JPH0131317B2 - - Google Patents

Info

Publication number
JPH0131317B2
JPH0131317B2 JP58131245A JP13124583A JPH0131317B2 JP H0131317 B2 JPH0131317 B2 JP H0131317B2 JP 58131245 A JP58131245 A JP 58131245A JP 13124583 A JP13124583 A JP 13124583A JP H0131317 B2 JPH0131317 B2 JP H0131317B2
Authority
JP
Japan
Prior art keywords
laser
sealed tube
carbon dioxide
perovskite oxide
dioxide laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58131245A
Other languages
Japanese (ja)
Other versions
JPS6022386A (en
Inventor
Koji Matsuo
Kuniaki Fukaya
Nobuaki Iehisa
Norio Karube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13124583A priority Critical patent/JPS6022386A/en
Publication of JPS6022386A publication Critical patent/JPS6022386A/en
Publication of JPH0131317B2 publication Critical patent/JPH0131317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高出力、長寿命化を可能とした炭酸ガ
スレーザ封止管に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a carbon dioxide laser sealed tube that enables high output and long life.

従来例の構成とその問題点 炭酸ガスレーザ(以下CO2レーザと記す)は出
力ならびにエネルギー効率に秀れた特性を有する
波長10.6μの遠赤外レーザであつて加工、医療、
計測、通信、情報処理などに広い応用が期待され
ている。しかしながらレーザガスの中で中心的な
役割を演ずるCO2分子は結合エネルギーが3.75eV
と低いので電子の持つ平均エネルギーが3.5eVで
あるCO2レーザガスプラズマの中では容易に電子
衝突によつて解離してしまう。
Conventional configuration and its problems A carbon dioxide laser (hereinafter referred to as CO 2 laser) is a far-infrared laser with a wavelength of 10.6μ that has excellent characteristics in output and energy efficiency, and is used in processing, medical,
It is expected to have wide applications in measurement, communications, information processing, etc. However, the CO 2 molecules that play a central role in the laser gas have a binding energy of 3.75 eV.
Since the average energy of electrons is 3.5 eV, it is easily dissociated by electron collision in CO 2 laser gas plasma.

解離生成物CO、O、O2の密度が増大すると逆
反応である再結合が起るのでやがて系は平衡状態
に達する。この関係を化学方程式 CO2CO+1/2O2 (1) で書くことができ、平衡に達する迄の時定数は通
常のCO2レーザプラズマのパラメータでは約1秒
である。平衡状態に於けるCO2濃度は初期値の約
30〜40%程度であつて一度この平衡状態に到達す
るとその後は短期には不変であり長期には徐々に
平衡点の移動がある。この長期現象としては次に
挙げる2種の現象がある。
As the density of the dissociation products CO, O, and O 2 increases, recombination, which is a reverse reaction, occurs, and the system eventually reaches an equilibrium state. This relationship can be written as the chemical equation CO 2 CO + 1/2O 2 (1), and the time constant until equilibrium is reached is about 1 second with normal CO 2 laser plasma parameters. The CO 2 concentration at equilibrium is about the initial value
It is about 30 to 40%, and once this equilibrium state is reached, it remains unchanged in the short term, but the equilibrium point gradually shifts in the long term. This long-term phenomenon includes the following two types of phenomena.

