JPH01312512A - Opposed counter and signal reader using same - Google Patents

Opposed counter and signal reader using same

Info

Publication number
JPH01312512A
JPH01312512A JP63144534A JP14453488A JPH01312512A JP H01312512 A JPH01312512 A JP H01312512A JP 63144534 A JP63144534 A JP 63144534A JP 14453488 A JP14453488 A JP 14453488A JP H01312512 A JPH01312512 A JP H01312512A
Authority
JP
Japan
Prior art keywords
light
coupler
substrate
waveguide layer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63144534A
Other languages
Japanese (ja)
Other versions
JP2699414B2 (en
Inventor
Yutaka Hattori
豊 服部
Makoto Suzuki
誠 鈴木
Akihisa Suzuki
鈴木 昭央
Yoshinori Bessho
別所 芳則
Kazuya Taki
和也 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP63144534A priority Critical patent/JP2699414B2/en
Priority to US07/262,693 priority patent/US4865407A/en
Publication of JPH01312512A publication Critical patent/JPH01312512A/en
Application granted granted Critical
Publication of JP2699414B2 publication Critical patent/JP2699414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the utilization efficiency of light and facilitate optical axis alignment by forming light waveguide layers which vary in equivalent refractive index in the traveling direction of the light on both surfaces of a substrate which transmits light. CONSTITUTION:The waveguide layers 2 and 4 which vary in equivalent refractive index in the traveling direction of the light are formed on both sides of the substrate 3 which has light transmissivity. The 1st optical waveguide layer 2 and 2nd optical waveguide layer 4 decrease in thickness in a tapered shape toward a substrate end part 3a and called a 1st tapered coupler 2a and a 2nd tapered coupler 4a. The light is guided into the 1st optical waveguide layer 2 and propagated in the layer, but when it is propagated to the 1st tapered coupler 2a, it is emitted gradually to the side of the substrate 3 and emitted out of the substrate end part 3a. The light which enters the 2nd tapered coupler 4a from the substrate end part 3a is converted to the waveguide mode of propagation in the 2nd optical waveguide layer 4. Consequently, a high-efficiency input/output coupler is realized and the optical axis alignment is facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ディスク等に用いられる光の入出力素子で
ある対向カップラ及びそれを用いた信号読み取り装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a facing coupler, which is an optical input/output element used in optical discs, etc., and a signal reading device using the same.

[従来技術] 従来、使用波長で光の透過率の高い光学材料を基板とし
て、その表面に屈折率のわずかに高い領域を作り、そこ
に光を閉じ込める光導波路を光ディスク等の信号読み取
りに利用する場合、第5図に示すように基板9の表面に
回折格子溝を施したグレーティングカップラllaを用
い、導波層11内を光が伝搬する導波モードと外部へ光
が漏れる放射モードとの間の変換を行い、光の入出力結
合器として使っていた。
[Prior art] Conventionally, a substrate is made of an optical material with high light transmittance at the wavelength used, a region with a slightly high refractive index is created on its surface, and an optical waveguide that confines light there is used to read signals from optical discs, etc. In this case, as shown in FIG. 5, a grating coupler lla with diffraction grating grooves formed on the surface of the substrate 9 is used to connect the waveguide mode in which light propagates within the waveguide layer 11 and the radiation mode in which light leaks to the outside. It was used as an optical input/output coupler.

