JPH11150986A - Control equipment of parallel multiplex power inverter - Google Patents

Control equipment of parallel multiplex power inverter

Info

Publication number
JPH11150986A
JPH11150986A JP9319241A JP31924197A JPH11150986A JP H11150986 A JPH11150986 A JP H11150986A JP 9319241 A JP9319241 A JP 9319241A JP 31924197 A JP31924197 A JP 31924197A JP H11150986 A JPH11150986 A JP H11150986A
Authority
JP
Japan
Prior art keywords
current
zero
phase
parallel
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9319241A
Other languages
Japanese (ja)
Other versions
JP3676056B2 (en
Inventor
Hiroshi Osawa
博 大沢
Fukashi Uehara
深志 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31924197A priority Critical patent/JP3676056B2/en
Publication of JPH11150986A publication Critical patent/JPH11150986A/en
Application granted granted Critical
Publication of JP3676056B2 publication Critical patent/JP3676056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize cost reduction by making it unnecessary to develop or design a special control system when the number of multiplex is changed. SOLUTION: When a three-phase induction motor 5 is driven and controlled by using a plurality (two in figure) of inverters 41, 42 which are connected in parallel, output currents of each of the inverters 41, 42 are divided into a first current component parallel with the motor magnetic flux, a second current component perpendicular to the first current component, and a third current component as the zero-phase component, and each of the current components is independently fed back and controlled by adjusting devices 11, 12, 13. As a result, controls to the inverters 41, 42 are made identical, and a circulation current flowing between them is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複数の電力変換
器(例えばインバータ)により、3相交流電動機などの
多相交流負荷を駆動するための制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for driving a polyphase AC load such as a three-phase AC motor using a plurality of power converters (for example, inverters).

【0002】[0002]

【従来の技術】多重インバータを構成する方法として、
複数の電圧形インバータを並列に接続し、これら各イン
バータの同相出力間に相間リアクトルを接続するものが
知られている。図4は3相出力の2多重インバータを、
また、図5は3相出力の3多重インバータの構成例をそ
れぞれ示す(例えば特開昭60−98875号参照)。
ここで、図4の相間リアクトル9と、図5の相間リアク
トル91〜93は、複数のインバータ間を流れる循環電
流(ik )の高調波成分を抑制する作用を有している。
2. Description of the Related Art As a method of forming a multiplex inverter,
It is known that a plurality of voltage type inverters are connected in parallel, and an interphase reactor is connected between the in-phase outputs of these inverters. FIG. 4 shows a two-phase inverter with three-phase output.
FIG. 5 shows a configuration example of a three-phase output three-multiplex inverter (for example, see Japanese Patent Application Laid-Open No. 60-98875).
Here, the interphase reactor 9 in FIG. 4, interphase reactor 91 to 93 in FIG. 5 has an action to suppress a harmonic component of the circulating current flowing between a plurality of inverters (i k).

【0003】相間リアクトルは循環電流の高調波成分を
抑制できるが、制御誤差などの原因で生じる直流成分や
低周波成分の循環電流は抑制できない。このため、低周
波の循環電流が過大になる場合があり、この現象により
インバータが過電流で故障することがある。これを解決
するため、例えば特開平3−253293号に記載され
た方法では、一方のインバータでそのインバータの出力
電流を制御し、他方のインバータで2組のインバータの
出力電流の平均値を制御し、結果として循環電流を零と
するようにしている。
[0003] The interphase reactor can suppress the harmonic component of the circulating current, but cannot suppress the circulating current of the DC component and the low frequency component generated due to a control error or the like. Therefore, the low-frequency circulating current may become excessive, and this phenomenon may cause the inverter to fail due to the overcurrent. In order to solve this, for example, in the method described in JP-A-3-253293, one inverter controls the output current of the inverter, and the other inverter controls the average value of the output currents of the two inverters. As a result, the circulating current is set to zero.

