obtained by surfacing a metallized layer containing a highly thermally conductive NN sintered body of the same level or higher as that of the Tsuru W111 body. This is what the inventors discovered.

即ち、この発明はWまたは比の)い独もしくはWと出の
両者からなる金属層における固溶酸素量がAlNに対し
て0.3中量%以下であるNN焼結体を含有することを
特徴とする高熱伝導性の金属化NN焼結体および該焼結
体と半導体素子、リードフレームおよび/または放熱基
板からなる高熱伝力i/1基板を提供りるものである。
That is, the present invention contains a NN sintered body in which the amount of solid dissolved oxygen in the metal layer consisting of W or both (W or ratio) is 0.3% by weight or less based on AlN. The present invention provides a highly thermally conductive metallized NN sintered body and a high thermal conductivity i/1 substrate comprising the sintered body, a semiconductor element, a lead frame, and/or a heat dissipation board.

く作用〉 NN焼結体のような絶縁性はラミックスの熱伝導機構は
フォノン伝導を1体とするため、気孔、不純物等の欠陥
はフォノン散乱を起こし、熱伝導性は低レベルのものし
か得られない。特に、熱伝導性の低下の主囚了と考えら
れるUN粒子に固溶している耐水がAfN焼結体に対し
0.3重量%以」−含有すると、AfNの熱伝導率が1
0014/nk以下になってしまう。
Effect> Insulating properties such as NN sintered bodies, the thermal conduction mechanism of Lamics uses phonon conduction as one body, so defects such as pores and impurities cause phonon scattering, and the thermal conductivity is only at a low level. I can't get it. In particular, if the water resistant solid solution in the UN particles, which is considered to be the main reason for the decrease in thermal conductivity, is contained in the AfN sintered body in an amount of 0.3% by weight or more, the thermal conductivity of AfN decreases by 1.
0014/nk or less.

このため、酸#吊を0.3重量%以下にJるためには、
WlMoの焼成と同時にNN表面に吸着している耐水を
脱酸しなからAlN/!!−高密厄に緻密1ヒーするこ
とが極めて必要である。
Therefore, in order to reduce the acid content to 0.3% by weight or less,
At the same time as WlMo is fired, the water adsorbed on the NN surface is deoxidized and AlN/! ! - It is extremely necessary to perform a precise 1 heat on a high density evil.

AJN自身は難焼結性であるため、AlNの焼結を促進
せしめる助剤害の検討が必要である。
Since AJN itself is difficult to sinter, it is necessary to consider the effects of additives that promote the sintering of AlN.

即ち、Wもしくは臨ペーストにAlN粉末ど共に焼結助
剤及びIB2酸剤としての周期(1表11a 、Ila
族から選ばれた化合物、例えばCaO1Y20s等を添
加する方法、へ〇N粉末とどもに炭素を添加して焼結り
ることによって脱酸し、低耐水の焼結体を1#る方法、
高紬庭低酸本のAlN粉末を添加りる方法、AlN焼結
体に残留する焼結助剤を分解熱ブでさけ、高純度のAl
N焼結体を得る方法、焼結体に残留する焼結助剤を長時
間の還元雰囲気トに1¥し、除去づる方法、NNN根板
つまり母材から金属化層に浸透する助剤によってNN粉
宋の焼結助剤および脱酸剤としての効果を秦づる方法な
ど、これら何れの方法でも作用に変りはない。
That is, the periodicity of W or the paste as a sintering aid and IB2 acid agent together with AlN powder (Table 11a, Ila
A method of adding a compound selected from the group, such as CaO1Y20s, a method of adding carbon to 〇N powder and sintering it to deoxidize it and make a low water resistant sintered body.
Takatsumugi's method of adding low-acid AlN powder, avoiding the sintering aid remaining in the AlN sintered body with a decomposition heat oven, and adding high-purity Al
A method for obtaining a N sintered body, a method in which the sintering aid remaining on the sintered body is removed by placing it in a reducing atmosphere for a long time, and the aid penetrates into the metallized layer from the NNN root plate, that is, the base material. There is no difference in the effect of any of these methods, including the method of extracting the effect of NN powder as a sintering aid and deoxidizing agent.