[発明が解決しようとする課題] しかしながら、グレーティングカップラ11aに集光効
果を持たせようとした場合、その格子の周期を徐々に小
さくしたチャーブグレーティングにする必要がある。第
6図にグレーティングカップラを示す。ここでは、シリ
コン(Si)基板9上に酸化シリコン(S L 02 
)バッファ層8を1゜86μm1米国コーニング社製#
7059ガラス導波路11を0.95μm1窒化シリコ
ン(SiN)クラッド層10を0.035μm積層させ
てグレーティングカップラを作製している。この場合、
長さ1.0mmに亘って周期を0.75μmから0.5
2μmで変化させると、波長790nmの光が2.0m
m離れた空間に集光する。このような微細な加工は電子
ビーム描画法を用いる必要があり、更にその光の利用効
率は50%程度と低い。また、放射方向は基板端部9a
に対し原理上傾いており、上記の例では15@である。
[Problems to be Solved by the Invention] However, if the grating coupler 11a is to have a light condensing effect, it is necessary to use a chirve grating whose grating period is gradually reduced. Figure 6 shows a grating coupler. Here, silicon oxide (S L 02
) Buffer layer 8 1° 86 μm 1 Made by Corning, USA #
A grating coupler is fabricated by laminating 7059 glass waveguides 11 of 0.95 μm and silicon nitride (SiN) cladding layers 10 of 0.035 μm. in this case,
The period is 0.75 μm to 0.5 over a length of 1.0 mm.
When changing by 2 μm, light with a wavelength of 790 nm travels 2.0 m.
Focuses light on a space m away. Such fine processing requires the use of an electron beam lithography method, and furthermore, the light utilization efficiency thereof is as low as about 50%. Also, the radiation direction is from the substrate end 9a.
In principle, it is inclined to 15@ in the above example.

つまり、例えば光ディスク等の読み取り装置として用い
た場合、光ディスクに対して15°傾けて設置する必要
がある。
That is, when used as a reading device for, for example, an optical disc, it is necessary to install it at an angle of 15 degrees with respect to the optical disc.

本発明は、上述した問題点を解決するためになされたも
のであり、光の利用効率が従来より高い対向カップラを
提供することを目的とし、例えば、光ディスク等の読み
取りに用いた場合、光軸合せが容易で、作製し易いため
、安価な信号読み取り装置が提供できることを目的とし
ている。
The present invention has been made in order to solve the above-mentioned problems, and aims to provide a facing coupler with higher light utilization efficiency than conventional ones. The purpose is to provide an inexpensive signal reading device because it is easy to match and manufacture.

[課題を解決するための手段] この目的を達成するために本発明の対向カップラは光透
過性を有する基板と前記基板の両側に設けられ、光の進
行方向に等偏屈折率が変化する導波層とからなっている
。光ディスク等の信号読み取り装置に用いる場合は、更
に半導体レーザ等の光源と光電変換する光検出器とから
なっている。
[Means for Solving the Problems] In order to achieve this object, the facing coupler of the present invention is provided with a light-transmitting substrate and a guide whose equipolarized refractive index changes in the direction of propagation of light. It consists of a wave layer. When used in a signal reading device for an optical disk or the like, it further includes a light source such as a semiconductor laser and a photodetector for photoelectric conversion.

[作用] 上記の構成を有する本発明の対向カップラでは、基板の
片面の導波層を伝搬する光がカップラより基板側へ放射
され、更に外部へ出射される。一方、基板の他面のカッ
プラへ入射した光は、導波層へ導かれ導波層内を伝搬す
る。
[Function] In the facing coupler of the present invention having the above configuration, light propagating through the waveguide layer on one side of the substrate is emitted from the coupler toward the substrate and further emitted to the outside. On the other hand, the light incident on the coupler on the other side of the substrate is guided to the waveguide layer and propagates within the waveguide layer.

光ディスク等の信号読み取り装置に用いる場合には、半
導体レーザ等の光源より発した光が本発明の対向カップ
ラの片面の導波層に入射し、前記と同様外部へ出射され
、光ディスク等の信号面で反射され、他面のカップラへ
入射し、前記と同様に導波層内を伝搬し光検出器へ導か
れる。
When used in a signal reading device for an optical disk, etc., light emitted from a light source such as a semiconductor laser enters the waveguide layer on one side of the facing coupler of the present invention, and is emitted to the outside in the same manner as described above, and the light is emitted from a light source such as a semiconductor laser. The light is reflected by the light beam, enters the coupler on the other side, propagates within the waveguide layer in the same manner as described above, and is guided to the photodetector.

