JPH01312092A - Production of ozone by electrolysis - Google Patents

Production of ozone by electrolysis

Info

Publication number
JPH01312092A
JPH01312092A JP63144491A JP14449188A JPH01312092A JP H01312092 A JPH01312092 A JP H01312092A JP 63144491 A JP63144491 A JP 63144491A JP 14449188 A JP14449188 A JP 14449188A JP H01312092 A JPH01312092 A JP H01312092A
Authority
JP
Japan
Prior art keywords
ozone
electrode
anode
platinum
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63144491A
Other languages
Japanese (ja)
Inventor
Junji Mizutani
淳二 水谷
Kuniaki Tanaka
田中 国昭
Yoshio Saito
斉藤 義雄
Hideaki Arai
秀晃 新居
Eiichi Torikai
鳥養 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP63144491A priority Critical patent/JPH01312092A/en
Publication of JPH01312092A publication Critical patent/JPH01312092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:To stably produce high purity ozone without deteriorating the function of the anode owing to the suspension of supply of electric current by using an electrode obtd. by adhering a Pt layer to one side of a porous electrode and press bonding a cation exchange membrane to the surface of the Pt layer as the anode in an apparatus for producing ozone by electrolysis of water. CONSTITUTION:An electrode obtd. by adhering a Pt layer of 5-100mum thickness to one side of a porous electrode such as a sintered body of fibrous Ti or Ti powder and press bonding a perfluorosulfonic acid type cation exchange membrane to the surface of the Pt layer is used as the anode in an apparatus for generating ozone by electrolysis of water. A sintered body of fibrous carbon or powdery carbon, carbon felt, paper or cloth is used as the cathode. Water at 5-20 deg.C is electrolyzed at about 200A/dm<2> current density and high purity ozone having about 0.05-0.5% concn. is stably produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、オゾンの電解製造法に関する。より詳しくは
、食品、医療、環境衛生等の民生分野において、殺菌、
保存等に有用なオゾン又は純オゾン水を連続的に供給で
きるオゾンの電解製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for the electrolytic production of ozone. More specifically, sterilization,
This invention relates to an electrolytic production method for ozone that can continuously supply ozone or pure ozone water useful for storage, etc.

従来の技術とその問題点 水電解によりオゾンを製造できることは、公知である。Conventional technology and its problems It is known that ozone can be produced by water electrolysis.

従来の水電解法によれば、白金電極/カチオン交換膜/
二酸化鉛電極(陽極)を組合せたセルを用い、陽極側に
純水を送りながら電解することにより、14重量%以上
の高濃度オゾンが得られる。高濃度オゾンを生成させる
ためには、二酸化鉛電極は欠くことのできない触媒電極
である。
According to the conventional water electrolysis method, platinum electrode/cation exchange membrane/
By using a cell combined with a lead dioxide electrode (anode) and electrolyzing while sending pure water to the anode side, ozone with a high concentration of 14% by weight or more can be obtained. In order to generate high concentration ozone, a lead dioxide electrode is an indispensable catalytic electrode.

ところが、上記の水電解法には、以下に示すような問題
点がある。
However, the above water electrolysis method has the following problems.

即ち、上記の方法で電解を行なっている際に、停電等に
よって電解が停止すると、セルに逆電流が流れたり或い
は自己放電が起ったりして、二酸化鉛電極に含まれる鉛
が、pb”−pb”+反応を起こし、イオン交換膜上に
Pb2+とじて拡散する。
In other words, if electrolysis is stopped due to a power outage while electrolysis is being performed using the above method, a reverse current flows through the cell or self-discharge occurs, and the lead contained in the lead dioxide electrode becomes PB''. -pb"+ reaction occurs and diffuses onto the ion exchange membrane as Pb2+.