【0004】[0004]

【発明が解決しようとする課題】多重インバータを構成
する場合、複数のインバータおよび制御装置を単に組み
合わせて多重化できれば、開発費や設計費を低減できる
だけでなく、製品の低コスト化が達成できるので好まし
い。しかるに、上記特開平3−253293号に記載の
方法では、2組の電流の平均値を演算する機能が付加さ
れるので、ただ単に2組のインバータを組み合わせて多
重化するわけには行かない。また、3多重化の場合に
は、2多重化の場合と異なる機能が必要になることが考
えられる。このように、2多重用の制御装置,3多重用
の制御装置など、多重数に応じた制御装置の開発と設計
が必要となり、コストアップの要因となる。したがっ
て、この発明の課題は、多重数に応じた特別な開発や設
計を要することなく、複数のインバータを組み合わせて
多重インバータを構成できる低コストの制御装置を提供
することにある。
In the case of configuring a multiplex inverter, if a plurality of inverters and control devices can be simply combined and multiplexed, not only can development and design costs be reduced, but also product cost can be reduced. preferable. However, in the method described in JP-A-3-253293, a function of calculating an average value of two sets of currents is added, so that it is not possible to simply combine two sets of inverters and perform multiplexing. Also, in the case of triple multiplexing, a function different from the case of double multiplexing may be required. As described above, it is necessary to develop and design a control device according to the number of multiplexes, such as a control device for two multiplexes and a control device for three multiplexes, which causes an increase in cost. Therefore, an object of the present invention is to provide a low-cost control device that can configure a multiplex inverter by combining a plurality of inverters without requiring special development or design corresponding to the number of multiplexes.

【0005】[0005]

【課題を解決するための手段】例えば、多相交流機の制
御では、多相交流電流を電動機の磁束の方向に平行する
磁化電流成分と、それに直交するトルク電流成分に分解
して制御するベクトル制御が良く知られている。この制
御では磁化電流をフィードバックする磁化電流制御系
と、トルク電流をフィードバックするトルク電流制御系
が用いられる。一方、従来の並列多重インバータの制御
では、複数のインバータの出力電流を平均化するという
発想のもとに制御系を構成するのが一般的であった。
For example, in the control of a polyphase AC machine, a vector for controlling the polyphase AC current by decomposing it into a magnetizing current component parallel to the direction of the magnetic flux of the motor and a torque current component orthogonal thereto. Control is well known. In this control, a magnetizing current control system that feeds back a magnetizing current and a torque current control system that feeds back a torque current are used. On the other hand, in the control of a conventional parallel multiplex inverter, a control system is generally configured based on the idea of averaging output currents of a plurality of inverters.

【0006】この発明は、上記の磁化電流とトルク電流
の制御に加え、インバータの出力電流に含まれる零相電
流を検出し、この零相電流が零となるように制御すれ
ば、自ずと複数のインバータの出力電流が平均化される
ことに着目したもので、零相電流の制御を比例増幅器を
用いて安定に行なうようにしている。すなわち、零相電
流が零となるよう比例増幅器によりフィードバック制御
することにより、各インバータ間を還流する循環電流を
零に、しかも安定に制御することができる。また、多重
数が任意のインバータでも、各インバータの制御は同じ
となり、多重数を増やしてもそのための開発や設計が不
要になる。
According to the present invention, in addition to the above-described control of the magnetizing current and the torque current, if a zero-phase current included in the output current of the inverter is detected and controlled so that the zero-phase current becomes zero, a plurality of naturally occur. Focusing on the fact that the output current of the inverter is averaged, the zero-phase current is controlled stably using a proportional amplifier. In other words, by performing feedback control by the proportional amplifier so that the zero-phase current becomes zero, the circulating current flowing between the inverters can be controlled to zero and stably. In addition, even if the number of multiplexes is arbitrary, the control of each inverter is the same, and even if the number of multiplexes is increased, development and design for the inverter are not required.

【0007】[0007]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図で、3相誘導電動機をベクトル制御にて
駆動する2多重インバータの制御ブロック図を示す。同
図において、11は磁化電流調節器、12はトルク電流
調節器、13は零相電流調節器、21〜23は座標変換
器、3はPWM(パルス幅変調)制御装置、41,42
はインバータ、5は誘導電動機(誘導機,IM)、6は
積分器、7はすべり演算器である。すなわち、インバー
タ41に対して磁化電流調節器11、トルク電流調節器
12、零相電流調節器13、座標変換器21〜23、P
WM制御装置3、積分器6、すべり演算器7等からなる
制御手段を設けたもので、インバータ42についても同
様の機能が付与される。
FIG. 1 is a block diagram showing a first embodiment of the present invention, and shows a control block diagram of a two-multiplex inverter for driving a three-phase induction motor by vector control. In the figure, 11 is a magnetizing current regulator, 12 is a torque current regulator, 13 is a zero-phase current regulator, 21 to 23 are coordinate converters, 3 is a PWM (pulse width modulation) controller, 41 and 42.
Is an inverter, 5 is an induction motor (induction machine, IM), 6 is an integrator, and 7 is a slip calculator. That is, the magnetizing current controller 11, the torque current controller 12, the zero-phase current controller 13, the coordinate converters 21 to 23, P
A control means including the WM control device 3, the integrator 6, the slip calculator 7 and the like is provided, and the inverter 42 has the same function.