[実施例] 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

第1図は本発明の対向カップラの構成を示している。光
の透過性を有する光学材料を用いた基板3の一側面に第
1光導波層2が、他側面に第2光導波層4が形成され、
対向カップラ1を構成している。前記第1光導波層2及
び第2光導波層4は基板端部3aに向ってテーバ状に厚
さが薄くなっており、各々第1テーパカツプラ2 a 
s第2テーパカップラ4aと称す。光は第1光導波層2
内に導かれ層内を伝搬して行くが、第1テーバカツプラ
2aに伝搬すると徐々に基板3側へ放射され、更に基板
端部3aから外部へ出射される。一方、基板端部3aか
ら第2テーバカツプラ4aへ向って入射した光は、第2
光導波層4内を伝搬する導波モードに変換される。以下
にテーバカップラを説明する。
FIG. 1 shows the configuration of the opposing coupler of the present invention. A first optical waveguide layer 2 is formed on one side of a substrate 3 made of an optical material having light transmittance, and a second optical waveguide layer 4 is formed on the other side,
It constitutes an opposing coupler 1. The thickness of the first optical waveguide layer 2 and the second optical waveguide layer 4 decreases in a tapered manner toward the substrate end 3a, and each of the first taper couplers 2a
It is called s second taper coupler 4a. The light passes through the first optical waveguide layer 2
The light is guided inside and propagates within the layer, but when it propagates to the first taper coupler 2a, it is gradually radiated toward the substrate 3, and further emitted to the outside from the substrate end 3a. On the other hand, the light incident from the substrate end 3a toward the second tapered coupler 4a is
It is converted into a waveguide mode that propagates within the optical waveguide layer 4. The Theba coupler will be explained below.

第2図はテーバカップラの構造を示す斜視図である。光
導波層2は、例えばZカットニオブ酸リチウム(LiN
bOs)結晶からなる基板3上に作製されたものである
。この光導波層2は三次元構造をしており、基板の屈折
率2.2に対して2゜204の表面屈折率を有し、幅は
4μm、深さ(2軸)方向にはガウス分布の屈折率分布
を示している。一方、基板3は基板端部3aに向って薄
くなるテーバ形状をしている。テーバカップラの動作原
理を第3図で説明する。先導波層2内を伝搬してきた光
は図中に示したような強度分布のビーム形状を示してい
る。この光がテーバカップラ2aを伝搬すると徐々に強
度分布が変化しこの変化分のエネルギーが屈折率差の小
さい基板3側へと放射される。このテーバカップラ2a
には光を閉じ込められなくなるカットオフ領域が存在す
る。
FIG. 2 is a perspective view showing the structure of the Taber coupler. The optical waveguide layer 2 is made of, for example, Z-cut lithium niobate (LiN
This is fabricated on a substrate 3 made of bOs) crystal. This optical waveguide layer 2 has a three-dimensional structure, has a surface refractive index of 2°204 relative to the refractive index of the substrate of 2.2, has a width of 4 μm, and has a Gaussian distribution in the depth (two-axis) direction. shows the refractive index distribution. On the other hand, the substrate 3 has a tapered shape that becomes thinner toward the substrate end 3a. The operating principle of the Taber coupler will be explained with reference to FIG. The light propagating within the leading wave layer 2 has a beam shape with an intensity distribution as shown in the figure. When this light propagates through the Taber coupler 2a, the intensity distribution gradually changes, and the energy corresponding to this change is radiated toward the substrate 3 side where the difference in refractive index is small. This Theba coupler 2a
There is a cutoff region where light cannot be confined.

そのため、光は更に進行すると、このカットオフ領域で
全ての光エネルギーは基板3側へ放射され、その効率は
70%が達成できる。このことは光の性質上、逆に基板
3側から光が入射する場合にも同様である。以下、この
テーバカップラ2aの作製法を示す。
Therefore, as the light travels further, all of the light energy is radiated to the substrate 3 side in this cutoff region, and an efficiency of 70% can be achieved. Due to the nature of light, this also applies when light is incident from the substrate 3 side. A method for manufacturing this Taber coupler 2a will be described below.

ZカットLiNbO3結晶上にチタン(Ti)を幅4μ
m1厚さ300人で基板端部3aまでパターニングを施
す。これを1000℃5時間拡散することで、光導波層
2が作製される。更に基板端部3aまでY方向に長さ2
00μmをテーバ状に研磨することでテーバカップラ2
aが作製される。
4μ width titanium (Ti) on Z-cut LiNbO3 crystal
Patterning is performed up to the substrate edge 3a with a thickness of 300 m1. The optical waveguide layer 2 is produced by diffusing this at 1000° C. for 5 hours. Furthermore, the length is 2 in the Y direction to the board end 3a.
Taber coupler 2 is created by polishing 00μm into a Taber shape.
a is produced.