第1は電極その他の固体と酸素、特に発生期酸
素の化学反応であり、この時O2が漸次減少する
ので(1)式の平衡点は右辺方向に移動して出力が漸
減する。第2はO2、CO2、COなどの分子性ガス
のスパツタ膜による吸着である。第1の現象を回
避するために電極に白金や金などの貴金属を用い
る時このスパツタ膜の成長が著るしく促進され
て、云わばゲツタ作用を封止管内に導入したこと
になり、平衡点が(1)式で右辺方向に移動したり或
いは直接CO2分子の吸着により、何れにしても
CO2分子濃度が漸減することになり出力も低下す
る。これら2種の現象のため長寿命、高出力の封
止管CO2レーザの作製は困難であつてCO2レーザ
は通常のガスフローの状態で使用されている。そ
の時はボンベやガス排気用ポンプが必要であつて
装置全体が大型、高価格になつたり、ガスボンベ
の購入、交換などのメンテナンス及び維持費の負
担が生じたり、或いは排出ガスに含まれるCOの
毒性などの種々の問題を有しCO2レーザ普及の阻
害因となつている。このため電極を特別な合金製
にして化学反応やスパツタリングを防止したり、
或いは酸化物製にするなど種々の試みがあるが未
だ十分なる出力および動作寿命を有する封止管
CO2レーザの開発は未発達技術分野に属するもの
と云わなければならない。
The first is a chemical reaction between electrodes and other solids and oxygen, especially nascent oxygen. At this time, O 2 gradually decreases, so the equilibrium point of equation (1) moves toward the right side, and the output gradually decreases. The second is the adsorption of molecular gases such as O 2 , CO 2 and CO by the sputtered film. In order to avoid the first phenomenon, when a noble metal such as platinum or gold is used for the electrode, the growth of this spatter film is significantly promoted, and a so-called getter effect is introduced into the sealed tube, resulting in an equilibrium point. moves toward the right side in equation (1), or by direct adsorption of CO 2 molecules, either way,
As the concentration of CO 2 molecules gradually decreases, the output also decreases. Because of these two types of phenomena, it is difficult to produce a sealed tube CO 2 laser with a long life and high output, and the CO 2 laser is used under normal gas flow conditions. In that case, cylinders and gas exhaust pumps are required, making the entire device large and expensive, and maintenance and upkeep costs such as purchasing and replacing gas cylinders are required, or the toxicity of CO contained in the exhaust gas increases. There are various problems such as these, which are hindering the spread of CO 2 lasers. For this reason, the electrodes are made of a special alloy to prevent chemical reactions and sputtering.
There have been various attempts, such as using oxide materials, but there are still sealed tubes with sufficient output and operating life.
It must be said that the development of CO 2 lasers belongs to an underdeveloped technical field.

本発明者たちはこれらの困難を回避する方法と
してLaSrCoO3やLaSrMnO3などのペロブスカイ
ト構造酸化物を電極とする封止管CO2レーザ技術
の開発を行ない、種々の発明を行つた。これらの
発明によればペロブスカイト電極は、(i)酸化現象
の発生によるレーザガス中O2やCO2の消耗がない
こと、(ii)スパツタ生成膜によるガス吸着により
CO2の消耗が少いこと、(iii)ペロブスカイト酸化物
の触媒作用により(1)式に示したCO2分子解離の逆
反応である再結合が促進されないこと等の現象の
エンジニアリング的な応用によつて封止管CO2
ーザの出力増大ならびに寿命延長を実現させるこ
とができる。
As a way to avoid these difficulties, the present inventors have developed a sealed tube CO 2 laser technology using perovskite structure oxides such as LaSrCoO 3 and LaSrMnO 3 as electrodes, and have made various inventions. According to these inventions, perovskite electrodes (i) do not consume O 2 or CO 2 in the laser gas due to the occurrence of oxidation phenomena, and (ii) do not consume the O 2 or CO 2 in the laser gas due to the occurrence of oxidation phenomena.
(iii) The catalytic action of perovskite oxide does not promote recombination, which is the reverse reaction of dissociation of CO 2 molecules shown in equation (1), for engineering applications. Therefore, it is possible to increase the output and extend the life of the sealed tube CO 2 laser.

発明の目的 本発明は以上のような本発明者らの先行出願を
更に発展改良させたもので、特に酸化物からの
O2放出がレーザ出力特性に有利に作用すること
をその後の実験によつて確かめ、この点に着目し
て同特性が最有利に作用するべく電極を製作しレ
ーザ管内に設置することによつてレーザ出力と動
作寿命を大幅に改善することを目的としている。
Purpose of the Invention The present invention is a further development and improvement of the above-mentioned prior application by the present inventors, and in particular,
Subsequent experiments confirmed that O 2 emission has an advantageous effect on the laser output characteristics, and by focusing on this point, we created electrodes and installed them inside the laser tube so that the same characteristics would be most advantageous. The aim is to significantly improve laser power and operating life.