この結果、二酸化鉛電極は、水電解反応に必要な、プロ
トンの移動に寄与す、る活性点を失い、その固体電解質
としての機能が低下する。従って、従来法では、電流の
オン−オフを任意に行えなかった。
As a result, the lead dioxide electrode loses active sites that contribute to the movement of protons necessary for the water electrolysis reaction, and its function as a solid electrolyte deteriorates. Therefore, in the conventional method, the current cannot be turned on and off arbitrarily.

また、生成するオゾン水が、二酸化鉛電極から溶け出し
た鉛によって汚染されるため、得られるオゾン水を上記
の民生分野に使用するには、鉛の除去等の処理を行なわ
ねばならない。
Furthermore, since the ozonated water produced is contaminated by lead dissolved from the lead dioxide electrode, in order to use the obtained ozonated water in the above-mentioned consumer fields, it is necessary to perform treatments such as removing lead.

このため従来型のセルでは、二酸化鉛電極の保護のため
に、停電時に、常備しているバックアップ電源を作動さ
せて保護電流を流さなければならない。即ち、二酸化鉛
電極を用いる電解装置には、常に電極の保護回路が必要
であり、これに要するサブシステムのために、装置のコ
ンパクト化及びコストの低減が困難であった。しかも、
二酸化鉛電極自体の製作コストも非常に高い。
For this reason, in conventional cells, in order to protect the lead dioxide electrode, a backup power supply must be activated to supply a protective current during a power outage. That is, an electrolytic device using a lead dioxide electrode always requires an electrode protection circuit, and the subsystem required for this makes it difficult to make the device compact and reduce costs. Moreover,
The manufacturing cost of the lead dioxide electrode itself is also very high.

一方、白金/カチオン交換膜/白金、白金/カチオン交
換膜/イリジウム若しくはその酸化物等の、カチオン膜
の両面に触媒電極を接合した電極−膜接合体を用い、水
電解を行なうことにより、水素及び酸素が得られること
は、知られている。
On the other hand, water electrolysis can be performed using an electrode-membrane assembly in which catalyst electrodes are bonded to both sides of a cation membrane such as platinum/cation exchange membrane/platinum, platinum/cation exchange membrane/iridium or its oxide, etc. It is known that oxygen and oxygen can be obtained.

しかしながら、白金電極上ではオゾンの生成反応と接触
分解反応が併行して起るため、このような白金−膜接合
体を用いて水電解を行なっても、オゾンの生成量は極め
て少ない。
However, since the ozone production reaction and the catalytic decomposition reaction occur concurrently on the platinum electrode, even when water electrolysis is performed using such a platinum-membrane assembly, the amount of ozone produced is extremely small.

問題点を解決するための手段 本発明者は、上記従来技術の問題点に鑑みて、イオン交
換膜を用いる水電解法におけるオゾンの生成機構を詳細
に検討した結果、陽極として、片面に白金層を有する多
孔質給電体を用い、該給電体の白金面に特定のイオン交
換膜を圧接して水電解する場合には、(1)オゾンの接
触分解反応が殆んど起らず、0.05〜0. 5重量%
程度の濃度の高純度オゾンを製造できること、(2)電
流が停止しても、陽極の溶解が起らず、従来の二酸化鉛
電極を備えたオゾン製造装置に必要であったバックアッ
プ電源を省略でき、電流のオン−オフを任意にできるこ
と、(3)陽極の崩壊が起らないので、得られるオゾン
水が汚染されず、オゾン水をそのまま民生用分野に使用
できること、並びに(4)バックアップ電源を省略でき
るので、高純度オゾン又はオゾン水のオンサイト製造装
置のコンパクト化、コストダウン及び省力化が可能にな
ることを見出し、本発明を完成した。
Means for Solving the Problems In view of the problems of the prior art described above, the inventor of the present invention conducted a detailed study on the ozone generation mechanism in water electrolysis using an ion exchange membrane, and as a result, developed a method using a platinum layer on one side as an anode. When water electrolysis is performed using a porous power feeder having a specific ion exchange membrane pressed against the platinum surface of the power feeder, (1) almost no ozone catalytic decomposition reaction occurs; ~0. 5% by weight
(2) Even if the current is stopped, the anode does not melt, and the backup power supply required for conventional ozone production equipment equipped with lead dioxide electrodes can be omitted. (3) Since the anode does not collapse, the obtained ozonated water is not contaminated and can be used as it is in the consumer field; (4) A backup power supply is required. The present invention was completed based on the discovery that the on-site production apparatus for high-purity ozone or ozonated water can be made more compact, cost-effective, and labor-saving because the process can be omitted.

即ち本発明は、陽極として、片面に白金層を有するポー
ラス電極を用い、前記電極の白金面にパーフロロスルホ
ン酸型のカチオン交換膜を圧接して水電解を行なうこと
を特徴とするオゾンの電解製造法に関するものである。
That is, the present invention provides an ozone electrolysis method characterized in that water electrolysis is carried out by using a porous electrode having a platinum layer on one side as an anode and pressing a perfluorosulfonic acid type cation exchange membrane onto the platinum surface of the electrode. It concerns the manufacturing method.

本発明において使用する電極は、片面に白金層を有する
ポーラス電極であれば特に制限されない。
The electrode used in the present invention is not particularly limited as long as it is a porous electrode having a platinum layer on one side.

白金層の粗化度は小さいもの程好ましい。このような構
造の電極は、白金層で生成したオゾンを、白金層及びポ
ーラス電極の孔を通して電極の背後に素早(脱離させる
ことができる。
The smaller the degree of roughness of the platinum layer, the more preferable it is. An electrode having such a structure can quickly (desorb) ozone generated in the platinum layer behind the electrode through the platinum layer and the pores of the porous electrode.

ポーラス電極材料としては公知のものを使用でき、例え
ば、ポーラスチタン材を例示できる。ポーラスチタン材
としては常用されているものを何れも使用でき、例えば
、繊維状、球状粉末のチタンを焼結したもの、エキスバ
ンド板、メツシュを重ねて焼結したもの等を例示できる
As the porous electrode material, known materials can be used, such as porous titanium material. Any commonly used porous titanium material can be used, such as sintered titanium in the form of fibers or spherical powder, expanded plates, and sintered layers of mesh.

上記ポーラス電極材料の片面に白金層を接合する。接合
に当っては公知の方法がいずれも採用できるが、焼結法
が好ましい。白金層の厚さは特に制限されないが、通常
5〜100μm程度とすればよい。もし無接合で積層し
たものを使用すると、白金とチタンとの接触面が酸化さ
れ易く、セルの抵抗が高くなってゆ(。
A platinum layer is bonded to one side of the porous electrode material. Any known method can be used for joining, but a sintering method is preferred. Although the thickness of the platinum layer is not particularly limited, it may normally be about 5 to 100 μm. If a laminated product is used without bonding, the contact surface between platinum and titanium will be easily oxidized and the resistance of the cell will increase.

白金を接合したポーラス電極の具体例としては、例えば
、白金網、白金エキスバンド板、白金ホトエツチング板
、白金とチタン、タンタル、ニオブ等からなるクラツド
板を加工した有孔板等をポーラスチタン材に焼結接合し
たもの等を例示できる。
Specific examples of porous electrodes bonded with platinum include platinum mesh, platinum expanded plate, platinum photoetched plate, perforated plates processed from clad plates made of platinum and titanium, tantalum, niobium, etc., made of porous titanium material. Examples include those bonded by sintering.

また、チタン、タンタル等のエキスバンド板の片面に粗
化度の小さい白金めっきを施したものをポーラスチタン
材に接合してもよく、Tめ作製したポーラスチタンの積
層板に適当なマスクを施し片面にめっきしてもよい。
Alternatively, one side of an expanded plate made of titanium, tantalum, etc., plated with platinum with a low degree of roughness may be bonded to the porous titanium material. May be plated on one side.

