JPH01311892A - System of operating rotary machine - Google Patents

System of operating rotary machine

Info

Publication number
JPH01311892A
JPH01311892A JP63139401A JP13940188A JPH01311892A JP H01311892 A JPH01311892 A JP H01311892A JP 63139401 A JP63139401 A JP 63139401A JP 13940188 A JP13940188 A JP 13940188A JP H01311892 A JPH01311892 A JP H01311892A
Authority
JP
Japan
Prior art keywords
current
group
phase
winding
rectifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63139401A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kusunoki
清志 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63139401A priority Critical patent/JPH01311892A/en
Publication of JPH01311892A publication Critical patent/JPH01311892A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the pulsation of a reactive current the side of the input of a cycloconverter by operating a rotary machine at a variable speed while a circulating current flows from the cycloconverter without providing a current limiting reactor. CONSTITUTION:A group rectifiers 13A, 14A, 15A of a cycloconverter 12 are connected to B group rectifiers 13B, 14B, 15B through the double master windings 13C, 14C, 15C of a rotary electric machine. Thus, if the phases of the output currents of the A group rectifiers from those of the B group are suitably displaced, the fact that the A group rectifiers and the B group rectifiers simultaneously generate a '0' current zone can be eliminated. Since a circulating current can flow between the A group rectifiers and the B group rectifiers, the quantity of the circulating current is suitably controlled to suppress the pulsation of a reactive current at the side of the input of the cycloconverter 12 can be suppressed to a small value.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、循環電流抑制用リアクトル(以下限流リアク
トルと略す)を設けなくてもサイクロコンバータ(以下
C,C,と略す)より循環電流を流しつつ、回転機を可
変運転する回転機運転システムに関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a cycloconverter (hereinafter referred to as C, C) without providing a circulating current suppressing reactor (hereinafter referred to as current limiting reactor). This invention relates to a rotating machine operating system that variably operates a rotating machine while flowing a circulating current.

(従来の技術) 回転機を可変速度運転する回転機運転システムとして、
循環電流形C,C,と非循環電流形C,C。
(Conventional technology) As a rotating machine operating system that operates a rotating machine at variable speed,
Circulating current type C, C, and non-circulating current type C, C.

が知られている。(例えば、電力技術研究会資料資料番
号P E−87−141)。
It has been known. (For example, Electric Power Technology Research Group Material No. PE-87-141).

第8図は、循環電流形C,C,の結線の一例で、−相あ
たりの変換器の結線を示したものである。
FIG. 8 is an example of the connection of the circulating current types C, C, and shows the connection of the converter per -phase.

正群整流回路(P)(以下正群と称す)と負群整流器y
Pt(N) (以下負群と称す)は常時動作しており、
正群(P)と負群(N)の瞬時電圧の差異によるリップ
ル電流の循環を低減するため、限流リアクトル■が設け
られている。また、C,C,電源用変圧器(イ)を介し
、正群(P)と負群(N)が短絡されるのを防ぐため、
正群(P)用変圧器巻線(4a)と負群(N)用変圧器
巻線(4b)が別々に設けられている。
Positive group rectifier circuit (P) (hereinafter referred to as positive group) and negative group rectifier y
Pt(N) (hereinafter referred to as negative group) is constantly operating,
In order to reduce the circulation of ripple current due to the difference in instantaneous voltage between the positive group (P) and the negative group (N), a current limiting reactor (2) is provided. In addition, in order to prevent the positive group (P) and negative group (N) from being short-circuited via C, C, and the power transformer (A),
A positive group (P) transformer winding (4a) and a negative group (N) transformer winding (4b) are provided separately.

第9図は、非循環電流形C,C,の結線の一例で。Figure 9 is an example of the connection of non-circulating current types C and C.

−相あたりの変換器の結線を示したものである。- Shows the converter connections per phase.

負荷■の電流に応じ、正群(P)または負群(N)のど
ちらか一方の整流器のみを交互に動作させる。
Only one of the positive group (P) and negative group (N) rectifiers is operated alternately depending on the current of the load (2).