発明の構成 本発明はレーザ励起のための放電用電極材料を
放電による電極自己発熱により適量の酸素ガスを
放出する化学式A1-xA′xBO3で表わされるペロブ
スカイト酸化物で構成したCO2レーザ封止管であ
る。
Structure of the Invention The present invention provides a discharge electrode material for laser excitation using a CO 2 material made of a perovskite oxide represented by the chemical formula A 1-x A′ x BO 3 that releases an appropriate amount of oxygen gas by self-heating of the electrode due to discharge . It is a laser sealed tube.

実施例の説明 以下本発明の実施例について図面とともに詳細
に説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の封止管CO2レーザは陰電極或いは陰電
極、陽電極の双方を構造式A1-xA′xBO3を有する
ペロブスカイト酸化物から構成される。特にこの
酸化物はレーザ励起のための放電を行わせる時適
量の酸素放出を行う様に特徴づけられる。
In the sealed tube CO 2 laser of the present invention, the cathode or both the cathode and the anode are made of perovskite oxide having the structural formula A 1-x A′ x BO 3 . In particular, this oxide is characterized in that it releases a suitable amount of oxygen when a discharge for laser excitation is generated.

第1図a〜cに3種の実施例を示す。同図aは
冷却水用ジヤケツト6を付したレーザ管1から成
る封止管を示す。封止管の両端にはレーザ共振器
を構成する反射鏡2及び2′がよく光学調整され
た状態で接着されている。これは同図の様に固定
されているのでなくてベローズを介して可撓的に
設置されていてもよい。又反射鏡2,2′の代り
にブリユースター窓などの透明窓がとりつけられ
ていて外部鏡共振器と組合わせて用いることもで
きる。レーザ管には側枝3及び3′が付けられて
いるが、これらは電極用側枝であつて各々の内部
には陰極4ならびに陽極4′が設けられている。
陰極4は詳細を後述するペロブスカイト酸化物か
ら成り、放電中に適量の酸素放出を行う特性を有
している。一方陽極4′は白金ロツドなどから構
成される。レーザ管1の冷却水は出入口5及び
5′から導入排出される。レーザ管は排気後レー
ザガスを封入し封じ切られる。レーザガスの組成
としては一例としてCO22.4Torr、N26Torr、
He13.8Torr、Xe0.3Torrの全圧22.5Torrである。
本構成では陰極のみペロブスカイト酸化物で構成
されているので図に示す如く直流励起電源しか用
いることができない。これに対して第1図bに示
す構成では電極4及び41の双方がペロブスカイ
ト酸化物で構成されているので直流励起の他図に
示す如く交流或いは高周波励起を行うこともでき
る。同図の電極4,41以外の各部の名称と機能
はa図に示すものに等しいので説明を省略する。
第1図cに示すものは第3の構成である。この封
止管では3個の電極4,42,43が側枝3,3
1,3′の中に設けられている。このうち電極4
および43がペロブスカイト酸化物製陰極であ
り、中央の電極42は白金製の陽極である。電極
を3個にしたのは放電間隔を短縮して電源電圧を
低下させる効用とペロブスカイト酸化物の量を増
大して酸素放出量を増大せしめ本発明の効果を一
段と向上させるなどの効用がある。同図では中央
電極を陽極、両端の2個の電極を陰極としたがこ
れを逆の極性にしてもよいし、3個の電極全部を
ペロブスカイト酸化物製にしてもよい。これらは
本発明の主旨を実現する数種の実施例をあげたも
のであつて本発明の効果は少なくとも陰極を後述
する特性のペロブスカイト酸化物で構成すること
により広範囲の構成に対して実現しうるものであ
ることは論を待たない。
Three embodiments are shown in Figures 1a-c. Figure a shows a sealed tube consisting of a laser tube 1 with a jacket 6 for cooling water. Reflecting mirrors 2 and 2' constituting a laser resonator are bonded to both ends of the sealed tube with good optical adjustment. This is not fixed as shown in the figure, but may be flexibly installed via a bellows. In addition, a transparent window such as a Brewster window is installed in place of the reflecting mirrors 2 and 2', and can be used in combination with an external mirror resonator. The laser tube is provided with side branches 3 and 3', which are electrode side branches, each of which is provided with a cathode 4 and an anode 4'.
The cathode 4 is made of perovskite oxide, the details of which will be described later, and has the property of releasing an appropriate amount of oxygen during discharge. On the other hand, the anode 4' is made of platinum rod or the like. Cooling water for the laser tube 1 is introduced and discharged through ports 5 and 5'. After the laser tube is exhausted, it is filled with laser gas and sealed off. Examples of the composition of the laser gas include CO 2 2.4 Torr, N 2 6 Torr,
The total pressure is 22.5Torr with He13.8Torr and Xe0.3Torr.
In this configuration, only the cathode is made of perovskite oxide, so only a DC excitation power source can be used as shown in the figure. On the other hand, in the structure shown in FIG. 1B, both electrodes 4 and 41 are made of perovskite oxide, so that in addition to direct current excitation, alternating current or high frequency excitation as shown in the figure can also be performed. The names and functions of each part other than the electrodes 4 and 41 in the same figure are the same as those shown in Figure A, so explanations will be omitted.
The third configuration is shown in FIG. 1c. In this sealed tube, three electrodes 4, 42, 43 are connected to side branches 3, 3.
1 and 3'. Of these, electrode 4
and 43 are cathodes made of perovskite oxide, and the central electrode 42 is an anode made of platinum. The use of three electrodes has the effect of shortening the discharge interval and lowering the power supply voltage, and increasing the amount of perovskite oxide to increase the amount of oxygen released, thereby further improving the effects of the present invention. In the figure, the central electrode is an anode and the two electrodes at both ends are cathodes, but these may be of opposite polarity, or all three electrodes may be made of perovskite oxide. These are just a few examples for realizing the gist of the present invention, and the effects of the present invention can be realized in a wide range of configurations by constructing at least the cathode with a perovskite oxide having the characteristics described below. There is no denying that it is a thing.

