JPH0516367B2 - - Google Patents

Info

Publication number
JPH0516367B2
JPH0516367B2 JP14373588A JP14373588A JPH0516367B2 JP H0516367 B2 JPH0516367 B2 JP H0516367B2 JP 14373588 A JP14373588 A JP 14373588A JP 14373588 A JP14373588 A JP 14373588A JP H0516367 B2 JPH0516367 B2 JP H0516367B2
Authority
JP
Japan
Prior art keywords
phosphine
phosphorus
sodium hypophosphite
tank
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14373588A
Other languages
Japanese (ja)
Other versions
JPH01313310A (en
Inventor
Hiroyuki Matsubara
Akio Iso
Shozo Ichimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP14373588A priority Critical patent/JPH01313310A/en
Publication of JPH01313310A publication Critical patent/JPH01313310A/en
Publication of JPH0516367B2 publication Critical patent/JPH0516367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は次亜リン酸ソーダの製造法に関し、更
に言えば、次亜リン酸ソーダ製造時に発生するホ
スフインから元素リンを回収して、この元素リン
を再利用する次亜リン酸ソーダの製造法に関す
る。 [従来の技術] 従来より、次亜リン酸ソーダは黄リンと苛性ソ
ーダを直接に反応させることにより製造されてい
る。反応条件により反応式は種々表わされるが代
表的な反応式は以下の通りである。 4P+3NaOH+3H2O→3NaH2PO2+PH3 また、他の方法として黄リンと消石灰とを反応
させて次亜リン酸カルシウムを生成し、次いでこ
の次亜リン酸カルシウムをソーダ灰と反応させて
製造している。反応式で表わせば次の通りであ
る。 8P+3Ca(OH)2+6H2O→3Ca(H2PO2
2+2PH3 Ca(H2PO22+Na2CO3→2NaH2PO2
CaCO3 従つて、いずれかの方法においてもホスフイン
(PH3)の発生がある。 [発明が解決しようとする課題] 上記の様に次亜リン酸ソーダ製造時には必ずと
いつてよい程にホスフインの発生がある。 この副生するホスフインは各種リン化合物誘導
体の出発物質、還元剤、半導体原料等として利用
されているが、あくまで、次亜リン酸ソーダ製造
時の副生物であつて、需要と供給のバランスは不
安定である。大部分のホスフインは燃焼されリン
酸として回収されている。 即ち、次亜リン酸ソーダ製造時に副生するホス
フインの有効利用が課題であつた。 そこで、本発明者は鋭意研究をした結果発明を
得た。 [課題を解決するための手段] 即ち、本発明は、次亜リン酸ソーダ製造法にお
いて、副生するホスフインをリン合金粉末に接触
させて熱分解して生成する元素リンを回収し、該
元素リンを次亜リン酸ソーダ製造の反応系へ返送
して循環使用することを特徴とする次亜リン酸ソ
ーダの製造法である。 本発明における、ホスフインが副生する次亜リ
ン酸ソーダの製造法としては、原料に元素リンを
使用し、副生物としてホスフインが発生するもの
であれば、特に限定はなく、例えば、 黄リンと苛性ソーダを直接反応させて次亜リ
ン酸ソーダとホスフインとを生成させる製造
法、 黄リンと消石灰を反応させて次亜リン酸カル
シウムとホスフインとを生成させ、次いで、こ
の次亜リン酸カルシウムをソーダ灰と反応させ
て次亜リン酸ソーダと炭酸カルシウムを生成さ
せる製造法等が挙げられる。 以下に本発明の代表的実施態様を図面に基づい
て説明する。 第1図において、黄リン槽1から液状黄リンを
苛性ソーダ槽2から苛性ソーダ溶液を、消石灰槽
3から消石灰スラリーをそれぞれ撹拌機5の付い
た反応槽4に添加して次亜リン酸ソーダの製造反
応を行なう。 生成した次亜リン酸ソーダは導管6を通り、次
亜リン酸ソーダ回収槽7に溶液として回収され
る。 生成したホスフインは導管8を通り脱水塔9で
脱水された後、ホスフイン分解塔10へ移行す
る。このホスフイン分解塔10には、第2図に示
すように、リン合金粉末16が充填されている。
リン合金粉末としてはクロム、マンガン、鉄、コ
バルト、ニツケル、チタン等から選ばれた1種以
上の金属とリンとの合金粉末が挙げられ、その大
きさ、形状等は、特に限定するものではない。 ホスフイン分解塔10の外側には加熱器11が
付設され、ホスフインの分解が効果的に行なわれ
るように温度コントロールされている。このホス
フイン分解塔における温度は420〜500℃で行なう
のが好ましい。その理由は、420℃未満ではホス
フインの分解が充分に行なわれず、又、500℃を
越えると、黄リンの赤リン化が生じ、好ましくな
いからである。 生成した元素リンは、約50℃程度に制御された
黄リン回収槽13に液体の黄リンとして回収され
る。 また、ホスフイン中に含まれる窒素ガス、炭酸
ガス等は、オフガス排出口12により除かれる。 [実施例] 実施例 1 次亜リン酸ソーダを第1図に示す装置で製造し
た。 即ち、黄リン槽1から黄リン30Kg、消石灰槽2
から20%消石灰スラリー126Kgおよび水250を、
撹拌機の付設された反応槽4に挿入し、60〜80℃
に加熱し撹拌して黄リンを微粒子に分散させた。
次いで、この分散液に苛性ソーダ槽から25%苛性
ソーダ水溶液91Kgを滴下して反応させた。反応の
進行に従い、次亜リン酸ソーダの生成と共にホス
フインの良好な発生が見られた。滴下終了後、更
に75〜90℃において45分間加熱し、撹拌して反応
を完結させた。 生成した次亜リン酸ソーダは導管6を通り、次
亜リン酸ソーダ回収槽に溶液として回収された。 また、発生したホスフインは活性炭の充填され
た脱水塔9を通して除湿した後、リン合金の充填
されたホスフイン分解塔10へ導入した。リン合
金は第1表に示す種々のものに変えて用いたが、
ホスフイン分解条件は以下の通りである。 温 度 450±5℃ ホスフイン流量 17100%PH3/min 空間速度 20+(1/H) 反応管内径 87mm リン合金 5 ホスフインの分解によつて生成した元素リンは
50℃に制御された黄リン回収槽13に黄リンとし
て第1表に示す量が回収された。 ホスフイン中に含まれるN2ガス、CO2ガス、
H2ガス等はオフガス排出口12より除去される。 回収された黄リンは、ポンプ14を介し導管1
5を通り、黄リン槽へと移行し、次亜リン酸ソー
ダ製造の原料として、循環使用された。
[Industrial Application Field] The present invention relates to a method for producing sodium hypophosphite, and more particularly, to a method for producing sodium hypophosphite, and more specifically, a method for recovering elemental phosphorus from phosphine generated during the production of sodium hypophosphite and reusing this elemental phosphorus. Concerning a method for producing sodium phosphite. [Prior Art] Sodium hypophosphite has conventionally been produced by directly reacting yellow phosphorus and caustic soda. Various reaction formulas may be expressed depending on the reaction conditions, but typical reaction formulas are as follows. 4P + 3NaOH + 3H 2 O → 3NaH 2 PO 2 + PH 3 Another method is to react yellow phosphorus with slaked lime to produce calcium hypophosphite, and then react this calcium hypophosphite with soda ash. The reaction formula is as follows. 8P+3Ca(OH) 2 +6H 2 O→3Ca(H 2 PO 2
) 2 +2PH 3 Ca(H 2 PO 2 ) 2 +Na 2 CO 3 →2NaH 2 PO 2 +
CaCO 3 Therefore, in either method, phosphine (PH 3 ) is generated. [Problems to be Solved by the Invention] As mentioned above, during the production of sodium hypophosphite, a considerable amount of phosphine is generated. This by-product phosphine is used as a starting material for various phosphorus compound derivatives, a reducing agent, a raw material for semiconductors, etc., but it is only a by-product during the production of sodium hypophosphite, and the balance between supply and demand is imbalanced. It is stable. Most of the phosphine is burned and recovered as phosphoric acid. That is, the issue has been the effective use of phosphine, which is produced as a by-product during the production of sodium hypophosphite. Therefore, the inventor of the present invention obtained the invention as a result of intensive research. [Means for Solving the Problems] That is, the present invention recovers the elemental phosphorus produced by bringing phosphine, a by-product, into contact with a phosphorus alloy powder and thermally decomposing it in a method for producing sodium hypophosphite. This is a method for producing sodium hypophosphite characterized by returning phosphorus to the reaction system for producing sodium hypophosphite and recycling it. In the present invention, the method for producing sodium hypophosphite in which phosphine is a by-product is not particularly limited as long as elemental phosphorus is used as a raw material and phosphine is generated as a by-product. For example, yellow phosphorus and A manufacturing method in which caustic soda is directly reacted to produce sodium hypophosphite and phosphine, yellow phosphorus and slaked lime are reacted to produce calcium hypophosphite and phosphine, and then this calcium hypophosphite is reacted with soda ash. Examples include a production method in which sodium hypophosphite and calcium carbonate are produced. Representative embodiments of the present invention will be described below based on the drawings. In FIG. 1, sodium hypophosphite is produced by adding liquid yellow phosphorus from a yellow phosphorus tank 1, a caustic soda solution from a caustic soda tank 2, and slaked lime slurry from a slaked lime tank 3 to a reaction tank 4 equipped with an agitator 5. Carry out the reaction. The generated sodium hypophosphite passes through a conduit 6 and is recovered as a solution in a sodium hypophosphite recovery tank 7. The generated phosphine passes through a conduit 8 and is dehydrated in a dehydration tower 9, and then transferred to a phosphine decomposition tower 10. This phosphine decomposition column 10 is filled with phosphorus alloy powder 16, as shown in FIG.
The phosphorus alloy powder includes an alloy powder of phosphorus and one or more metals selected from chromium, manganese, iron, cobalt, nickel, titanium, etc., and its size, shape, etc. are not particularly limited. . A heater 11 is attached to the outside of the phosphine decomposition tower 10, and the temperature is controlled so that phosphine decomposition is effectively carried out. The temperature in this phosphine decomposition tower is preferably 420 to 500°C. The reason for this is that at temperatures below 420°C, phosphine is not sufficiently decomposed, and at temperatures above 500°C, yellow phosphorus turns into red phosphorus, which is undesirable. The generated elemental phosphorus is recovered as liquid yellow phosphorus in a yellow phosphorus recovery tank 13 controlled at about 50°C. Further, nitrogen gas, carbon dioxide gas, etc. contained in the phosphine are removed by the off-gas outlet 12. [Examples] Example 1 Sodium hypophosphite was produced using the apparatus shown in FIG. That is, 30 kg of yellow phosphorus from yellow phosphorus tank 1, slaked lime tank 2
126Kg of 20% slaked lime slurry and 250Kg of water,
Insert into reaction tank 4 equipped with a stirrer and heat at 60 to 80℃.
The yellow phosphorus was dispersed into fine particles by heating and stirring.
Next, 91 kg of a 25% caustic soda aqueous solution was added dropwise to this dispersion from a caustic soda tank to cause a reaction. As the reaction progressed, good generation of phosphine was observed along with the production of sodium hypophosphite. After the dropwise addition was completed, the mixture was further heated at 75 to 90°C for 45 minutes and stirred to complete the reaction. The generated sodium hypophosphite passed through conduit 6 and was recovered as a solution in a sodium hypophosphite recovery tank. Further, the generated phosphine was dehumidified through a dehydration tower 9 filled with activated carbon, and then introduced into a phosphine decomposition tower 10 filled with a phosphorus alloy. Various phosphorus alloys shown in Table 1 were used, but
The phosphine decomposition conditions are as follows. Temperature 450±5℃ Phosphine flow rate 17100%PH 3 /min Space velocity 20+(1/H) Reaction tube inner diameter 87mm Phosphorus alloy 5 Elemental phosphorus produced by decomposition of phosphine is
The amount shown in Table 1 was recovered as yellow phosphorus in the yellow phosphorus recovery tank 13 controlled at 50°C. N2 gas, CO2 gas contained in phosphine,
H 2 gas and the like are removed from the off-gas outlet 12 . The recovered yellow phosphorus is transferred to the conduit 1 via the pump 14.
5, transferred to the yellow phosphorus tank, and was recycled as a raw material for the production of sodium hypophosphite.

【表】 (注) 各リン合金は、各微粉末に珪酸エチル酸
分解液をバインダーとして造粒して作製
した。
実施例 2 リン合金に「Fe−P」を使用し、温度を400、
420、440、450℃に設定した以外は、実施例1と
同様の操作を行なつた。 その結果を第2表に示す。
[Table] (Note) Each phosphorus alloy was produced by granulating each fine powder with ethyl silicate decomposition solution as a binder.
Example 2 Using "Fe-P" as a phosphorus alloy, the temperature was set to 400,
The same operation as in Example 1 was performed except that the temperatures were set at 420, 440, and 450°C. The results are shown in Table 2.

【表】 [発明の効果] 従来は次亜リン酸ソーダ製造時に発生するホス
フインは需要のあるなしに係わらず、全てホスフ
インとして回収しなければならなつたが、本発明
によればホスフインの需要のある時はホスフイン
として回収し、それ以外の時には元素リンとして
回収して、原料として再び反応系に循環使用でき
るため、無駄なホスフインの貯蔵はなくなるばか
りでなく、次亜リン酸ソーダの収率も向上する利
点がある。
[Table] [Effects of the invention] Conventionally, all phosphine generated during the production of sodium hypophosphite had to be recovered as phosphine, regardless of whether there was a demand for it or not, but according to the present invention, the demand for phosphine can be reduced. At times, it is recovered as phosphine, and at other times, it is recovered as elemental phosphorus, which can be recycled back into the reaction system as a raw material. This not only eliminates the need for unnecessary storage of phosphine, but also improves the yield of sodium hypophosphite. There are advantages to improving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1つの実施態様を示す工程図
であり、第2図はホスフイン分解塔の拡大図であ
る。 1……黄リン槽、2……苛性ソーダ槽、3……
消石灰槽、4……反応槽、5……撹拌機、6……
導管、7……次亜リン酸ソーダ回収槽、8……導
管、9……脱水槽、10……ホスフイン分解塔、
11……加熱器、12……オフガス排出口、13
……黄リン回収槽、14……ポンプ、15……導
管、16……リン合金粉末。
FIG. 1 is a process diagram showing one embodiment of the present invention, and FIG. 2 is an enlarged view of a phosphine decomposition column. 1... Yellow phosphorus tank, 2... Caustic soda tank, 3...
Slaked lime tank, 4... Reaction tank, 5... Stirrer, 6...
Conduit, 7... Sodium hypophosphite recovery tank, 8... Conduit, 9... Dehydration tank, 10... Phosphine decomposition tower,
11... Heater, 12... Off gas discharge port, 13
... Yellow phosphorus recovery tank, 14 ... Pump, 15 ... Conduit, 16 ... Phosphorus alloy powder.

Claims (1)

【特許請求の範囲】[Claims] 1 次亜リン酸ソーダの製造法において、副生す
るホスフインをリン合金粉末に接触させて熱分解
して生成する元素リンを回収し、該元素リンを次
亜リン酸ソーダ製造の反応系へ返送して循環使用
することを特徴とする次亜リン酸ソーダの製造
法。
1. In the method for producing sodium hypophosphite, phosphine, a by-product, is brought into contact with phosphorus alloy powder, thermally decomposed, and the generated elemental phosphorus is recovered, and the elemental phosphorus is returned to the reaction system for producing sodium hypophosphite. A method for producing sodium hypophosphite, which is characterized in that it is recycled and used.
JP14373588A 1988-06-13 1988-06-13 Production of sodium hypophosphite Granted JPH01313310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14373588A JPH01313310A (en) 1988-06-13 1988-06-13 Production of sodium hypophosphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14373588A JPH01313310A (en) 1988-06-13 1988-06-13 Production of sodium hypophosphite

Publications (2)

Publication Number Publication Date
JPH01313310A JPH01313310A (en) 1989-12-18
JPH0516367B2 true JPH0516367B2 (en) 1993-03-04

Family

ID=15345792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14373588A Granted JPH01313310A (en) 1988-06-13 1988-06-13 Production of sodium hypophosphite

Country Status (1)

Country Link
JP (1) JPH01313310A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490984A4 (en) * 2009-10-23 2013-05-08 Rhodia China Co Ltd Process for stabilizing hypophosphite
WO2012113145A1 (en) * 2011-02-24 2012-08-30 Rhodia (China) Co., Ltd. Flame retardant polymer compositions comprising stabilized hypophosphite salts
JP5992601B2 (en) * 2012-04-06 2016-09-14 ローディア オペレーションズ Method for producing hypophosphite
CN107973281B (en) * 2017-12-01 2019-12-03 合肥学院 A kind of anhydrous tubular metal hypophosphites and preparation method thereof

Also Published As

Publication number Publication date
JPH01313310A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
US3682592A (en) Treatment of waste hci pickle liquor
JPH0516367B2 (en)
EP0307869B1 (en) Process for producing ammonia and sulfur dioxide
US4248851A (en) Promoted oxidation of aqueous ferrous chloride solution
CA1044256A (en) Production of addition products of lower fatty acids or halogenated fatty acids
US4698216A (en) Production of an aqueous phosphoric acid solution
US2548727A (en) Preparation of nickel carbonyl
US4293532A (en) Process for producing hydrogen chloride and ammonia
CN109956481B (en) Method for preparing ammonia gas by using ammonium salt and silicate
US4520002A (en) Method for preparing elemental sulfur as a diffusion-resistant gas and methods for its use in making lime, sulfur dioxide and sulfuric acid from waste gypsum
US1115776A (en) Producing hydrogen.
JPS63139007A (en) Production of sodium sulfide or sodium hydrosulfide
US3985537A (en) Process for making calcined alkali phosphates of high citrate solubility for use as fertilizers
CA1041117A (en) Production of salts of chlorinated acetic acids
JPS6232125B2 (en)
CN100497192C (en) Non-pollution polymeric iron sulfate sulfur production technique by dioxide reverse absorption tower process
US1235664A (en) Method of producing hydrogen peroxid.
US4670225A (en) Apparatus for continuously making, in dry phase, exothermic reactions involving liberation of gas, and products obtained, particularly calcium phosphates
JP4305037B2 (en) Gypsum manufacturing method
JPH0656408A (en) Production of sodium hydrosulfide
US2055419A (en) Recovery of sulphuric acid
JPH0127966B2 (en)
JPS5837250B2 (en) Method for producing alkali metal carbonates and gypsum
US1214003A (en) Process of extracting potassium from minerals.
JP2000211905A (en) Production of aqueous solution of free hydroxylamine