【0008】図1のiM * は磁化電流の指令値、iT *
はトルク電流の指令値であり、3相電流の検出値は座標
変換器21で下記数1を用いて、直交座標系における2
相交流iα,iβと零相電流i0に変換される。なお、
零相電流の定義として、数1の比例係数(1/3)1/2
の代わりに1/3を用いる場合もあるが、各相の電流の
和に比例する電流が検出できれば、いずれを用いても良
い。
In FIG. 1, i M * is a command value of magnetizing current, i T *
Is the command value of the torque current, and the detected value of the three-phase current is calculated by the coordinate converter 21 using
It is converted into a phase alternating current iα, iβ and a zero-phase current i0. In addition,
As the definition of the zero-phase current, the proportional coefficient of equation 1 (1/3) 1/2
May be used instead of, but any one may be used as long as a current proportional to the sum of the currents of the respective phases can be detected.

【0009】〔数1〕 iα=(2/3)1/2 (ia−ib/2−ic/2) iβ=(2/3)1/2 (31/2 ib/2−31/2 ic/
2) i0=(1/3)1/2 (ia+ib+ic)
[0009] [Equation 1] iα = (2/3) 1/2 (ia -ib / 2-ic / 2) iβ = (2/3) 1/2 (3 1/2 ib / 2-3 1 / 2 ic /
2) i0 = (1/3) 1/2 (ia + ib + ic)

【0010】iα,iβはさらに、座標変換器22によ
り次の数2で回転磁束上の電流に座標変換され、iM
T が求まる。ここで、θはすべり演算器と積分器から
求まる誘導機の固定子軸(α軸)と磁束軸(M)軸との
交角を示す。 〔数2〕 iM =iαcosθ+iβsinθ iT =−iαsinθ+iβcosθ
[0010] i.alpha, i.beta further be coordinate transformed by the coordinate converter 22 into a current on rotating flux in the next few 2, i M and i T is obtained. Here, θ indicates the intersection angle between the stator axis (α axis) of the induction machine and the magnetic flux axis (M) axis obtained from the slip calculator and the integrator. [Equation 2] i M = iαcosθ + iβsinθ i T = −iαsinθ + iβcosθ

【0011】座標変換されたiM ,iT とiα,iβの
関係を図2に示す。α−β軸とM−T軸の交角θは、以
下のように求める。すなわち、iM ,iTからすべり演
算器7で、まず誘導電動機5のすべり角速度を求め、こ
れに速度検出器から求めた速度を加算すると、誘導電動
機5の2次磁束の角速度が求まり、これを積分器6で積
分することで、α−β軸に対する2次磁束軸、つまりM
−T軸の角度が求められることになる。
FIG. 2 shows the relationship between the coordinate transformed i M , i T and i α, i β. The intersection angle θ between the α-β axis and the MT axis is obtained as follows. That is, the slip calculator 7 first calculates the slip angular velocity of the induction motor 5 from i M and i T , and adds the speed obtained from the speed detector to the angular velocity of the secondary magnetic flux of the induction motor 5. Is integrated by the integrator 6 to obtain a secondary magnetic flux axis with respect to the α-β axis, that is, M
-The angle of the T axis will be determined.

【0012】iM とiT の両検出値は、それぞれの指令
値iM * ,iT * に一致するよう、磁化電流調節器11
とトルク電流調節器12でフィードバック制御される。
両調節器の出力は、それぞれM軸電圧指令値vM * とT
軸電圧指令値vT * である。また、零相電流の指令値は
零であり、零相電流が零となるようフィードバック制御
される。零相電流調節器13の出力は零相電圧v0*
ある。
The magnetizing current regulator 11 is set so that both the detected values i M and i T coincide with the respective command values i M * and i T *.
Is feedback-controlled by the torque current controller 12.
The outputs of both regulators are M-axis voltage command values v M * and T, respectively.
Axis is a voltage command value v T *. Further, the command value of the zero-phase current is zero, and feedback control is performed so that the zero-phase current becomes zero. The output of the zero-phase current controller 13 is a zero-phase voltage v0 * .