陰極材料としては従来法で採用されているものを使用で
きる。その具体例としては、例えば、繊維状炭素、粉粒
状炭素等の焼結体、カーボンフェルト、カーボンペーパ
ー、カーボンクロス等を成形したもの、炭素粉末をPT
FE樹脂でモールドしたもの、膨張化黒鉛を焼結加工し
たもの等を例示できる。これらの炭素材料に白金を接合
して使用してもよい。また、炭素成形板の片面に白金め
っきを施したものや、白金を分散させた炭素をフッ素樹
脂等でモールドしたもの等も使用できる。
As the cathode material, those employed in conventional methods can be used. Specific examples include sintered bodies of fibrous carbon, powdery carbon, etc., carbon felt, carbon paper, carbon cloth, etc., and carbon powder made of PT.
Examples include those molded with FE resin and those made by sintering expanded graphite. Platinum may be bonded to these carbon materials for use. Further, it is also possible to use a carbon molded plate plated with platinum on one side, or a molded carbon plate in which platinum is dispersed and molded with a fluororesin or the like.

本発明で使用されるパーフロロスルホン酸型のカチオン
交換膜は、水電解反応における固体電解質として作動す
るものであり、陽極で生成するオゾンに耐性を有してい
る。その具体例としては、例えば、デュポン社のナフィ
オン膜を例示できる。
The perfluorosulfonic acid type cation exchange membrane used in the present invention operates as a solid electrolyte in a water electrolysis reaction and is resistant to ozone generated at the anode. A specific example thereof is, for example, DuPont's Nafion membrane.

オゾンの電解製造は、陰極側に上述の電極を配置し、パ
ーフロロスルホン酸型カチオン交換膜を隔てた陽極側に
本発明による白金電極を配置してセルを組立て、前記カ
チオン交換膜と陽極側の白金電極を圧接し、陽極側に純
水を送りながら電解する。
Electrolytic production of ozone involves assembling a cell by arranging the above-mentioned electrode on the cathode side and arranging the platinum electrode according to the present invention on the anode side across the perfluorosulfonic acid type cation exchange membrane. Platinum electrodes are pressed together and electrolysis is carried out while sending pure water to the anode side.

電解条件は特に制限されず適宜選択すればよい。Electrolytic conditions are not particularly limited and may be selected as appropriate.

電解は、通常0〜50°C程度、好ましくは5〜20°
C程度の温度下に行なわれる。
Electrolysis is usually carried out at a temperature of about 0 to 50°C, preferably 5 to 20°C.
The process is carried out at a temperature of about C.

また、電流密度も特に制限されず、適宜選択することが
できるが、得られるオゾンの濃度、カチオン交換膜の損
傷等を考慮すると、通常50〜20OA/drrr程度
とすればよい。この範囲で、0.05〜0. 5重量%
程度のオゾンが得られる。
Further, the current density is not particularly limited and can be selected as appropriate, but in consideration of the concentration of ozone obtained, damage to the cation exchange membrane, etc., it is usually about 50 to 20 OA/drrr. In this range, 0.05 to 0. 5% by weight
A certain amount of ozone can be obtained.

電流密度によって、得られるオゾンの濃度を調整できる
The concentration of ozone obtained can be adjusted by changing the current density.

発明の効果 本発明によれば、以下のような優れた効果が達成される
。   ′ (1)オゾンの接触分解反応が殆んど起らず、0,05
〜0.5重量%程度の濃度の高純度オゾンを製造できる
こと。
Effects of the Invention According to the present invention, the following excellent effects can be achieved. ' (1) Almost no ozone catalytic decomposition reaction occurs, and 0.05
It is possible to produce high purity ozone with a concentration of ~0.5% by weight.

(2)電流停止時に陽極の溶解が起らない。このため、
従来の二酸化鉛電極を使用したオゾン製造装置に必要で
あったバックアップ電源を省略でき、電流のオン−オフ
を任意にできる。
(2) Dissolution of the anode does not occur when the current is stopped. For this reason,
The backup power supply required in conventional ozone production equipment using lead dioxide electrodes can be omitted, and the current can be turned on and off at will.