また金属化法どしては、上記成分のペース1〜をAP 
N焼結体およびその未焼結体表面に塗布した後、焼成し
ても良好な金属化1m ff14’fられることが11
v認0 れ lこ 。
In addition, for metallization methods, AP
After applying to the surface of the N sintered body and its unsintered body, good metallization can be achieved even when fired.
I'm not sure.

この発明における具体例を挙げると、金属化用組成物と
しては、比、W粉末と共にAlN粉末、lI3よびY2
O3、CaOあるいはY 、 Caの有機酸塩、アル」
−1シトの混合物などを配合することが特に効果がルt
められた。
To give a specific example of the present invention, the metallizing composition includes AlN powder, lI3 and Y2 powder as well as W powder.
O3, CaO or Y, organic acid salt of Ca, Al
-It is particularly effective to blend a mixture of
I was caught.

その中でもWの100重吊重吊対してAlN粉末5小量
部、Yのステアリン酸塩をY元素換粋で0.05小要部
用いると、特にその効果が顕著に認められた。
Among these, the effect was particularly noticeable when 5 small parts of AlN powder and 0.05 small parts of Y stearate were used per 100 weights of W.

微量のYが含まれているにも拘らず、そのステアリンP
a塩は液体として存在し、Wペーストに極めく均一に5
)故Jるため、ステアリン1mの効果1よこの発明で明
らかに認められた。
Despite containing a trace amount of Y, the stearin P
The a salt exists as a liquid and is extremely uniformly distributed in the W paste.
) Therefore, the effect of 1 m of stearin was clearly recognized in this invention.

これらの金属化組成物を用いて金属化AlNを形成uし
める具体例を述べると、上述の組成物にニブル廿ルロ〜
ス、アクリル樹1后、ポリビニルアル」−ルなどの公知
の粘結剤とα−チルピノール、ブブカルビノ・−ルなど
の公知の溶剤からなるバインダーを添加してペーストを
作製した。
A specific example of forming metallized AlN using these metallized compositions is as follows.
A paste was prepared by adding a binder consisting of a known binder such as a resin, an acrylic resin, a polyvinyl alcohol, and a known solvent such as α-tilpinol or bubucarbinol.

このペーストをAlNのグリーンシート上に塗布した襖
、必要に応じてそれを積層し、非酸化性雰囲気中で16
00〜2100℃にて焼成して金属化HN焼結体を得た
This paste was coated on a fusuma (AlN) green sheet, and if necessary, it was laminated and heated for 16 hours in a non-oxidizing atmosphere.
A metallized HN sintered body was obtained by firing at a temperature of 00 to 2100°C.

金属化層の熱伝導性は金属化層中に占めるAlNの割合
が多くなるほど効果を有りることが実験的に認められた
。また金属化層の密召瓜はAlNとどしにIla 、I
[[a族の化合物の存在により向1づることが認められ
ている。
It has been experimentally found that the thermal conductivity of the metallized layer is more effective as the proportion of AlN in the metallized layer increases. In addition, the metallized layer of minced melon is made of AlN with Ila and I
[[It has been recognized that the presence of a group a compound leads to a positive effect.

これらの化合物によって/VN、W%tが各々緻密に、
しかも強固に焼結し、しかもAlN基板表面の濡れ、密
者度の向上に′I?与しているものと考えられる。
These compounds make /VN and W%t dense, respectively.
Moreover, it is strongly sintered, and it also improves the wettability and density of the AlN substrate surface. It is thought that it is given.