【0013】vM * ,vT * およびv0* から、下記数
3,数4を用いて座標変換器23で3相の電圧指令va
* ,vb* およびvc* が求められる。 〔数3〕 vα* =vM * cosθ−vT * sinθ vβ* =vM * sinθ+vT * cosθ 〔数4〕 va* =(2/3)1/2 (vα* −v0* /21/2 ) vb* =(2/3)1/2 (−vα* /2+31/2 vβ*
/2+v0* /21/2 ) vc* =(2/3)1/2 (−vα* /2−31/2 vβ*
/2+v0* /21/2
From v M * , v T * and v 0 * , the three-phase voltage command va is calculated by the coordinate converter 23 using the following equations (3) and (4).
* , Vb * and vc * are determined. Formula 3 vα * = v M * cosθ- v T * sinθ vβ * = v M * sinθ + v T * cosθ [Equation 4] va * = (2/3) 1/2 ( vα * -v0 * / 2 1 / 2) vb * = (2/3 ) 1/2 (-vα * / 2 + 3 1/2 vβ *
/ 2 + v0 * / 2 1/2 ) vc * = (2/3) 1/2 (-vα * / 2-3 1/2 vβ *
/ 2 + v0 * / 21/2 )

【0014】さらに、上記3相の電圧指令をパルス幅変
調(PWM)して、インバータの制御が行なわれる。も
う一方のインバータに関しても制御は全く同じなので、
説明は省略する。以上の構成によれば、iM ,iT およ
び零相電流i0が制御されるので、等価的に3相電流が
制御でき、インバータ間に循環電流が流れることもな
い。さらに上記構成では各インバータの制御は同じなの
で、3多重以上と多重数が増えてもインバータの制御を
変更する必要がない。また、誘導電動機の駆動について
説明したが、同期電動機の制御についても同様である。
Further, the three-phase voltage command is subjected to pulse width modulation (PWM) to control the inverter. Since the control is exactly the same for the other inverter,
Description is omitted. According to the configuration described above, i M, so i T and zero-phase current i0 is controlled equivalently be controlled 3-phase current, circulating current never flows between the inverter. Furthermore, in the above configuration, since the control of each inverter is the same, there is no need to change the control of the inverter even if the number of multiplexes increases to three or more. In addition, although the description has been given of the drive of the induction motor, the same applies to the control of the synchronous motor.

【0015】図2はこの発明の第2の実施の形態を示す
構成図で、負荷5Aが抵抗やインダクタンスの場合の例
である。すなわち、2相発振器8は周波数指令ω* から
θ=ω* t(t:時間)で与えられる位相θを出力す
る。電流の大きさIは、第1の電流指令i1 * と第2の
電流指令i2 * に対し次の数5で与えられるので、例え
ばi1 * は電流Iの大きさに等しくし、i2 * は零に設
定すれば良い。その他は図1と同様なので、説明は省略
する。 〔数5〕 I=(i1 * 2 +i2 * 2 1/2
FIG. 2 is a block diagram showing a second embodiment of the present invention, in which the load 5A is a resistor or an inductance. That is, the two-phase oscillator 8 outputs a phase θ given by θ = ω * t (t: time) from the frequency command ω * . Since the magnitude I of the current is given by the following equation 5 with respect to the first current command i 1 * and the second current command i 2 * , for example, i 1 * is made equal to the magnitude of the current I, and i 2 * may be set to zero. The other parts are the same as those in FIG. [Equation 5] I = (i 1 * 2 + i 2 * 2 ) 1/2

【0016】ところで、図1,図3の電流調節器11,
12は、定常偏差を零にするため、一般には比例要素と
積分要素からなる比例積分調節器(PI調節器)とされ
ることが多い。これに対し、零相電流調節器13は比例
調節器(P調節器)とすることが望ましい。その理由は
以下のとおりである。図1,図3の例では、電流の独立
変数の数は5である。このことは、例えば図1の第1の
インバータ41のiM ,iT ,i0と、第2のインバー
タ42のiM,iT が制御されれば、第2のインバータ
42のi0は一義的に決定されることを示している。し
たがって、第1のインバータ41のiM ,iT ,i0
と、第2のインバータ42のiM ,iT ,i0とを互い
に独立にPI調節器でフィードバック制御すると、制御
誤差が原因で制御不能となる場合が生じるおそれがあ
る。そこで、零相電流調節器をP調節器とすれば、定常
偏差が生じて上記の問題を回避することができる。な
お、この定常偏差はP調節器のゲインを高めれば非常に
小さくできるので、実用上の問題はない。
By the way, the current regulators 11 and
Numeral 12 is generally a proportional-integral adjuster (PI adjuster) composed of a proportional element and an integral element in order to reduce the steady-state deviation to zero. On the other hand, it is desirable that the zero-phase current regulator 13 is a proportional regulator (P regulator). The reason is as follows. In the examples of FIGS. 1 and 3, the number of independent variables of the current is five. This may be achieved, for example i M of the first inverter 41 in FIG. 1, a i T, i0, i M of the second inverter 42, if i T is controlled, i0 is uniquely of the second inverter 42 Is determined. Therefore, i M , i T , i0 of the first inverter 41
When feedback control of i M , i T , and i 0 of the second inverter 42 is performed independently of each other by the PI controller, there is a possibility that control may be disabled due to a control error. Therefore, if the zero-phase current adjuster is a P adjuster, a steady-state deviation occurs and the above problem can be avoided. Note that this steady-state deviation can be made very small by increasing the gain of the P adjuster, so that there is no practical problem.