従って、循環電流は流れないので限流リアクトルを設け
る必要はなく、また、正群(P)用と負群(N)用に変
圧器巻線(イ)を分離する必要がない。
Therefore, since no circulating current flows, there is no need to provide a current limiting reactor, and there is no need to separate the transformer windings (A) for the positive group (P) and the negative group (N).

C,C,の入力側の無効電力(以下VARと称す)は、
C,C,の出力周波数の6倍の周波数で脈動するが、こ
のVARの脈動が大きい場合には、電源系統のVARも
脈動させ、電源系統に悪影響を与える。
The reactive power (hereinafter referred to as VAR) on the input side of C, C, is:
It pulsates at a frequency six times the output frequency of C, C, but if the pulsation of this VAR is large, it also causes the VAR of the power supply system to pulsate, which has an adverse effect on the power supply system.

循環電流形C,C,は、電流0区間がなく、また、循環
電流をVARの脈動を低減する様に制御することが可能
なので、非循環電流形C,C,に比べ、電源系統に及ぼ
す影響が小さいという利点がある。
Circulating current type C, C, has no zero current section and can control the circulating current to reduce VAR pulsation, so compared to non-circulating current type C, C, it has less effect on the power supply system. This has the advantage of having a small impact.

しかし、循環電流形C,C,は限流リアクトル■が必要
である上、正群(P)用と負群(N)用に、C,C。
However, the circulating current type C,C requires a current-limiting reactor (2), and also the circulating current type C,C for the positive group (P) and the negative group (N).

電源用変圧器(へ)の巻線を分離する必要があり、装置
が大きくなるという欠点があった。
It was necessary to separate the windings of the power transformer, which had the disadvantage of increasing the size of the device.

一方、非循環形C,C,は、限流リアクトルを設ける必
要はなく、また、正群の用と負群■用にC,C,電源用
変圧器(イ)の巻線を分離する必要がないため、装置が
小さく、回路構成が簡単になるという利点がある。
On the other hand, in the non-circulating type C, C, there is no need to provide a current limiting reactor, and it is necessary to separate the windings of the power transformer (A) for the positive group and the negative group. This has the advantage that the device is small and the circuit configuration is simple.

しかし、非循環形C,C,は、正群(P)と負群(N)
を切換える際に、電流O区間が生ずること。
However, the acyclic form C,C, has a positive group (P) and a negative group (N)
When switching, a current O section occurs.

また、循環電流を流せないことから、C,C,の入力側
のVARは、C,C,の出力電流に応じて脈動し、延い
ては、電源系統0のVARを脈動させるという欠点があ
った。
In addition, since a circulating current cannot flow, the VAR on the input side of C, C, pulsates depending on the output current of C, C, which in turn causes the VAR of power system 0 to pulsate. Ta.

(発明が解決しようとする課題) このように、従来の循環電流形C,C,では装置が大き
くなるという欠点があり、また、従来の非循環形C,C
,では消費するVARが脈動し、電源系統に悪影響を与
えるという欠点があり、はなはだ不充分なものであった
(Problems to be Solved by the Invention) As described above, the conventional circulating current type C, C has the disadvantage that the device becomes large, and the conventional non-circulating current type C, C
, had the disadvantage that the VAR consumed pulsated and had an adverse effect on the power supply system, and was extremely unsatisfactory.

本発明は、C,C,の機器構成は非循環電流形C,C,
と同一でありながら、電流0区間をなくし、循環電流を
流し、循環電流量を制御し、C,C,の入力側のVAR
脈動を小さく制御することができる回転機運転システム
を提供することを目的とする。
In the present invention, the equipment configuration of C, C, is a non-circulating current type C, C,
is the same as , but eliminates the current 0 section, allows circulating current to flow, controls the amount of circulating current, and VAR on the input side of C, C,
An object of the present invention is to provide a rotating machine operating system that can control pulsation to a small level.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上述の目的を達成するため、本発明においては、第1図
に示すように、巻線がダブルスター接続された回転機(
11)とC,C,(12)とC,C,電源用変圧器(1
6)を具備し、C,C,のU相A群整流回路(13A)
とU相B群整流回路(13B)、V相A群整流回路(1
4A )とV相B群整流回路(14B)、および、W相
A群整流回路(15A)とW相Bl整流回路(15B)
は。
(Means for Solving the Problem) In order to achieve the above-mentioned object, the present invention provides a rotating machine (
11) and C, C, (12) and C, C, power transformer (1
6), C, C, U phase A group rectifier circuit (13A)
and U phase B group rectifier circuit (13B), V phase A group rectifier circuit (13B),
4A) and V-phase B group rectifier circuit (14B), and W-phase A group rectifier circuit (15A) and W-phase Bl rectifier circuit (15B)
teeth.