ペロブスカイト酸化物のうち化学式A1-xA′x
BO3で代表されるものは金属なみの導電性、触媒
性能などを有するが本発明では陰極として用いた
時の酸素放出特性を利用している。ここでAは
La、Nd、Gdなどの希土類元素、A′はSrなどの
アルカリ土類元素、BはMn、Coなどの遷移金属
元素である。この材料は通常の焼結体セラミツク
と同様に出発原料を秤量、混合、予焼、粉砕、プ
レス、焼成等のプロセスを通じて作ることができ
る。発明者らの一連の研究を通してA1-xA′xBO3
なるペロブスカイト酸化物において希土類元素A
のアルカリ土類元素A′による置換量xが0.1≦x
≦0.5の範囲にあり、本焼温度が950℃から1200℃
の範囲内にある時出来上つた酸化物を封止型CO2
レーザ用電極として用いると、イオン衝撃による
陰極自己加熱により陰極温度が200℃〜300℃に加
熱されO2ガスが陰極から放出されレーザガス組
成中にO2の混入が発生しこれが封止管レーザ出
力特性に大きな影響を与えることが分つた。通常
の封止管CO2レーザでは励起用放電の開始される
と約1秒の時定数でCO2の約60〜70%のものは解
離してしまい、レーザ出力用低下がおこることは
前記した。この時COはCO2解離分に化学当量発
生するがO2の発生は化学当量の約10〜60%しか
発生せず発生期の酸素は電極などとの化学反応に
消耗されてしまうことが質量分析測定の結果判明
した。この酸素の減少はその後もつづいて化学反
応式(1)を右辺方向に移動させてやがてレーザ動作
寿命がつきるのである。ところが上記した酸素放
出型陰極を採用した封止型CO2レーザではこれら
の二現象が防止できることを我々は確認した。予
焼温度900℃、プレス圧0.5ton/cm2、本焼温度
1150℃の条件で作製したLa0.7Sr0.3CoO3のペロブ
スカイト電極を設けた封止管CO2レーザにおいて
我々の質量分析測定結果によればCO2の解離率は
10%以下と小さく、また、COの生成量はCO2
解離分の化学当量に等しく一方O2の生成量は化
学当量の約5〜10倍に等しくなつていることがわ
かつた。この様にCO2の解離が防止されるのはO2
の発生が(1)式を左辺方向に移動させることに他な
らない。この種のレーザ封止管ではO2の消耗が
存在しないので方程式(1)を徐々に右辺に移動させ
るというCO2レーザが封止管の通常の寿命機構が
成立しないので非常に長い動作寿命が期待でき、
発明者らは動作寿命約4400Hを達成した。第2図
に本発明による封止管CO2レーザの出力特性を通
常の金属電極封止管のものと比較して示した。図
中aは本発明によるCO2レーザ封止管、bは従来
の金属電極封止管による特性である。レーザ管は
内径10mmφ、有効放電長1000mm、レーザガスは
CO210.7%、N226.7%、He61.3%、Xe1.3%の組
成のものを22.5Ton封入して測定した。レーザ管
の両端はZnSe製ブリユースター窓2枚によつて
封着されており、外部鏡共振器を用いて発振させ
た。図からわかるように、金属電極によるものは
出力が単位長当り20W/m程度で触媒を用いない
通常の封止管と同じレベルであるが、本発明によ
るペロブスカイト酸化物CO2レーザ封止管では、
単位長当りの出力が40〜50W/mとガスフロー
CO2レーザの出力レベルに等しく、前記した様に
CO2の解離がほぼ完全に抑制されていることがわ
かる。
Among perovskite oxides, chemical formula A 1-x A′ x
The material represented by BO 3 has conductivity and catalytic performance comparable to metals, but the present invention utilizes its oxygen release properties when used as a cathode. Here A is
Rare earth elements such as La, Nd, and Gd, A' are alkaline earth elements such as Sr, and B are transition metal elements such as Mn and Co. This material can be produced in the same manner as ordinary sintered ceramics by using starting materials through processes such as weighing, mixing, pre-firing, crushing, pressing, and firing. Through a series of researches by the inventors, A 1-x A′ x BO 3
The rare earth element A in the perovskite oxide
The amount of substitution x by alkaline earth element A′ is 0.1≦x
It is in the range of ≦0.5, and the final firing temperature is from 950℃ to 1200℃
When the resulting oxide is within the range of CO 2
When used as a laser electrode, the cathode temperature is heated to 200℃ to 300℃ due to cathode self-heating due to ion bombardment, O 2 gas is released from the cathode, and O 2 is mixed into the laser gas composition, which increases the output of the sealed tube laser. It was found that this has a large effect on the characteristics. As mentioned above, in a normal sealed tube CO 2 laser, approximately 60 to 70% of the CO 