【0017】[0017]

【発明の効果】この発明によれば、零相電流のフィード
バック制御を行なうようにしたので、多重インバータを
構成する各インバータの制御を同じにすることができ、
多重数を増やしてもインバータの制御を変更する必要が
ない。つまり、インバータの多重数によって新たな開発
や設計を行なう必要がないため、製品の低コスト化が達
成できるという利点が得られる。
According to the present invention, since the zero-phase current feedback control is performed, the control of each of the inverters constituting the multiplex inverter can be made the same.
Even if the number of multiplexes is increased, there is no need to change the control of the inverter. In other words, since there is no need to perform new development or design depending on the number of multiplexed inverters, there is an advantage that the cost of the product can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1の各電流と座標軸の関係を説明する説明図
である。
FIG. 2 is an explanatory diagram illustrating a relationship between each current and coordinate axes in FIG.

【図3】この発明の第2の実施の形態を示す構成図であ
る。
FIG. 3 is a configuration diagram showing a second embodiment of the present invention.

【図4】並列2多重インバータの従来例を示す構成図で
ある。
FIG. 4 is a configuration diagram showing a conventional example of a parallel two-multiplex inverter.

【図5】並列3多重インバータの従来例を示す構成図で
ある。
FIG. 5 is a configuration diagram showing a conventional example of a parallel three-multiplex inverter.

【符号の説明】[Explanation of symbols]

11…磁化電流調節器、12…トルク電流調節器、13
…零相電流調節器、21〜23…座標変換器、3…PW
M制御装置、41,42…インバータ、5…誘導電動機
(誘導機,IM)、5A…負荷、6…積分器、7…すべ
り演算器、8…発振器。
11: magnetizing current regulator, 12: torque current regulator, 13
... Zero-phase current controller, 21-23 ... Coordinate converter, 3 ... PW
M control device, 41, 42 inverter, 5 induction motor (induction machine, IM), 5A load, 6 integrator, 7 slip calculator, 8 oscillator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 並列接続された複数の電力変換器を用い
て、3相交流電動機を駆動する場合の並列多重電力変換
器の制御装置において、 前記複数の電力変換器のそれぞれに対し、その出力電流
を電動機の磁束または磁極に平行な第1の電流と、これ
と直交する第2の電流と、零相成分である第3の電流と
に分解し、それぞれの電流成分を独立してフィードバッ
ク制御し、かつ前記零相電流を零に制御する制御手段を
設けたことを特徴とする並列多重電力変換器の制御装
置。
1. A control device for a parallel multiplex power converter for driving a three-phase AC motor using a plurality of power converters connected in parallel, comprising: an output for each of the plurality of power converters; The current is decomposed into a first current parallel to a magnetic flux or a magnetic pole of the motor, a second current orthogonal to the first current, and a third current that is a zero-phase component, and each current component is independently controlled by feedback. And control means for controlling the zero-phase current to zero.
【請求項2】 並列接続された複数の電力変換器を用い
て、3相交流負荷に給電する場合の並列多重電力変換器
の制御装置において、 複数の電力変換器のそれぞれに対し、その出力電流を定
常状態では直流電流となる2組の回転座標系の第1,第
2の電流と、零相成分である第3の電流とに分解し、そ
れぞれの電流成分を独立してフィードバック制御し、か
つ前記零相電流を零に制御する制御手段を設けたことを
特徴とする並列多重電力変換器の制御装置。
2. A control device for a parallel multiplex power converter in which a plurality of power converters connected in parallel are used to supply power to a three-phase AC load. Is decomposed into two sets of first and second currents of a rotating coordinate system that are DC currents in a steady state and a third current that is a zero-phase component, and each current component is independently feedback-controlled, A control device for a parallel multiple power converter, further comprising control means for controlling the zero-phase current to zero.
【請求項3】 前記零相電流の制御手段として比例調節
器を用いることを特徴とする請求項1または2のいずれ
かに記載の並列多重電力変換器の制御装置。
3. The control device for a parallel multiplex power converter according to claim 1, wherein a proportional regulator is used as said zero-phase current control means.
JP31924197A 1997-11-20 1997-11-20 Control device for parallel multiple power converter Expired - Fee Related JP3676056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31924197A JP3676056B2 (en) 1997-11-20 1997-11-20 Control device for parallel multiple power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31924197A JP3676056B2 (en) 1997-11-20 1997-11-20 Control device for parallel multiple power converter