それぞれ回転器のU相巻線(13G)、V相巻線(14
G)およびW相巻線(isc)を介し接続される。
U-phase winding (13G) and V-phase winding (14G) of the rotor, respectively.
G) and W phase winding (isc).

(作用) このように構成すると、A群整流回路とB群整流回路と
は、回転機の巻線を介して接続されるため、A群整流回
路とB群整流回路の出力電流の位相を適当にずらしてお
けば、A群整流回路とB群整流回路が同時に電流O区間
を生ずることを無くすことができる。また、A群整流回
路とBW整流回路の間で、循環電流を流すことができる
ため。
(Function) With this configuration, the A group rectifier circuit and the B group rectifier circuit are connected through the windings of the rotating machine, so the phases of the output currents of the A group rectifier circuit and the B group rectifier circuit can be adjusted appropriately. By shifting the current to 0, it is possible to prevent the A group rectifier circuit and the B group rectifier circuit from simultaneously generating the current O section. Also, circulating current can flow between the A group rectifier circuit and the BW rectifier circuit.

循環電流量を適当に制御し、C6C0の入力側のVAR
脈動を小さく抑制することができる。
Appropriately control the amount of circulating current and set the VAR on the input side of C6C0.
Pulsation can be suppressed to a small level.

(実施例) 以下、図面を参照して本発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第2図は、巻線形誘導機を二次励磁制御により、可変速
運転する運転システムの結線図であって、誘導機(20
)の一次巻線(21)は主変圧器(31)を介し、電源
系統(0に接続される。誘導機(20)の二次巻線(2
2)はダブルスター接続され、二次巻線(22)のU指
笛1巻線(23A)、U指笛2巻線(23B)、V指笛
1巻線(24A)、V指笛2巻線(24B)、W指笛1
巻線(25A)およびW指笛2巻線(25B)は、各々
、C,C,(12)のU相A群整流回路(13A)、U
相B群整流回路(13B)、V相A群整流回゛路(14
A)、V相B群整流回路(14B)、W相AW!!流回
路(15A)およびW相B群整流回路(Is B )に
接続され、二次励磁制御される。
FIG. 2 is a wiring diagram of an operation system for variable speed operation of a wound induction machine by secondary excitation control.
) is connected to the power supply system (0) via the main transformer (31).The secondary winding (21) of the induction machine (20)
2) is double star connected, and the secondary winding (22) includes U finger whistle 1 winding (23A), U finger whistle 2 winding (23B), V finger whistle 1 winding (24A), and V finger whistle 2. Winding wire (24B), W finger whistle 1
The winding (25A) and the W finger whistle 2 winding (25B) are connected to the U phase A group rectifier circuit (13A) of C, C, (12), U
Phase B group rectifier circuit (13B), V phase A group rectifier circuit (14
A), V phase B group rectifier circuit (14B), W phase AW! ! It is connected to the current circuit (15A) and the W-phase B group rectifier circuit (Is B ), and is subjected to secondary excitation control.

誘導機(20)のU相二次巻線(23)に生ずる磁束は
、U指笛1巻線(23A)およびU指笛2巻線(23B
 )を流れる電流により決まる。従ってU相An整流回
路(13A)およびU相B群整流回路(13B)の出力
電流を制御することにより、所望のU相二次巻線の磁束
を得ることができる。同様に、V相A群整流回路(14
A )およびV相B群整流回路(14B)、ならびにW
相A群整流回路(15A )およびW相B群整流回路(
15B)の出力電流を制御することにより、所望のV相
二次巻線(24)の磁束ならびにW相二次巻線(25)
の磁束を得ることができる。この様に、二次巻線(22
)の励磁を制御することにより、誘導機(20)を可変
速度運転することができる。
The magnetic flux generated in the U-phase secondary winding (23) of the induction machine (20) is generated by the U-finger 1 winding (23A) and the U-finger 2 winding (23B).
) is determined by the current flowing through the Therefore, by controlling the output currents of the U-phase An rectifier circuit (13A) and the U-phase B group rectifier circuit (13B), a desired magnetic flux of the U-phase secondary winding can be obtained. Similarly, V phase A group rectifier circuit (14
A ) and V-phase B group rectifier circuit (14B), and W
Phase A group rectifier circuit (15A) and W phase B group rectifier circuit (
15B), the desired magnetic flux of the V-phase secondary winding (24) and the W-phase secondary winding (25) are controlled.
magnetic flux can be obtained. In this way, the secondary winding (22
), the induction machine (20) can be operated at variable speed.

■和回路の電流は、U和回路(13)の電流より位相が
120°進み、W和回路の電流は、U和回路(13)の
電流より位相が240°進んだ波形であるから、以下、
U和回路(13)の電流を例にとり、電流の流れを説明
する。第3図はU相の電流の流れを示す図でU相A!整
流回路(13A )のU相A群出力電流(Iua)は、
U相An11流回路から誘導機二次巻線の中性点(40
)を介し、■和回路(14)およびW和回路(15)へ
流れるU相へ群負荷電流(I uaQ)とU相B群整流
回路(13B )へ流れるU相席環電流(I uc)の
和となる。
■The current in the sum circuit leads the current in the U sum circuit (13) by 120° in phase, and the current in the W sum circuit has a waveform in which the phase leads the current in the U sum circuit (13) by 240°, so the waveform is as follows. ,
The flow of current will be explained by taking the current of the U sum circuit (13) as an example. Figure 3 is a diagram showing the flow of current in the U phase. The U phase A group output current (Iua) of the rectifier circuit (13A) is:
From the U-phase An11 flow circuit to the neutral point of the induction machine secondary winding (40
), the group load current (I uaQ) to the U phase flowing to the sum circuit (14) and the W sum circuit (15) and the U phase ring current (I uc) flowing to the U phase B group rectifier circuit (13B). It becomes peace.

同様に、U相B群整流回路(13B)のU相B群出力電
流(I ub)は、 U相B群負荷電流(I ulJ)
とU相席環電流(I uc)の和となる。
Similarly, the U phase B group output current (I ub) of the U phase B group rectifier circuit (13B) is the U phase B group load current (I ulJ)
and the U-phase ring current (I uc).

第4図に示す様にU相A群負荷電流(工uaQ)とU相
B群負荷電流(I ubQ)は、ある位相差を生ずる様
に制御される0便宜上、この位相差を30@とする。U
SA群負背負荷電流流0区間(41a)では、U相B群
負荷電流(I ubl)はO区間とはならず、逆に、U
相B群負荷電流の電流0区間(41b)ではU相A群負
荷電流(Iual)はO区間とはならない。
As shown in Figure 4, the U-phase A group load current (I uaQ) and the U-phase B group load current (I ubQ) are controlled to produce a certain phase difference.For convenience, this phase difference is set to 30@. do. U
In the SA group negative back load current flow 0 section (41a), the U phase B group load current (I ubl) does not become the O section, and conversely, the U
In the current 0 section (41b) of the phase B group load current, the U phase A group load current (Iual) does not become the O section.

従って、U和回路(13)には、電流O区間は生じない
Therefore, no current O section occurs in the U sum circuit (13).

第5図は、U相入力側のVAR(Qu)、tJ’相負荷
電流に応じて生ずるV A R(QuI2)およびU相
席環電流により制御されるV A R(Quc)の変化
を示した図で、U相入力側のVAR(Qu)は、 U和
会荷電流により生ずるV A R(Qu幻とU相席環電
流により制御されるV A R(Q uc)の和である
。U相席環電流により制御されるvAR(Quc)は、
U相席環電流(I uc)を制御することにより、任意
に変化させることが可能なので、U相席環電流により制
御されるVAR(Quc)をU和会荷電流に応じて生ず
るV A R(Quj+)の脈動と逆の変化をする様に
制御すれば、 U相入力側のVAR(Qu)の脈動を抑
制することができる。
Figure 5 shows the changes in VAR (Qu) on the U-phase input side, VAR (QuI2) generated according to the tJ' phase load current, and VAR (Quc) controlled by the U-phase ring current. In the figure, VAR (Qu) on the U phase input side is the sum of V A R (Qu phantom) generated by the U phase ring current and V A R (Quc) controlled by the U phase ring current. The vAR (Quc) controlled by the ring current is
By controlling the U phase ring current (I uc), it is possible to change it arbitrarily, so VAR (Quc) controlled by the U phase ring current can be changed to V A R (Quj+) generated according to the U phase ring current. ), it is possible to suppress the pulsation of VAR (Qu) on the U-phase input side.

以上、U和回路(13)について説明したが、■和回路
(14)およびW和回路(15)についても、U和回路
(13)と同様にして、電流0区間を無くすことおよび
入力側のVARの脈動を抑制することが可能となる。
The U sum circuit (13) has been explained above, but the sum circuit (14) and the W sum circuit (15) are also similar to the U sum circuit (13) by eliminating the zero current section and It becomes possible to suppress pulsation of VAR.

上述の実施例では、限流リアクトルを設けることなく、
また、C,C,電源用変圧器の巻線を正群(P)用と負
群(N)用に分離することなく電流O区間を無くすこと
および循環電流を流すことが可能となる。従って、C,
C,の入力側のVAR脈動を抑制することが可能となり
、電源系統に及ぼす悪影響を無くすことが可能となる。
In the above embodiment, without providing a current limiting reactor,
Further, it is possible to eliminate the current O section and to flow a circulating current without separating the windings of the C, C, and power transformers into positive group (P) and negative group (N). Therefore, C,
It becomes possible to suppress the VAR pulsation on the input side of C, and it becomes possible to eliminate the adverse effect on the power supply system.

本発明は上述の実施例に限らず、第6図や第7図の機器
構成においても適用することができる。
The present invention is not limited to the embodiments described above, but can also be applied to the device configurations shown in FIGS. 6 and 7.

第6図は、誘導機を一次周波数制御により可変速運転す
る運転システムの結線図であって、誘導機(50)の一
次巻線(51)は、ダブルスター接続され。
FIG. 6 is a wiring diagram of an operation system for variable speed operation of an induction machine by primary frequency control, and the primary winding (51) of the induction machine (50) is double star connected.

一次巻線(51)のU指笛1巻線(53A)、U指笛2
巻線(53B)、V指笛1巻線(54A)、V指笛2巻
線(54B)、W指笛1巻線(55A)およびW指笛2
巻線(55B)は、各々、C,C,(12)のU相A群
整流回路(13A)、U$lBi整流回路(13B)、
V相へ群整流回路(14A)、V相B群整流回路(14
B)、W相A群整流回路(15A)およびW相B群整流
回路(15B )に接続される。C,C,(12)の出
力周波数を変化させ、誘導機(50)の一次巻線(51
)の回転磁界の回転速度を変化させることにより、誘導
機(50)を可変速運転することができる。第6図に示
す実施例においても、上述の実施例にC,C,(12)
の負荷電流と循環電流を制御すれば、C、C、(12)
の電流0区間を無くし、入力側のVAR脈動を抑制する
ことが可能となる。
U finger whistle 1 winding (53A) of primary winding (51), U finger whistle 2
winding (53B), V finger whistle 1 winding (54A), V finger whistle 2 winding (54B), W finger whistle 1 winding (55A), and W finger whistle 2
The windings (55B) are C, C, (12) U phase A group rectifier circuit (13A), U$lBi rectifier circuit (13B),
Group rectifier circuit (14A) to V phase, V phase B group rectifier circuit (14A)
B) is connected to the W-phase A group rectifier circuit (15A) and the W-phase B group rectifier circuit (15B). By changing the output frequency of C, C, (12), the primary winding (51) of the induction machine (50)
) The induction machine (50) can be operated at a variable speed by changing the rotational speed of the rotating magnetic field. In the embodiment shown in FIG. 6, C, C, (12) is added to the above embodiment.
By controlling the load current and circulating current of C, C, (12)
It is possible to eliminate the zero current section and suppress VAR pulsations on the input side.

第7図は、電機子電流の周波数を制御して同期機を可変
速運転する運転システムの結線図であって、同期機(6
0)の電機子巻線(61)は、ダブルスター接続され、
電機子巻線(61)のU指笛1巻線(63A)。
FIG. 7 is a wiring diagram of an operation system that controls the frequency of armature current to operate a synchronous machine at variable speed.
The armature winding (61) of 0) is double star connected,
U-finger 1 winding (63A) of armature winding (61).

U指笛2巻線(63B)、V指笛1巻線(64A)、V
指笛2巻線(64B)、W指笛1巻、11 (65A 
)およびW相第2巻線(65B )は、各々、C,C,
(12)のU相A群整流回路(13A)、U相B群整流
回路(13B)、V相A群整流回路(14A)、V相B
e1l流回路(14B ) 。
U finger whistle 2 winding (63B), V finger whistle 1 winding (64A), V
Finger whistle 2 windings (64B), W finger whistle 1 winding, 11 (65A
) and the W-phase second winding (65B) are C, C,
(12) U phase A group rectifier circuit (13A), U phase B group rectifier circuit (13B), V phase A group rectifier circuit (14A), V phase B
e1l flow circuit (14B).

W相A群整流回路(15A)およびW相B群整流回路(
15B )に接続される。C:、C,(12)の出力周
波数を変化させ、同期機(60)の電機子巻線(61)
の回転磁界の回転速度を変化させることにより、同期機
(60)を可変速運転することができる。第9図に示す
実施例においても、上述の実施例と同様にC,C。
W-phase A-group rectifier circuit (15A) and W-phase B-group rectifier circuit (
15B). C: By changing the output frequency of C, (12), the armature winding (61) of the synchronous machine (60)
By changing the rotational speed of the rotating magnetic field, the synchronous machine (60) can be operated at variable speed. In the embodiment shown in FIG. 9, C and C are used similarly to the above-mentioned embodiment.

(12)の負荷電流と循環電流を制御すれば、C,C。If the load current and circulating current in (12) are controlled, C, C.

(12)の電流0区間を無くシ、入力側のVAR脈動を
抑制することが可能となる。
By eliminating the current 0 section in (12), it is possible to suppress VAR pulsations on the input side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、限流リアクトルを設けることなくサイ
クロコンバータより循環電流を流しつつ回転機の可変速
運転を行うので次のような効果が得られる。
According to the present invention, the rotating machine is operated at variable speed while flowing a circulating current from the cycloconverter without providing a current limiting reactor, so that the following effects can be obtained.

■ サイクロコンバータの電流0区間をなくすことがで
き、また、循環電流を流すことができるので、サイクロ
コンバータの入力側の無効電力の脈動を抑制することが
できる。
(2) Since the zero current section of the cycloconverter can be eliminated and a circulating current can be caused to flow, it is possible to suppress the pulsation of the reactive power on the input side of the cycloconverter.

■ 限流リアクトルを省略でき、また、サイクロコンバ
ータ電源用変圧器の巻線の数を低減できるので回路構成
が大幅に簡単になると共に、機器の設置スペースを削減
できる。
■ The current limiting reactor can be omitted, and the number of windings in the cycloconverter power supply transformer can be reduced, which greatly simplifies the circuit configuration and reduces equipment installation space.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の回転機運転システムの構成を示す結線
図、第2図は誘導器を二次励磁制御により可変速運転す
るシステムに本発明を適用した場合の実施例の結線図、
第3図は第2図のU和回路の電流の流れを示す説明図、
第4図は第3図のU和回路の電流の波形を示す説明図、
第5図は第3図のU和回路の入力側の無効電力の変動を
示す説明図、第6図及び第7図は他の実施例を示す結線
図、第8図は従来例の循環電流形サイクロコンバータの
一相分の構成を示す結線図、第9図は従来例の非循環電
流形サイクロコンバータの一相分の構成を示す結線図で
ある。 3・・・限流リアクトル 4・・・変圧器巻線4a・・
・正群用変圧器巻線 4b・・・負群用変圧器巻線  5・・・負荷6・・・
電源系統    11・・・回転機12・・・サイクロ
コンバータ  13・・・U和回路13A・・・U$l
A群整流回路 13B・・・U相B群整流回路 13G・・・回転機のU相巻線  14・・・V和回路
14A・・・VNA群整流回路 14B・・・V相B群整流回路 14G・・・回転機のV相巻M   15・・・V和回
路15A・・・W相A群整流回路 15B・・・W相B8#整流回路 15G・・・回転機のW相巻線 16・・・サイクロコンバータ電源用変圧器20・・・
誘導機     21・・・一次巻線22・・・二次巻
線    23・・・U相二次巻線23A・・・U指笛
1巻線 23B・・・U指笛2巻線24・・・V相二次
巻線  24A・・・V指笛1巻線24B・・・V指笛
2巻、iiR25・・・W相二次巻線25A・・・W指
笛1巻線 25B・・・W指笛2巻線31・・・主変圧
器 40・・・誘導機二次巻線の中性点41a・・・U
相A群負荷電流の電流O区間41b・・・U相B群負荷
電流の電流O区間50・・・誘導機     51・・
・一次巻線52・・・二次巻線    53A・・・U
指笛1巻線53B・・・U指笛2巻線 54A・・・V
指笛1巻線54B・・・V指笛2巻線 55A・・・W
指笛1巻線55B・・・W指温2巻線 60・・・同期
機61・・・電機子巻線   62・・・回転子62A
・・・界磁巻線   63A・・・U組節1巻線63B
・・・U指笛2巻線 64A・・・V指笛1巻線64B
・・・V指笛2巻線 65A・・・W指笛1巻線65B
・・・W指温2巻線 I uaQ・・・U相A群負荷電流 I ub12− U HB背負荷電流 Iuc・・・U相循環電流 Qu・・・U相入力側の無効電力 QuQ・・・U組員荷電流に応じて生ずる無効電力Qu
c・・・U相循環電流により制御される無効電力P・・
・正群整流回路  N・・・負群整流回路第3図 第4図 第7図 第8図
FIG. 1 is a wiring diagram showing the configuration of a rotating machine operating system according to the present invention, and FIG. 2 is a wiring diagram of an embodiment in which the present invention is applied to a system that operates an inductor at variable speed by secondary excitation control.
Figure 3 is an explanatory diagram showing the flow of current in the U sum circuit in Figure 2;
FIG. 4 is an explanatory diagram showing the current waveform of the U sum circuit in FIG.
Fig. 5 is an explanatory diagram showing the fluctuation of the reactive power on the input side of the U-sum circuit in Fig. 3, Figs. 6 and 7 are connection diagrams showing other embodiments, and Fig. 8 is the circulating current of the conventional example. FIG. 9 is a wiring diagram showing the configuration of one phase of a conventional non-circulating current type cycloconverter. 3... Current limiting reactor 4... Transformer winding 4a...
・Positive group transformer winding 4b...Negative group transformer winding 5...Load 6...
Power supply system 11...Rotating machine 12...Cyclo converter 13...U sum circuit 13A...U$l
A group rectifier circuit 13B...U phase B group rectifier circuit 13G...U phase winding of rotating machine 14...V sum circuit 14A...VNA group rectifier circuit 14B...V phase B group rectifier circuit 14G...V phase winding M of the rotating machine 15...V sum circuit 15A...W phase A group rectifier circuit 15B...W phase B8# rectifier circuit 15G...W phase winding 16 of the rotating machine ...Cycloconverter power supply transformer 20...
Induction machine 21...Primary winding 22...Secondary winding 23...U phase secondary winding 23A...U finger whistle 1 winding 23B...U finger whistle 2 winding 24...・V phase secondary winding 24A...V whistle 1 winding 24B...V finger whistle 2 turns, iiR25...W phase secondary winding 25A...W finger whistle 1 winding 25B...・W finger whistle 2 winding 31...Main transformer 40...Neutral point of induction machine secondary winding 41a...U
Current O section 41b of phase A group load current...Current O section 50 of U phase B group load current...Induction machine 51...
・Primary winding 52...Secondary winding 53A...U
Finger whistle 1 winding 53B...U Finger whistle 2 winding 54A...V
Finger whistle 1 winding 54B...V Finger whistle 2 winding 55A...W
Finger whistle 1 winding 55B...W finger temperature 2 winding 60...Synchronous machine 61...Armature winding 62...Rotor 62A
...Field winding 63A...U group 1 winding 63B
...U finger whistle 2 winding 64A...V finger whistle 1 winding 64B
...V finger whistle 2 winding 65A...W finger whistle 1 winding 65B
...W finger temperature 2 winding I uaQ...U phase A group load current I ub12- U HB back load current Iuc...U phase circulating current Qu...Reactive power QuQ on the U phase input side...・Reactive power Qu generated according to U member charging current
c... Reactive power P controlled by U-phase circulating current...
・Positive group rectifier circuit N...Negative group rectifier circuit Figure 3 Figure 4 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 一次または二次巻線がダブルスター接続された回転機と
、これら巻線の電流を制御するためのサイクロコンバー
タにより構成される回転機ドライブシステムにおいて、
前記一次または二次巻線の中性点を介し、サイクロコン
バータの循環電流を流すことを特徴とした回転機運転シ
ステム。
In a rotating machine drive system consisting of a rotating machine in which the primary or secondary windings are double-star connected, and a cycloconverter for controlling the current of these windings,
A rotating machine operating system characterized in that a circulating current of a cycloconverter is caused to flow through a neutral point of the primary or secondary winding.
JP63139401A 1988-06-08 1988-06-08 System of operating rotary machine Pending JPH01311892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139401A JPH01311892A (en) 1988-06-08 1988-06-08 System of operating rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139401A JPH01311892A (en) 1988-06-08 1988-06-08 System of operating rotary machine

Publications (1)

Publication Number Publication Date
JPH01311892A true JPH01311892A (en) 1989-12-15

Family

ID=15244408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139401A Pending JPH01311892A (en) 1988-06-08 1988-06-08 System of operating rotary machine

Country Status (1)

Country Link
JP (1) JPH01311892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171084A1 (en) * 2013-04-16 2014-10-23 パナソニックIpマネジメント株式会社 Power convertor, power conversion method, motor system, and three-phase motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171084A1 (en) * 2013-04-16 2014-10-23 パナソニックIpマネジメント株式会社 Power convertor, power conversion method, motor system, and three-phase motor
US9543849B2 (en) 2013-04-16 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus, power conversion method, motor system, and three-phase motor
JPWO2014171084A1 (en) * 2013-04-16 2017-02-16 パナソニックIpマネジメント株式会社 Power conversion device, power conversion method, and motor system

Similar Documents

Publication Publication Date Title
US3346794A (en) Inverter circuit for supplying current to polyphase motors
JP6919058B2 (en) Power converter
JP2846203B2 (en) Parallel multiple inverter device
JP5475887B2 (en) Improved induction motor
JP3758059B2 (en) Synchronous motor drive control device
JPH11252986A (en) Controller for multiplex winding motor
Coates et al. Performance evaluation of a nine-phase synchronous reluctance drive
US5151853A (en) Cycloconverter and the method of controlling the same
JPH01311892A (en) System of operating rotary machine
JP2000050687A (en) Driving gear for multiple-winding motor
JPS62100191A (en) Drive system for multiplex-winding ac motor
JP3666557B2 (en) Power conversion circuit
JPH04208098A (en) Large capacity variable speed apparatus
JPS6194585A (en) Controller for pwm inverter
JP2001204196A (en) Variable speed driving system of ac motor
JPH11150986A (en) Control equipment of parallel multiplex power inverter
Kant et al. Twenty pulse AC-DC converter fed 3-level inverter based vector controlled induction motor drive
US5631812A (en) Motor drive control method
JPH1042589A (en) Controller for multiplex winding induction motor
JPH0472468B2 (en)
SU1720135A1 (en) Parametric variable-frequency electric drive
JPH05153780A (en) Power converter equipment
JP2022097219A (en) Three-phase inverter 3-pulse PWM control method
JPH02131393A (en) Method of controlling single phase induction motor
JPH0731192A (en) Controller and control method for variable speed drive system