(3)陽極の崩壊等による陽極液の汚染がないので、陽
極側で得られるオゾン水の純度が高い。
(3) Since there is no contamination of the anolyte due to the collapse of the anode, etc., the purity of the ozonated water obtained on the anode side is high.

しかも、得られるオゾン水を、そのまま民生用分野に使
用できる。
Moreover, the obtained ozonated water can be used as it is in the consumer field.

(4)高純度オゾン又はオゾン水のオンサイト製造装置
のコンパクト化、コストダウン及び省力化が可能になる
(4) It becomes possible to make the on-site production equipment for high-purity ozone or ozone water more compact, reduce costs, and save labor.

実施例 以下に実施例及び比較例を挙げ、本発明を一層明瞭なも
のとする。
EXAMPLES Below, Examples and Comparative Examples will be given to further clarify the present invention.

実施例1 白金のエキスバンド板〔厚さ0.1mm、線径0 。Example 1 Platinum expanded band plate [thickness 0.1 mm, wire diameter 0].

1mm、商品名:MloF、カッラダグレイティング■
製〕をプレスして、径85mmの円板に加工した。
1mm, Product name: MloF, Carrada grating ■
] was pressed and processed into a disc with a diameter of 85 mm.

ポーラスチタン板は、ひびや切削法による繊維状チタン
(径60μm1長さ約3mm)を真空焼結した空孔率的
70%、厚さ3IIII111径85mmの円板〔東京
製網■製〕を使用した。
The porous titanium plate is a circular plate (manufactured by Tokyo Seimi ■) with a porosity of 70% and a thickness of 3III111 and a diameter of 85 mm, which is made by vacuum sintering fibrous titanium (60 μm in diameter and approximately 3 mm in length) by cracking and cutting. did.

ポーラスチタン板に白金有孔板をのせ、100g/cd
の荷重下に1170℃の真空焼結炉で処理し接合し、径
85mmの電極を作製した。
Place a platinum perforated plate on a porous titanium plate, 100g/cd
The electrodes were processed and bonded in a vacuum sintering furnace at 1170° C. under a load of 1,170° C. to produce an electrode with a diameter of 85 mm.

実施例2 チタンのエキスバンド板〔厚さ0. 1mrn、線径0
.1mm、商品名:MloF、カッラダグレイティング
■製〕をプレスして、径85+nn+の円板に加工した
。これに、脱脂、水洗、10%シュウ酸水溶液で2分間
エツチングを施した後、白金めっき液〔プラタネックス
11液、国中貴金属■製〕を用い、5Aで30分電解し
、厚さ約5μmの白金めっきを施した。
Example 2 Titanium expanded plate [thickness 0. 1 mrn, wire diameter 0
.. 1 mm, trade name: MloF, manufactured by Carrada Grating ■] was pressed and processed into a disc with a diameter of 85+nn+. This was degreased, washed with water, and etched for 2 minutes with a 10% oxalic acid aqueous solution, and then electrolyzed at 5A for 30 minutes using a platinum plating solution [Platanex 11 solution, manufactured by Kuninaka Kikinzoku ■] to a thickness of approximately 5 μm. Platinum plating was applied.

次にチタンエキスバンド板、TiO,1−MloF、0
.2−M20F及び0.3−M20Fを孔径の順に重ね
、白金めっきしたチタン板を最小孔径のエキスバンド板
の上に置いて真空炉で焼結し、径85mmの円板電極を
作製した。
Next, a titanium extract band plate, TiO, 1-MloF, 0
.. 2-M20F and 0.3-M20F were stacked in order of hole diameter, and a platinum-plated titanium plate was placed on the expanded plate with the smallest hole diameter and sintered in a vacuum furnace to produce a disk electrode with a diameter of 85 mm.

実施例3 白金−タンタルのクラツド板〔厚さ0.25mm、白金
層7μm1石福金属株製〕をエキスバンド加工し、M3
0F、径85mmの円板を作製した。次いで、実施例1
と同様のポーラスチタン板と合せて真空焼結し、径85
mmの電極を作製した。
Example 3 A platinum-tantalum clad plate [thickness 0.25 mm, platinum layer 7 μm 1 manufactured by Ishifuku Kinzoku Co., Ltd.] was subjected to expansion band processing and M3
A disc with 0F and a diameter of 85 mm was produced. Next, Example 1
Vacuum sintered with a porous titanium plate similar to
An electrode of mm was fabricated.

実施例4 第1図に示す電解装置を用いて、水電解によるオゾンの
製造を行なった。条件は下記の通りである。
Example 4 Ozone was produced by water electrolysis using the electrolysis apparatus shown in FIG. The conditions are as follows.

陽極:実施例1. 2. 3の各電極、有効面積50c
イ 陰極;膨脂化黒鉛を焼結して製造されたポーラス炭素板
〔厚さ0. 5mm、有効面積50c♂、神戸製w4■
製〕に無電解めっき法により約2μmの白金を接合した もの イオン交換膜:ナフィオン117(デュポン社製) 陽極端板:チタン 陰極端板:SUS  304 温度:12〜32°C 電解液:水 電流:5OA及び75A 電流密度=100〜150A/dイ 電圧=6.1〜6.6v 各実施例の電極で得られるオゾンの濃度と発生量を、下
記第1表に示す。
Anode: Example 1. 2. 3 each electrode, effective area 50c
Cathode: Porous carbon plate manufactured by sintering expanded graphite [thickness 0. 5mm, effective area 50c♂, made in Kobe w4■
Ion exchange membrane: Nafion 117 (manufactured by DuPont) Anode plate: Titanium Cathode plate: SUS 304 Temperature: 12 to 32°C Electrolyte: Water current : 5OA and 75A Current density = 100-150A/di Voltage = 6.1-6.6v The ozone concentration and amount generated from the electrodes of each example are shown in Table 1 below.

比較例1 特公昭58−47471号に記載の方法に従い、吸着、
還元、成長法によって、ナフィオン膜に白金を接合した
電極−膜接合体を作製した。これを、陽極として用い、
且つ陽極給電材としてチタンエキスバンド板の積層板を
用いる以外は、実施例4と同様にして水電解を行なった
。結果を下記第1表に示す。
Comparative Example 1 Adsorption,
An electrode-membrane assembly in which platinum was bonded to a Nafion membrane was fabricated using a reduction and growth method. Use this as an anode,
Water electrolysis was carried out in the same manner as in Example 4, except that a laminate of titanium expanded plates was used as the anode power supply material. The results are shown in Table 1 below.

比較例2 陽極として、繊維状チタンを成形したポーラス板〔東京
製綱■製〕の片面に白金めっきを施したものを用いる以
外は、実施例4と同様にして水電解を行なった。結果を
下記第1表に示す。
Comparative Example 2 Water electrolysis was carried out in the same manner as in Example 4, except that a porous plate made of fibrous titanium (manufactured by Tokyo Rope Corporation) with platinum plating on one side was used as an anode. The results are shown in Table 1 below.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の水電解用セルの一例を示す概略
図である。 (1)イオン交換膜 (2)・・・陽極 (3)・・・陰極 (4)・・・陽極側端板 (5)・・・陰極側端板 (6)・・・気体分離器 (7)・・・陽極発生ガス (8)・・・陰極発生ガス (以 上) 第1図
FIG. 1 is a schematic diagram showing an example of a cell for water electrolysis according to the method of the present invention. (1) Ion exchange membrane (2)... Anode (3)... Cathode (4)... Anode side end plate (5)... Cathode side end plate (6)... Gas separator ( 7)...Anode generated gas (8)...Cathode generated gas (and more) Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)水電解によってオゾンを製造するに当り、陽極と
して、片面に白金層を有するポーラス電極を用い、前記
ポーラス電極の白金面にパーフロロスルホン酸型のカチ
オン交換膜を圧接して水電解を行なうことを特徴とする
オゾンの電解製造法。
(1) When producing ozone by water electrolysis, a porous electrode having a platinum layer on one side is used as an anode, and a perfluorosulfonic acid type cation exchange membrane is pressure-bonded to the platinum surface of the porous electrode to perform water electrolysis. An electrolytic ozone production method characterized by:
JP63144491A 1988-06-10 1988-06-10 Production of ozone by electrolysis Pending JPH01312092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63144491A JPH01312092A (en) 1988-06-10 1988-06-10 Production of ozone by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144491A JPH01312092A (en) 1988-06-10 1988-06-10 Production of ozone by electrolysis