Publications (2)

Publication Number Publication Date
JPH11150986A true JPH11150986A (en) 1999-06-02
JP3676056B2 JP3676056B2 (en) 2005-07-27

Family

ID=18107998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31924197A Expired - Fee Related JP3676056B2 (en) 1997-11-20 1997-11-20 Control device for parallel multiple power converter

Country Status (1)

Country Link
JP (1) JP3676056B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317819C (en) * 2002-07-15 2007-05-23 松下电器产业株式会社 Motor driver
JP2007244080A (en) * 2006-03-08 2007-09-20 Hitachi Ltd Electric power converter and control method therefor
CN102035463A (en) * 2010-12-13 2011-04-27 天津电气传动设计研究所 6 kV medium voltage frequency converter based on neutral-point-clamped three-level technology
JP2012226458A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Multimotor control device and movable body
JP2016013047A (en) * 2014-06-30 2016-01-21 富士電機株式会社 Driving device for motor
JP2017099150A (en) * 2015-11-25 2017-06-01 日立オートモティブシステムズ株式会社 Controller of electric motor and electric vehicle using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317819C (en) * 2002-07-15 2007-05-23 松下电器产业株式会社 Motor driver
JP2007244080A (en) * 2006-03-08 2007-09-20 Hitachi Ltd Electric power converter and control method therefor
CN102035463A (en) * 2010-12-13 2011-04-27 天津电气传动设计研究所 6 kV medium voltage frequency converter based on neutral-point-clamped three-level technology
JP2012226458A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Multimotor control device and movable body
JP2016013047A (en) * 2014-06-30 2016-01-21 富士電機株式会社 Driving device for motor
JP2017099150A (en) * 2015-11-25 2017-06-01 日立オートモティブシステムズ株式会社 Controller of electric motor and electric vehicle using the same
WO2017090350A1 (en) * 2015-11-25 2017-06-01 日立オートモティブシステムズ株式会社 Control device for electric machine, and electric vehicle using same

Also Published As

Publication number Publication date
JP3676056B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
EP0629038B1 (en) AC motor control
US5390102A (en) Parallel running control apparatus for PWM inverters
US6262555B1 (en) Apparatus and method to generate braking torque in an AC drive
CA2322851C (en) Dual stator winding induction machine drive
US6731095B2 (en) Controller for multiplex winding motor
KR100330458B1 (en) Apparatus and method for controlling drive of three-phase multiplex winding motor
CA2285846C (en) Power converting system multiplexed with voltage dividing transformers, the voltage transformers, and controller for the system
US6580247B2 (en) Motor control device
WO2012008381A1 (en) Power conversion system
US5479081A (en) AC motor controller with voltage margin adjustment
JPH0348749B2 (en)
JP2846203B2 (en) Parallel multiple inverter device
JP2515903B2 (en) AC motor drive system and control method thereof
JP2733724B2 (en) Current control device for multi-winding AC motor
JPH11252986A (en) Controller for multiplex winding motor
JP3676056B2 (en) Control device for parallel multiple power converter
Elgenedy et al. Indirect field oriented control of five-phase induction motor based on SPWM-CSI
WO2020261751A1 (en) Power conversion device
JP2001086794A (en) Ac motor control apparatus
JP7092257B2 (en) Rotating electric machine control system
Khoshhava et al. Optimal reference frame angle approach for air-gap flux minimization in dual stator winding induction machines
JPH09140187A (en) Power converter
KR102596360B1 (en) Fault tolerance operation apparatus of six-phase permanent magnet synchronous motor
JPH1042589A (en) Controller for multiplex winding induction motor
JPH10108500A (en) Controller for ac three-phase motor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees