JPH01313309A - Production of elemental phosphorus - Google Patents

Production of elemental phosphorus

Info

Publication number
JPH01313309A
JPH01313309A JP14373688A JP14373688A JPH01313309A JP H01313309 A JPH01313309 A JP H01313309A JP 14373688 A JP14373688 A JP 14373688A JP 14373688 A JP14373688 A JP 14373688A JP H01313309 A JPH01313309 A JP H01313309A
Authority
JP
Japan
Prior art keywords
phosphine
phosphorus
gas
elemental phosphorus
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14373688A
Other languages
Japanese (ja)
Other versions
JP2588754B2 (en
Inventor
Hiroyuki Matsubara
宏之 松原
Seikichi Tabei
田部井 清吉
Shozo Ichimura
市村 正三
Akio Iso
磯 晃男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP14373688A priority Critical patent/JP2588754B2/en
Publication of JPH01313309A publication Critical patent/JPH01313309A/en
Application granted granted Critical
Publication of JP2588754B2 publication Critical patent/JP2588754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To obtain high purity phosphorus at a relatively low temp. by thermally decomposing gaseous phosphine while in contact with P alloy powder. CONSTITUTION:Gaseous phosphine in a cylinder 1 is introduced into a decomposition tube 5 packed with P alloy powder and heated to about 450 deg.C with a heater 6. The introduced phosphine is thermally decomposed and the resulting elemental phosphorus is recovered as white phosphorus in an ampule 9 for collecting white phorsphorus kept warm by hot water 8 controlled to 50 deg.C with a thermistor 11. Fe-P, Fe-Co-P, Fe-Mn-P or Co-P may be used as the P alloy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は元素リンの製造法に関し、更に言えばホスフィ
ンガスを原料とする元素リンの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing elemental phosphorus, and more particularly to a method for producing elemental phosphorus using phosphine gas as a raw material.

[従来の技術] 従来、一般に元素リンは例えばリン鉱石(リン酸カルシ
ウムまたは弗素アパタイト)をシリカ及びコークスと電
気炉により高温条件下で反応させて匁リンとして回収し
製造している。
[Prior Art] Elemental phosphorus has conventionally been produced by, for example, reacting phosphate rock (calcium phosphate or fluoroapatite) with silica and coke under high temperature conditions in an electric furnace and recovering it as phosphorus.

また、本発明者は以前に粗製ホスフィンを原料とした元
素リンの製造法(特開昭60−186408号公報)を
提案している。
Furthermore, the present inventor has previously proposed a method for producing elemental phosphorus using crude phosphine as a raw material (Japanese Patent Laid-Open No. 186408/1983).

[発明が解決しようとする課題] 従来の、リン鉱石をシリカ及びコークスと電気炉により
反応させて回収された黄リンは、砒素、fdiR、セレ
ン、鉄、鉛、銅、アルミニウム、炭素化合物等の不純物
の混入が多いので、エレクトロニクス、半導体用素材の
製造原料等にすることはできず用途が限られてしまう欠
点がある。
[Problems to be Solved by the Invention] Conventionally, yellow phosphorus recovered by reacting phosphorous ore with silica and coke in an electric furnace contains arsenic, fdiR, selenium, iron, lead, copper, aluminum, carbon compounds, etc. Since it contains many impurities, it cannot be used as a raw material for manufacturing electronics or semiconductor materials, and its uses are limited.

また、特開昭60−186408号公報による方法では
、極めて純度の高い元素リンが得られる反面800℃以
上という高温を必要とするため、コストが高くなるとい
う欠点がある。
Furthermore, although the method disclosed in JP-A-60-186408 can obtain elemental phosphorus of extremely high purity, it requires a high temperature of 800° C. or higher, which has the disadvantage of increasing costs.

そこで、本発明者は、ホスフィンガスを原料とする元素
リンの製造法を更に鋭、a研究した結果本発明を得た。
Therefore, the present inventor conducted further intensive research into a method for producing elemental phosphorus using phosphine gas as a raw material, and as a result, the present invention was obtained.

[課題を解決するための手段] 即ち、本発明は、ホスフィンガスをリン合金粉末に接触
させて熱分解して元素リンを回収することを特徴とする
元素リンの製造法である。
[Means for Solving the Problems] That is, the present invention is a method for producing elemental phosphorus, characterized in that phosphine gas is brought into contact with phosphorus alloy powder and thermally decomposed to recover elemental phosphorus.

ここで、原料とするホスフィンガスはいかなる製法に基
づくホスフィンであっても原料として適用でき1例えば
、次の様なものが代表的に挙げられる。
Here, the phosphine gas used as a raw material can be any phosphine based on any manufacturing method and can be used as a raw material. For example, the following are representative examples.

(1)次亜リン酸ソーダの製造に際して副生ずるホスフ
ィン (2)亜リン酸ソーダ製造の際に副生ずるホスフィン (3)リンの加水分解によるホスフィン(4)黄リンの
電解法によるホスフィン等が挙げられるが、特に(1)
のホスフィンが工業的にみて最も有利である。
(1) Phosphine produced as a by-product during the production of sodium hypophosphite (2) Phosphine produced as a by-product during the production of sodium phosphite (3) Phosphine produced by hydrolysis of phosphorus (4) Phosphine produced by electrolysis of yellow phosphorus, etc. However, especially (1)
phosphine is the most advantageous from an industrial point of view.

以下に本発明の代表的実施態様を図面に基づいて説明す
る。
Representative embodiments of the present invention will be described below based on the drawings.

第1図において、ホスフィンガスを充填したホスフィン
ポンベlよりホスフィンガスを、流星計3にて計量的に
、導管4を経てホスフィンの分解帯域として構成される
ホスフィン分解管5に移行する。
In FIG. 1, phosphine gas is metered by a meteor meter 3 from a phosphine bomber filled with phosphine gas, and transferred via a conduit 4 to a phosphine decomposition tube 5 configured as a phosphine decomposition zone.

このホスフィン分解管5には、リン合金粉末が充填され
ている。ここで、リン合金粉末としてはクロム、マンガ
ン、鉄、コバルト、ニッケル。
This phosphine decomposition tube 5 is filled with phosphorus alloy powder. Here, the phosphorus alloy powders include chromium, manganese, iron, cobalt, and nickel.

銅、憚鉛、チタン等から選ばれた1種以上の金属とリン
との合金粉末が挙げられ、その大きさ、形状等は特に限
定するものではない。
Examples include alloy powders of phosphorus and one or more metals selected from copper, lead, titanium, etc., and the size, shape, etc. thereof are not particularly limited.

ホスフィン分解管5の外側には加熱器6が付設され、ホ
スフィンの分解が効果的に行なわれるように温度コント
ロールされている。
A heater 6 is attached to the outside of the phosphine decomposition tube 5, and the temperature is controlled so that phosphine is effectively decomposed.

このホスフィン分解帯域における温度は420〜500
°Cで行なうのが好ましい、その理由は、420℃未満
ではホスフィンの分解が充分に行なわれず、又、500
℃を越えると、黄リンの赤リン化が生じ、安定な操業上
好ましくないからである。
The temperature in this phosphine decomposition zone is 420-500
It is preferable to carry out the reaction at a temperature of 500°C because phosphine is not sufficiently decomposed below 420°C.
This is because if the temperature exceeds .degree. C., yellow phosphorus turns into red phosphorus, which is unfavorable for stable operation.

かくして、熱分解によって生成する元素リンはサーミス
タ11により約50℃程度に制御しである温水8により
保温された黄リン捕集用アンプル9にて冷却された液体
の黄リンとして回収する。一方ホスフィン中に含まれる
窒素ガス、炭酸ガス及び加熱帯内の置換用窒素ガス等は
オフガス排出口10より除かれる。
In this way, the elemental phosphorus produced by the thermal decomposition is controlled to about 50° C. by the thermistor 11 and is recovered as liquid yellow phosphorus cooled in the yellow phosphorus collection ampoule 9 kept warm by hot water 8. On the other hand, nitrogen gas, carbon dioxide gas, nitrogen gas for substitution in the heating zone, etc. contained in the phosphine are removed from the off-gas outlet 10.

更に元素リンとして回収された黄リンは、必要に応じて
赤リンに転化して回収することができる。この場合、転
化器を設けて常法により、赤リンに転化して容易に回収
することもできる。
Further, the yellow phosphorus recovered as elemental phosphorus can be converted into red phosphorus and recovered as necessary. In this case, a converter may be provided and the red phosphorus can be converted into red phosphorus and easily recovered by a conventional method.

[実施例] 実施例1 攪拌機、温度計、窒素ガス導入管、滴下ロート及び先端
にガス排出管を設けた還流冷却器を供えた反応容器に、
黄リン30g及び少壕の不活性分散助剤及び水500腸
pを送入し、窒素ガスを窒素ガス導入管より導入して、
反応容器中の空気を追い出し、70〜75℃に加熱し攪
拌して黄リンを微粒子状に分散させた0次いでこの分散
液に25%水酸化ナトリウム水溶液102.4 gを1
時間にわたり滴下して反応させた0反応の進行に従い、
次亜リン酸ソーダの生成と共にホスフィンの良好な発生
が見られた0滴下終了後さらに75〜90℃において4
5分間加熱し、攪拌して反応を完結させた0発生したホ
スフィンを捕集すると平均52.6容置%のホスフィン
を含むガス10.51が得られた。このホスフィンの収
率は94.9%に相当する。このようにして得られたホ
スフィンガスは水分を多く含有するため、活性炭のカラ
ムに通して除湿した後にボンベに刺入して原料のホスフ
ィンとした。
[Example] Example 1 A reaction vessel equipped with a stirrer, a thermometer, a nitrogen gas introduction pipe, a dropping funnel, and a reflux condenser with a gas discharge pipe at the tip,
30 g of yellow phosphorus, an inert dispersion aid of Shokou, and 500 g of water were introduced, and nitrogen gas was introduced from the nitrogen gas introduction pipe.
The air in the reaction vessel was expelled, and yellow phosphorus was dispersed in fine particles by heating to 70 to 75°C and stirring. Next, 102.4 g of a 25% aqueous sodium hydroxide solution was added to this dispersion.
According to the progress of the 0 reaction, which was reacted by dropping over a period of time,
Good generation of phosphine was observed along with the generation of sodium hypophosphite.
The reaction was completed by heating and stirring for 5 minutes, and the generated phosphine was collected to obtain 10.51 vol. of gas containing 52.6 vol.% of phosphine on average. This phosphine yield corresponds to 94.9%. Since the phosphine gas obtained in this manner contains a large amount of water, it was dehumidified by passing through an activated carbon column and then inserted into a cylinder to obtain phosphine as a raw material.

このホスフィンガスから元素リンを回収するに当り、f
141図に示す装置を用いた。
In recovering elemental phosphorus from this phosphine gas, f
The apparatus shown in Figure 141 was used.

第1図のホスフィン分解管5に第1表に示す各リン合金
を充填したものに、上記原料のホスフィンガスを導入し
た。ここで、各合金の組成は第2表に示す通りである。
The above raw material phosphine gas was introduced into the phosphine decomposition tube 5 shown in FIG. 1 filled with each phosphorus alloy shown in Table 1. Here, the composition of each alloy is as shown in Table 2.

このときの、ホスフィンガス分解条件は以下の通りであ
る。
The phosphine gas decomposition conditions at this time are as follows.

温度      450±5℃ PHa流量    17+si) 100%PH3/w
in空間速度    200(1/H) 反応管内径   8.71 リン合金     5騰β ホスフィンの分解によって生成した元素リンはサーミス
タ11により50℃に制御された温水8により保温され
た黄リン捕集用アンプル9に黄リンとして回収された。
Temperature 450±5℃ PHa flow rate 17+si) 100%PH3/w
in Space Velocity 200 (1/H) Reaction Tube Inner Diameter 8.71 Phosphorus Alloy 5Ten β Elemental phosphorus produced by the decomposition of phosphine is collected in a yellow phosphorus collection ampoule kept warm with hot water 8 controlled at 50°C by a thermistor 11. 9 was recovered as yellow phosphorus.

一方、ホスフィン中に含まれるN2ガス、C(hガス等
はオフガス排出口10より除去される。
On the other hand, N2 gas, C(h gas, etc.) contained in the phosphine are removed from the off-gas outlet 10.

元素リンの生成状態はホスフィンガスの分解率によって
求めた。
The state of formation of elemental phosphorus was determined by the decomposition rate of phosphine gas.

この時の測定方法は以ドの通りである。The measurement method at this time is as follows.

ホスフィン分解管5の出口ガスをN2ガス(1,7ff
/win)で希釈したものをガスチック検知感法(No
、77J)によりホスフィンガス濃度を測定した。
The outlet gas of the phosphine decomposition tube 5 is converted into N2 gas (1.7ff
/win) diluted with gastic detection method (No.
, 77J) to measure the phosphine gas concentration.

結果を第1表に示す。The results are shown in Table 1.

(以下余白) 実施例2 リン合金にr Fe−PJを使用し、温度を400゜4
20、440.450℃に設定した以外は実施例1と同
様の操作を行なった。
(Left below) Example 2 Using rFe-PJ as a phosphorus alloy, the temperature was set to 400°4.
The same operation as in Example 1 was performed except that the temperature was set at 20, 440, and 450°C.

結果を第3表に示す。The results are shown in Table 3.

第  3  表 実施例3 第4表の組成のホスフィンガスを原料とし、ホスフィン
ガス分解条件を下記条件に設定して実施例1と同様の操
作を行った。黄リンは回収後赤リンに転化させた。その
品質を第5表に示す。
Table 3 Example 3 Using phosphine gas having the composition shown in Table 4 as a raw material, the same operation as in Example 1 was carried out by setting the phosphine gas decomposition conditions to the following conditions. After the yellow phosphorus was collected, it was converted to red phosphorus. The quality is shown in Table 5.

温度      450±5℃ PHJ  流r#、          600m1)
  100  % PH3/gin空間速度    9
0(1/H) 反応管内径   50−腸 Fe−P合金     400 sj)第4表 ホスフ
ィンガス組成 第5表 赤リンの品質 なおPHffの分解率は99.8%であった。
Temperature 450±5℃ PHJ Flow r#, 600m1)
100% PH3/gin space velocity 9
0(1/H) Reaction tube inner diameter 50-intestinal Fe-P alloy 400 sj) Table 4 Phosphine gas composition Table 5 Quality of red phosphorus The decomposition rate of PHff was 99.8%.

[発明の効果] 本発明の方法によれば、従来の黄リンのが留法に比べて
簡単な操作により高純度のリンを回収することが可能と
なり、原料のホスフィンカスは限定することなく使用で
きるので、特に次亜リン酸ソーダの製造において副生ず
るホスフィンを有効利用すれば工業的にみて極めて合理
的に高純度の:ノノが製造できる利点がある。
[Effects of the invention] According to the method of the present invention, it is possible to recover high-purity phosphorus with a simpler operation than the conventional distillation method for yellow phosphorus, and the raw material phosphine sludge can be used without any restrictions. Therefore, if phosphine, which is a by-product in the production of sodium hypophosphite, is effectively utilized, it has the advantage of being able to produce highly purified phosphorus in an extremely rational manner from an industrial perspective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1つの実施態様を示す工程図である。 1・・・ホスフィンボンベ 3・・・流量計       4・・・導管5・・・分
解管       6・・・加熱器7・・・導管   
     8・・・温水9・・・黄リン捕集用アンプル
FIG. 1 is a process diagram showing one embodiment of the present invention. 1... Phosphine cylinder 3... Flow meter 4... Conduit 5... Decomposition tube 6... Heater 7... Conduit
8... Warm water 9... Ampoule for collecting yellow phosphorus

Claims (1)

【特許請求の範囲】[Claims] ホスフィンガスをリン合金粉末に接触させ、熱分解して
元素リンを回収することを特徴とする元素リンの製造法
A method for producing elemental phosphorus, which comprises bringing phosphine gas into contact with phosphorus alloy powder and recovering elemental phosphorus through thermal decomposition.
JP14373688A 1988-06-13 1988-06-13 Method for producing elemental phosphorus Expired - Lifetime JP2588754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14373688A JP2588754B2 (en) 1988-06-13 1988-06-13 Method for producing elemental phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14373688A JP2588754B2 (en) 1988-06-13 1988-06-13 Method for producing elemental phosphorus

Publications (2)

Publication Number Publication Date
JPH01313309A true JPH01313309A (en) 1989-12-18
JP2588754B2 JP2588754B2 (en) 1997-03-12

Family

ID=15345817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14373688A Expired - Lifetime JP2588754B2 (en) 1988-06-13 1988-06-13 Method for producing elemental phosphorus

Country Status (1)

Country Link
JP (1) JP2588754B2 (en)

Also Published As

Publication number Publication date
JP2588754B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US3345134A (en) Process and apparatus for the manufacture of titanium nitride
WO2003040036A1 (en) Method for producing silicon
US20120141349A1 (en) Method for producing high-purity silicon nitride
Zendah et al. Thermochemical and kinetic studies of the acid attack of “B” type carbonate fluorapatites at different temperatures (25–55)° C
JPS6221706A (en) Recycling production of silicon or silicon compound via trichlorosilane
JPH01313309A (en) Production of elemental phosphorus
US3832448A (en) Process for production of phosphorus
US2685501A (en) Process for preparing boron
JPS6332730B2 (en)
JPH02172811A (en) Production of trichlorosilane
JPS60215510A (en) Preparation of high-purity phosphorus
US4010241A (en) Process for the production of hydrogen fluoride, phosphoric anhydride, calcium polyphosphates and nitric acid
JPS6221707A (en) Production of trichlorosilane
JPS6410441B2 (en)
JPS6037053B2 (en) Silicon carbide manufacturing method
WO2010029570A1 (en) Preparation of phosphorus from phosphoric acid and carbon
JPS59217609A (en) Method for producing phosphoric acid of high purity
JPH0516367B2 (en)
JPS638207A (en) Hydrogenation of silicon tetrachloride
US2535989A (en) Production of alkali-metal nitrates
JPS616109A (en) Manufacture of sic
US3026173A (en) Preparation of dihalodifluorosilanes
US1926072A (en) Process of extracting phosphorus content from phosphorus containing materials
JPH0127966B2 (en)
KR100680881B1 (en) The Preparing and purifying method of gallium three chloride

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12