しかしながら、金属化層中に占めるAlN焼結体の割合
が30重量部以上になると、含屈化層表面十にAt N
焼結体が析出し、メツ1が困難どなり、々通抵抗し高く
なって実用1好ましくない。
However, when the proportion of the AlN sintered body in the metallized layer exceeds 30 parts by weight, AtN
The sintered body is precipitated, the metal 1 is difficult to crack, and the resistance becomes high, which is not desirable for practical use.

以上のように、高熱伝導性をイiする金属化M N焼結
体を得るには、母材のへ9N焼結体61.<は基板の熱
伝導率が高いばかりで・なく、密着しでいる金属化層も
高い熱伝導特性を兼ね描える必要がある。
As described above, in order to obtain a metallized MN sintered body with high thermal conductivity, it is necessary to add 9N sintered body 61. < not only requires that the substrate has high thermal conductivity, but also that the adhering metallization layer also has high thermal conductivity.

この発明で(よ金属化層中に含有されるAlN焼結体を
高熱伝導化、即ちUN粒子に固溶している酸′lIi吊
を0.3重量%以不とJることによってすぐれた金属化
AlN焼結体を得ることができたのである。
In this invention, the AlN sintered body contained in the metallized layer is made to have high thermal conductivity, that is, the amount of acid dissolved in the UN particles is reduced to 0.3% by weight or less. A metallized AlN sintered body could be obtained.

かくして得られた金属化AlN焼結体はづ゛ぐれた熱伝
導率らしくは低熱抵抗を示すので半導体工業にJハノる
絶縁基板もしくはパッケージ材料として石川である。
The metallized AlN sintered body thus obtained exhibits excellent thermal conductivity and low thermal resistance, making it a popular insulating substrate or package material in the semiconductor industry.

く実/IIi例〉 以下、実施例によりこの発明の詳細な説明でるが、この
発明はそれらの実施例に限定されるものではない。
Example IIi> The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 W粉末100重量部に対して第1表に示した吊のステア
リン酸イツトリウム、酸化イツトリウム、ステアリン酸
カルシ「ンム、もしくは酸化hJレシウムとAlN粉末
(平均粒径0.4μ、酸素量1.41¥%)を有機ビヒ
クルと共に3木1゛1−ルで十分混棟し、大々Wベース
トを青た。
Example 1 100 parts by weight of W powder was mixed with yttrium stearate, yttrium oxide, calcium stearate, or hJ lesium oxide shown in Table 1 and AlN powder (average particle size 0.4μ, oxygen amount 1). .41 yen%) was sufficiently mixed with an organic vehicle in 3 wood 1-1-le, and a large amount of W base was obtained.

この各WペーストをNNの未焼結体に印刷し、脱バイン
ダー債同時に焼成を行な−一だ。
Each of these W pastes was printed on an unsintered NN body, and the binder was removed and fired at the same time.

得られたWfLa化AlN焼結体のW4体のシート抵抗
を測定した。
The sheet resistance of the W4 body of the obtained WfLa AlN sintered body was measured.

また、W金属化表面にNLメツ−1を施した後、N。In addition, after applying NL METS-1 to the W metallized surface, N.

処理したコバール線を半田何けし、金属化表面に対して
垂直方向に引張り、密着強度を測定した。
The treated Kovar wire was soldered and pulled in a direction perpendicular to the metallized surface to measure the adhesion strength.

また、W金属化表面にNL、Auメツキ処1!I! L
、た後、ハイパワートランジスタを搭載して八vB[法
(トランジスタの1−ミツターペース間順方向降下光I
J。
Also, NL and Au plating on the W metallized surface 1! I! L
, after that, a high power transistor is installed and the forward falling light I
J.

VB、の電力印加による変化分Δ■BEを測f1Jる熱
抵抗評f[i沫)によって基板の熱抵抗状態を測定した
。イの結末は実用レベルにはO印を、実用不可にはX印
にて示した。
The thermal resistance state of the substrate was measured based on the thermal resistance evaluation f[i], which was obtained by measuring the change Δ■BE due to the application of power in VB. The results of (a) are indicated by an O mark if it is of a practical level, and an X mark if it is not practical.

さらにN、メツ−1処狸後の表面状態について実体顕m
鏡を用いて、シミ、発泡、メツ4Moの析出状態を評価
し、その優劣を○、Xにて示した。
Furthermore, the surface condition after N, Metsu-1 treatment was examined.
Using a mirror, stains, foaming, and the precipitation state of Metsu 4Mo were evaluated, and their superiority or inferiority was indicated by ○ or X.

なお表中の*印を付した試別番21は比較例である。In addition, trial number 21 marked with * in the table is a comparative example.

またステアリン酸イツトリウム(ステアリン酸Y)ほか
の添加物の添加ΦはW粉末100重量部に対するもので
ある。
Further, the addition Φ of yttrium stearate (Y stearate) and other additives is based on 100 parts by weight of W powder.

実施例2 実施例1におCノるW粉末に代えて比粉末を用い、実施
例1と同様にして出金層化AlN焼結体を得た。
Example 2 A deposited layered AlN sintered body was obtained in the same manner as in Example 1 except that a specific powder was used in place of the W powder used in Example 1.

この焼結体の実施例1におけると同様のjスト結束を第
2表に示した。
Table 2 shows the j-strike binding of this sintered body similar to that in Example 1.

なお人中*印の試料番号は比較例である。The sample numbers marked with * in the human body are comparative examples.

第    2   表 上記実施例1および2の結末から明らがなように、高熱
伝導性の金属化AlN焼結体、っまり熱抵抗の小さい金
属化層を有づるためには、金属化層中に存在するAlN
焼結体の固溶耐水串が0.3%以下に1にとが必要であ
る。
Table 2 As is clear from the results of Examples 1 and 2 above, in order to have a metallized AlN sintered body with high thermal conductivity, that is, a metallized layer with low thermal resistance, it is necessary to AlN present in
It is necessary that the solid solution water resistance of the sintered body is 0.3% or less.

また、この焼結体はシート抵抗、引張強度、表面状態な
どを名山づれば、AlNの添加中吊部をWまたは重金属
の100中串部に対し′c30以下と覆ることがΦ要で
あることが認められた。
In addition, if the sheet resistance, tensile strength, surface condition, etc. of this sintered body are evaluated, it is important that the hanging part during the addition of AlN should be Φ or less than 100 cm of W or heavy metal. Admitted.

〈発明の効果〉 以上のべたように、この北門になる金属化AlN焼結体
は、すぐれた熱伝導率および低熱抵抗を示し、半々体工
業において絶縁4A料ムしくはパッケージ材料どして極
めでイJ効であることが期待されるのである。
<Effects of the Invention> As described above, the metallized AlN sintered body that will become the north gate exhibits excellent thermal conductivity and low thermal resistance, and is extremely popular as an insulation 4A material or packaging material in the half-and-half industry. Therefore, it is expected that it will be effective.

Claims (4)

【特許請求の範囲】[Claims] (1)WまたはMoの単独もしくはWとMoの両者から
なる金属層における固溶酸素量がAlNに対して0.3
重量%以下であるAlN焼結体を含有することを特徴と
する高熱伝導性の金属化Al焼結体。
(1) The amount of solid dissolved oxygen in the metal layer consisting of W or Mo alone or both W and Mo is 0.3 with respect to AlN.
A highly thermally conductive metallized Al sintered body, characterized in that it contains an AlN sintered body of not more than % by weight.
(2)AlNの含有量が、WまたはMoの単独もしくは
WとMoの両者からなる金属層100重量部に対して3
0重量部以下である請求項(1)記載の高熱伝導性の金
属化Al焼結体。
(2) The content of AlN is 3 parts by weight per 100 parts by weight of the metal layer consisting of W or Mo alone or both W and Mo.
The highly thermally conductive metallized Al sintered body according to claim 1, wherein the content is 0 parts by weight or less.
(3)AlN焼結体中に周期律表第IIa族または第III
a族元素の酸化物を含有する請求項(1)記載の高熱伝
導性の金属化AlN焼結体。
(3) Group IIa or III of the periodic table in the AlN sintered body
The highly thermally conductive metallized AlN sintered body according to claim 1, which contains an oxide of a group a element.
(4)金属化AlN焼結体と半導体素子とリードフレー
ムおよび/または放熱基板からなることを特徴とする高
熱伝導性基板。
(4) A highly thermally conductive substrate comprising a metallized AlN sintered body, a semiconductor element, a lead frame, and/or a heat dissipation substrate.
JP63143987A 1988-06-10 1988-06-10 High thermal conductive AIN sintered body having metallized layer and high thermal conductive substrate using the same Expired - Lifetime JP2659068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63143987A JP2659068B2 (en) 1988-06-10 1988-06-10 High thermal conductive AIN sintered body having metallized layer and high thermal conductive substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63143987A JP2659068B2 (en) 1988-06-10 1988-06-10 High thermal conductive AIN sintered body having metallized layer and high thermal conductive substrate using the same

Publications (2)

Publication Number Publication Date
JPH01313365A true JPH01313365A (en) 1989-12-18
JP2659068B2 JP2659068B2 (en) 1997-09-30

Family

ID=15351670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63143987A Expired - Lifetime JP2659068B2 (en) 1988-06-10 1988-06-10 High thermal conductive AIN sintered body having metallized layer and high thermal conductive substrate using the same

Country Status (1)

Country Link
JP (1) JP2659068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261445A (en) * 2001-02-27 2002-09-13 Kyocera Corp Wiring board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483586A (en) * 1987-09-28 1989-03-29 Kyocera Corp Method for metallizing aluminum nitride substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483586A (en) * 1987-09-28 1989-03-29 Kyocera Corp Method for metallizing aluminum nitride substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261445A (en) * 2001-02-27 2002-09-13 Kyocera Corp Wiring board
JP4570263B2 (en) * 2001-02-27 2010-10-27 京セラ株式会社 Wiring board

Also Published As

Publication number Publication date
JP2659068B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP4812144B2 (en) Aluminum nitride sintered body and manufacturing method thereof
EP0153737B1 (en) Circuit substrate having high thermal conductivity
US4961987A (en) Aluminum nitride sintered body with high thermal conductivity and process for producing same
JPH0569797B2 (en)
JP3629783B2 (en) Circuit board
JP2567491B2 (en) High thermal conductivity colored aluminum nitride sintered body and method for producing the same
JPH0840789A (en) Ceramic metallized substrate having smooth plating layer and its production
JPWO2002045470A1 (en) Substrate and method of manufacturing the same
KR100585909B1 (en) Thick Film Conductor Compositions for Use on Aluminum Nitride Substrates
JPH0243700B2 (en)
JPH0323512B2 (en)
JPH01313365A (en) Sintered body of metallized aln having high thermal conductivity and high-thermally conductive substrate
JP2822518B2 (en) Method for forming metallized layer on aluminum nitride sintered body
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JP2620326B2 (en) Method for producing aluminum nitride sintered body having metallized layer
JPH05156303A (en) Metallizing metal powder composition and production of metallized substrate using the composition
JP3420424B2 (en) Wiring board
JP2867693B2 (en) Circuit board
JP4328414B2 (en) Substrate manufacturing method
JPH0571198B2 (en)
JP2763516B2 (en) Metallization method for aluminum nitride substrate
JPH04280880A (en) Metallizer and ceramic metallized substrate
JPS63103885A (en) Metallizing composition for silicon carbide sintered body
JPH0323511B2 (en)
JPH03295878A (en) Metallizing structure for ceramics and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12