2 dissociates in a time constant of approximately 1 second when the excitation discharge starts, resulting in a decrease in laser output. . At this time, a chemical equivalent of CO is generated as a CO 2 dissociated product, but only about 10 to 60% of the chemical equivalent of O 2 is generated, and the oxygen in the generation stage is consumed by chemical reactions with electrodes etc. The result of analysis and measurement was found. This decrease in oxygen continues to move the chemical reaction equation (1) toward the right side, and eventually the laser operating life comes to an end. However, we have confirmed that these two phenomena can be prevented in the sealed CO 2 laser that uses the oxygen-releasing cathode described above. Pre-firing temperature 900℃, press pressure 0.5ton/ cm2 , final firing temperature
According to our mass spectrometry measurement results , the dissociation rate of CO 2 is
It was found that the amount of CO produced was as small as 10% or less, and was equal to the chemical equivalent of dissociated CO 2 , while the amount of O 2 produced was approximately 5 to 10 times the chemical equivalent. In this way, the dissociation of CO 2 is prevented by O 2
The occurrence of is nothing but moving equation (1) toward the left side. In this type of laser-sealed tube, there is no O 2 consumption, so the CO 2 laser gradually moves equation (1) to the right side, and the normal life mechanism of a sealed tube does not hold, so it has a very long operating life. You can expect
The inventors achieved an operating life of about 4400H. FIG. 2 shows the output characteristics of the sealed tube CO 2 laser according to the present invention in comparison with that of a conventional metal electrode sealed tube. In the figure, a shows the characteristics of a CO 2 laser sealed tube according to the present invention, and b shows the characteristics of a conventional metal electrode sealed tube. The laser tube has an inner diameter of 10mmφ, an effective discharge length of 1000mm, and a laser gas
Measurement was carried out by enclosing 22.5 tons of a material with a composition of 10.7% CO 2 , 26.7% N 2 , 61.3% He, and 1.3% Xe. Both ends of the laser tube were sealed with two ZnSe Brewster windows, and oscillation was performed using an external mirror resonator. As can be seen from the figure, the output using metal electrodes is about 20 W/m per unit length, which is the same level as a normal sealed tube that does not use a catalyst, but the perovskite oxide CO 2 laser sealed tube according to the present invention has an output of about 20 W/m per unit length. ,
Output per unit length is 40-50W/m and gas flow
Equal to the output level of the CO 2 laser, as mentioned above
It can be seen that the dissociation of CO 2 is almost completely suppressed.

発明の効果 以上のように本発明はレーザ励起のための放電
用電極材料を放電による電極自己発熱により酸素
ガスを放出する化学式A1-xA′xBO3で表わされる
ペロブスカイト酸化物で構成したCO2レーザ封止
管で、放出された酸素ガスによりCO2の解離を防
ぎレーザ動作寿命を著しく長くし、かつ出力を増
大させることができる。
Effects of the Invention As described above, in the present invention, a discharge electrode material for laser excitation is composed of a perovskite oxide represented by the chemical formula A 1-x A′ x BO 3 that releases oxygen gas by self-heating of the electrode due to discharge. With the CO 2 laser sealed tube, the released oxygen gas can prevent the dissociation of CO 2 , significantly extending the laser operating life and increasing the output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,cは各々本発明によるCO2レー
ザ封止管の実施例を示す断面側面図、第2図は従
来および本発明によるCO2レーザ封止管の出力特
性図である。 1……レーザ封止管、2,2′……反射鏡、3,
3′,31……側枝。4,41,43……ペロブ
スカイト酸化物電極、4′,42……金属電極、
5,5′……冷却水出入口、6……冷却水用ジヤ
ケツト。
FIGS. 1a, b, and c are cross-sectional side views showing embodiments of a CO 2 laser-sealed tube according to the present invention, and FIG. 2 is an output characteristic diagram of the conventional CO 2 laser-sealed tube and the present invention. 1...Laser sealed tube, 2, 2'...Reflector, 3,
3', 31...lateral branch. 4,41,43...perovskite oxide electrode, 4',42...metal electrode,
5, 5'...Cooling water inlet/outlet, 6...Cooling water jacket.

Claims (1)

【特許請求の範囲】 1 放電用電極とレーザガスを内蔵し、上記放電
用電極の少なくとも1つが化学式A1-xA′xBO3(こ
こにAは希土類元素、A′はアルカリ土類元素、
Bは遷移金属元素)で表わされるペロブスカイト
酸化物で構成され、前記ペロブスカイト酸化物は
950℃乃至1200℃の範囲の温度で焼成され放電に
よる自己発熱により酸素ガスを放出する特性を有
するものであることを特徴とする炭酸ガスレーザ
封止管。 2 放電用電極の少なくとも陰極がペロブスカイ
ト酸化物で構成された特許請求の範囲第1項記載
の炭酸ガスレーザ封止管。 3 希土類元素がLa、Nd又はGdのいずれかであ
る特許請求の範囲第1項記載の炭酸ガスレーザ封
止管。 4 アルカリ土類元素Srがある特許請求の範囲
第1項記載の炭酸ガスレーザ封止管。 5 遷移金属元素がCo、Mnのいずれかである特
許請求の範囲第1項記載の炭酸ガスレーザ封止
管。。 6 xが0.1≦x≦0.5の範囲に選定された特許請
求の範囲第1項記載の炭酸ガスレーザ封止管。
[Claims] 1. A discharge electrode and a laser gas are built in, and at least one of the discharge electrodes has the chemical formula A 1-x A' x BO 3 (where A is a rare earth element, A' is an alkaline earth element,
B is composed of a perovskite oxide represented by a transition metal element), and the perovskite oxide is
1. A carbon dioxide laser sealed tube characterized in that it is fired at a temperature in the range of 950°C to 1200°C and has the property of releasing oxygen gas by self-heating due to electric discharge. 2. The carbon dioxide laser sealed tube according to claim 1, wherein at least the cathode of the discharge electrode is made of perovskite oxide. 3. The carbon dioxide laser sealed tube according to claim 1, wherein the rare earth element is any one of La, Nd, or Gd. 4. The carbon dioxide laser sealed tube according to claim 1, which contains an alkaline earth element Sr. 5. The carbon dioxide laser sealed tube according to claim 1, wherein the transition metal element is either Co or Mn. . 6. The carbon dioxide laser-sealed tube according to claim 1, wherein x is selected in the range of 0.1≦x≦0.5.
JP13124583A 1983-07-18 1983-07-18 Carbonic acid laser sealed tube Granted JPS6022386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13124583A JPS6022386A (en) 1983-07-18 1983-07-18 Carbonic acid laser sealed tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13124583A JPS6022386A (en) 1983-07-18 1983-07-18 Carbonic acid laser sealed tube

Publications (2)

Publication Number Publication Date
JPS6022386A JPS6022386A (en) 1985-02-04
JPH0131317B2 true JPH0131317B2 (en) 1989-06-26

Family

ID=15053394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13124583A Granted JPS6022386A (en) 1983-07-18 1983-07-18 Carbonic acid laser sealed tube

Country Status (1)

Country Link
JP (1) JPS6022386A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141985A (en) * 1981-02-27 1982-09-02 Agency Of Ind Science & Technol Electrode for gas laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141985A (en) * 1981-02-27 1982-09-02 Agency Of Ind Science & Technol Electrode for gas laser

Also Published As

Publication number Publication date
JPS6022386A (en) 1985-02-04

Similar Documents

Publication Publication Date Title
US4756000A (en) Discharge driven gold catalyst with application to a CO2 laser
Witteman High‐Output Powers and Long Lifetimes of Sealed‐Off CO2 Lasers
GB2028571A (en) Carbon dioxide gas lasers
Waynant A discharge‐pumped ArCl superfluorescent laser at 175.0 nm
Norris et al. Compact sealed photopreionized TEA CO2 laser without heterogeneous catalysis or gas recycling
US4757512A (en) Discharge driven silver oxide catalyst with application to a CO2 laser
GB2083687A (en) Circulating gas laser
Ewing et al. Discharge pumping of the Br2* laser
Burnett et al. Simple electrode configuration for uv initiated high‐power TEA laser discharges
Solanki et al. Multiwatt operation of Cu II and Ag II hollow cathode lasers
JPH0131317B2 (en)
Brown et al. Efficient HgBr (B→ X) laser oscillation in electron‐beam‐controlled‐discharge‐excited Xe/HgBr2 mixtures
Warner et al. 1 W operation of singly ionized silver and copper lasers
Hochuli et al. Cold cathodes for sealed-off CO 2 lasers
Stark et al. A semiconductor-preionised sealed TEA laser operating at high CO2 concentrations and repetition rates up to 100 Hz
DeYoung et al. Lasing in a ternary mixture of He‐Ne‐O2 at pressures up to 200 Torr
JPS61119083A (en) Sealed type carbon dioxide laser
GB1601366A (en) Lasers
Saito et al. Low-temperature operation of copper-vapor lasers by using vapor-complex reaction of metallic copper and metal halide
Collins Properties of He–Ne–Zn Laser
Golger et al. Direct conversion of solar energy into laser radiation
JPH08770Y2 (en) External mirror type UV output laser resonator
Skippon et al. Kinetics and operation of the atomic mercury laser
Green A new generation of ultra-violet/visible gas lasers
JPS6312398B2 (en)