Publications (1)

Publication Number Publication Date
JPH01312092A true JPH01312092A (en) 1989-12-15

Family

ID=15363570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144491A Pending JPH01312092A (en) 1988-06-10 1988-06-10 Production of ozone by electrolysis

Country Status (1)

Country Link
JP (1) JPH01312092A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267389A (en) * 1990-03-16 1991-11-28 O D S:Kk Electrolytic ozonizer
JPH04221087A (en) * 1990-03-03 1992-08-11 Samsung Electron Co Ltd Ozonizer in liquid
EP0711731A2 (en) 1994-11-11 1996-05-15 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Ozone water production apparatus
US5882609A (en) * 1996-03-05 1999-03-16 Kabushiki Kaisha Kobe Seiko Sho Ozone production apparatus
WO2005106079A1 (en) 2004-04-28 2005-11-10 Central Japan Railway Company Electrode, ozone generator and ozone generating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100190A (en) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd Electrolytic device for generating gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100190A (en) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd Electrolytic device for generating gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221087A (en) * 1990-03-03 1992-08-11 Samsung Electron Co Ltd Ozonizer in liquid
JPH03267389A (en) * 1990-03-16 1991-11-28 O D S:Kk Electrolytic ozonizer
EP0711731A2 (en) 1994-11-11 1996-05-15 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Ozone water production apparatus
US5686051A (en) * 1994-11-11 1997-11-11 Kabushiki Kaisha Kobe Seiko Sho Ozone water production apparatus
US5882609A (en) * 1996-03-05 1999-03-16 Kabushiki Kaisha Kobe Seiko Sho Ozone production apparatus
WO2005106079A1 (en) 2004-04-28 2005-11-10 Central Japan Railway Company Electrode, ozone generator and ozone generating method

Similar Documents

Publication Publication Date Title
EP0026995B1 (en) Thin carbon-cloth-based electrocatalytic gas diffusion electrodes, processes, and electrochemical cells comprising the same
JP5180473B2 (en) Membrane electrode assembly for water electrolysis
US6852438B2 (en) Embossed current collector separator for electrochemical fuel cell
US4707229A (en) Method for evolution of oxygen with ternary electrocatalysts containing valve metals
JP4165655B2 (en) Electrolytic device, electrochemical reaction membrane device, and porous conductor
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
KR101220199B1 (en) Electrolytic synthesis of hydrogen peroxide directly from water and application thereof
JP2003523599A (en) Method of maintaining compression of working area in electrochemical cell
JP3274880B2 (en) Electrolytic ozone generator
JPH01312092A (en) Production of ozone by electrolysis
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
JPH03252057A (en) Electrochemical cell
JP4643393B2 (en) Fuel cell
JPS6152383A (en) Electrochemical device using cation exchange membrane as electrolyte
JP2004134134A (en) Porous gas diffusion body, and reversible cell using it
JP2840753B2 (en) Ozone electrolytic production method
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP2006213932A (en) Electrode for generating electrolyzed water
JP3078570B2 (en) Electrochemical electrode
JPH07296840A (en) Polymer electrolyte fuel cell
WO2009093651A1 (en) Fuel cell and control method for same
JPH0633284A (en) Water electrolytic cell
Michas et al. Metal and metal oxides based membrane composites for solid polymer electrolyte water electrolysers
JPH0339493A (en) Water electrolyzing equipment
JPH0244908B2 (en)