以上説明した対向カップラを、例えば、光ディスク等の
読み取り装置に応用した場合を第4図の構成図で説明す
る。光源としての半導体レーザ5及び光電変換を行う光
検出器6が対向カップラ1に直接結合され、更に、光デ
ィスク7はその法線ふ基板端部3aの法線が一致するよ
う配置されている。光は半導体レーザ5より発し、第1
光導波層2に導かれる。以下、前記テーバカップラの動
作原理で示したように、基板端部3aから光ディスク7
へ向けて出射される。光ディスク7で反射された光は、
再び基板端部3aから入射し、前述とは逆に第2光導波
層4を伝搬する。更に、光検出器6で光量が検出され、
例えば光ディスク7に反射率の変化で情報が記録されて
いれば、情報に応じた変調信号が検出されるのである。
A case in which the opposed coupler described above is applied to, for example, a reading device for an optical disk or the like will be explained with reference to the configuration diagram in FIG. 4. A semiconductor laser 5 as a light source and a photodetector 6 for performing photoelectric conversion are directly coupled to the opposing coupler 1, and the optical disk 7 is arranged so that its normal line and the normal line of the substrate end 3a coincide with each other. The light is emitted from the semiconductor laser 5, and
The light is guided to the optical waveguide layer 2. Hereinafter, as shown in the operating principle of the Taber coupler, from the substrate end 3a to the optical disk 7.
It is emitted towards. The light reflected by the optical disc 7 is
The light enters again from the substrate end 3a and propagates through the second optical waveguide layer 4 in the opposite manner to the above. Furthermore, the amount of light is detected by the photodetector 6,
For example, if information is recorded on the optical disc 7 by changes in reflectance, a modulation signal corresponding to the information will be detected.

ここでは、テーパ形状にすることで光の入出力を実現し
たが、テーバ形状には限定されない。即ち、基本的には
導波層内での光の導波は等価屈折率によって記述され、
上記構成は等価屈折率を光の進行方向に変化させること
を意味している。例えば、チタンの拡散量を進行方向に
徐々に変化させることで屈折率分布を持たせることでも
実現できる。
Here, light input/output is achieved by using a tapered shape, but the shape is not limited to a tapered shape. That is, basically, the waveguide of light within the waveguide layer is described by the equivalent refractive index,
The above configuration means that the equivalent refractive index is changed in the direction in which light travels. For example, this can be achieved by creating a refractive index distribution by gradually changing the amount of titanium diffused in the direction of travel.

[発明の効果] 以上詳述したことから明らかなように、本発明によれば
、先導波層の先端に等偏屈折率分布を持たせるだけで効
率の高い入出力結合器が実現でき、基板の両面の有効利
用が可能となる。更に、光ディスク等の読み取り装置に
応用した場合、従来よりも容易に作製でき、安価な装置
が可能となり、基板端部の法線と、光ディスクの法線を
一致させることで光軸合せが容易にできる。
[Effects of the Invention] As is clear from the detailed description above, according to the present invention, a highly efficient input/output coupler can be realized simply by providing an equipolarized refractive index distribution at the tip of the leading wave layer. It becomes possible to make effective use of both sides. Furthermore, when applied to reading devices for optical discs, etc., it is easier to manufacture and cheaper than conventional devices, and optical axis alignment is facilitated by aligning the normal to the edge of the board with the normal to the optical disc. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図までは本発明を具体化した実施例を示
すもので、第1図は本発明の対向カップラの構成を示す
側面図、第2図はテーパカップラの構造を示す斜視図、
第3図は動作原理を説明する断面図、第4図は本発明の
対向カップラを光ディスク等の読み取り装置に応用した
構成図、第5図は従来のグレーティングカップラを説明
する斜視図、第6図は従来のグレーティングカップラの
作製法を説明する断面図である。 図中、1は対向カップラ、2は先導波層、3は基板、5
は半導体レーザ、6は光検出器である。
1 to 4 show embodiments embodying the present invention; FIG. 1 is a side view showing the structure of the opposing coupler of the present invention, and FIG. 2 is a perspective view showing the structure of the tapered coupler. ,
FIG. 3 is a sectional view explaining the principle of operation, FIG. 4 is a configuration diagram in which the opposing coupler of the present invention is applied to a reading device for optical discs, etc., FIG. 5 is a perspective view explaining a conventional grating coupler, and FIG. 6 FIG. 2 is a cross-sectional view illustrating a method for manufacturing a conventional grating coupler. In the figure, 1 is an opposing coupler, 2 is a leading wave layer, 3 is a substrate, and 5
is a semiconductor laser, and 6 is a photodetector.

Claims (1)

【特許請求の範囲】 1、光透過性を有する光学材料を用いた基板と、前記基
板の両面に設けられ、光の進行方向に従って等価屈折率
が変化する光導波層とからなる対向カップラ。 2、半導体レーザ等の光源と、光電変換を行う光検出器
と前記対向カップラとからなる光ディスク等の信号読み
取り装置。
[Scope of Claims] 1. A facing coupler comprising a substrate made of a light-transmitting optical material and optical waveguide layers provided on both sides of the substrate and having an equivalent refractive index that changes according to the direction in which light travels. 2. A signal reading device for an optical disk or the like, which comprises a light source such as a semiconductor laser, a photodetector that performs photoelectric conversion, and the opposing coupler.
JP63144534A 1987-10-22 1988-06-10 Opposing coupler and signal reading device using the same Expired - Fee Related JP2699414B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63144534A JP2699414B2 (en) 1988-06-10 1988-06-10 Opposing coupler and signal reading device using the same
US07/262,693 US4865407A (en) 1987-10-22 1988-10-26 Optical waveguide element, method of making the same and optical coupler employing optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144534A JP2699414B2 (en) 1988-06-10 1988-06-10 Opposing coupler and signal reading device using the same

Publications (2)

Publication Number Publication Date
JPH01312512A true JPH01312512A (en) 1989-12-18
JP2699414B2 JP2699414B2 (en) 1998-01-19

Family

ID=15364548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144534A Expired - Fee Related JP2699414B2 (en) 1987-10-22 1988-06-10 Opposing coupler and signal reading device using the same

Country Status (1)

Country Link
JP (1) JP2699414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278030A (en) * 1988-09-14 1990-03-19 Sankyo Seiki Mfg Co Ltd Wave guide type optical head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278030A (en) * 1988-09-14 1990-03-19 Sankyo Seiki Mfg Co Ltd Wave guide type optical head
JP2709090B2 (en) * 1988-09-14 1998-02-04 株式会社三協精機製作所 Waveguide type optical head

Also Published As

Publication number Publication date
JP2699414B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
KR100480786B1 (en) Integrated type optical head with coupler
JP2644829B2 (en) Optical information recording / reproducing device
JP3098173B2 (en) Optical coupler and method of manufacturing the same
KR100211064B1 (en) Optical waveguide with nonlinear thin film
US4059338A (en) Integrated optical waveguide coupler
JPH02179626A (en) Light wavelength converter
CN112649918A (en) Edge coupler
JP2699414B2 (en) Opposing coupler and signal reading device using the same
JPH04333004A (en) Light guide device
JPS62124510A (en) Grating optical coupler
JP2586587B2 (en) Refractive index distribution coupler
JPH02116809A (en) Optical coupler
JP2679760B2 (en) Optical waveguide
JPS6256903A (en) Reflection type branching optical waveguide
JPS58202406A (en) Waveguide type optical beam splitter
JPH08152534A (en) Prism coupler and optical pickup device
JPH11281833A (en) Grating coupler
JPS6262304A (en) Y branched optical waveguide device
JPH01200206A (en) Condensing coupler
JP3476652B2 (en) Optical splitter
JP3152456B2 (en) Focus error signal detecting device, optical information recording / reproducing device, and magneto-optical information recording / reproducing device
JPS63164035A (en) Optical guide type optical pickup
JPS5810705A (en) Photocoupler
JPS63269129A (en) Optical integrated circuit
JPH0685368A (en) Optical integrated data processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees