JPH01311837A - Instantaneous interruption backup system, uninterruptible power system and nuclear-reactor protective system - Google Patents

Instantaneous interruption backup system, uninterruptible power system and nuclear-reactor protective system

Info

Publication number
JPH01311837A
JPH01311837A JP63139316A JP13931688A JPH01311837A JP H01311837 A JPH01311837 A JP H01311837A JP 63139316 A JP63139316 A JP 63139316A JP 13931688 A JP13931688 A JP 13931688A JP H01311837 A JPH01311837 A JP H01311837A
Authority
JP
Japan
Prior art keywords
power
load
power supply
induction motor
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63139316A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takahashi
利幸 高橋
Yasuhiro Yamazaki
泰広 山崎
Koichi Miyazaki
晃一 宮崎
Kenji Urase
浦瀬 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63139316A priority Critical patent/JPH01311837A/en
Publication of JPH01311837A publication Critical patent/JPH01311837A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To supply load with approximately several hundred ms-10s electric power at the time of service interruption by connecting an induction motor in parallel with load on the output side of a voltage type inverter, controlling frequency by the voltage type inverter at the time of service interruption and keeping the slip of the induction motor in a generator region. CONSTITUTION:An induction motor 1 is connected in parallel with load 3 on the output side of a voltage type inverter 4. When a host power supply 2 is interrupted, the induction motor 1 starts its generation by the energy of inertia of the induction motor. The frequency of the induction motor is controlled by operating the voltage type inverter 4 by an inverter controller 5 for another power supply, whereby the slip of the induction motor 1 is kept constant, and electrical energy is generated for a longer time. Accordingly, instantaneous service interruption can be backed up in approximately several hundredms-10s.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電源装置に係り、特に数Looms〜10秒
程度の停電バックアップが必要な負荷に給電する電源に
好適な瞬時停電バックアップ方式及びそれを利用した無
停電電源システムと原子炉保護方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power supply device, and particularly an instantaneous power failure backup method suitable for a power supply that supplies power to a load that requires a power failure backup of several looms to about 10 seconds, and the same. Regarding uninterruptible power supply systems and nuclear reactor protection methods using

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭56−66141号公報に記載の
ように、誘導電動機とコンデンサを並列接続することに
より瞬時停電をバックアップしていた。
Conventional devices back up momentary power outages by connecting an induction motor and a capacitor in parallel, as described in Japanese Unexamined Patent Publication No. 56-66141.

第7図にそれを示すが、17はサイリスタ、16はゲー
ト制御装置である1通常、ゲート制御装置16には上位
電源2より給電されるが、同時に並列接続された誘導電
動機1にも給電され、さらに並列接続されたコンデンサ
】、5を常に充電する7上位電源2が停電した場合、誘
導電動機1−へは給電停止されるが慣性により誘導電動
機1は回転を枝番プる。また停電と同時に充電されてい
たコンデンサ15からは誘導電動機jに励磁電流が供給
されるので誘導電動機1は発電機となって発電しその出
力をゲート制御装置16に給電する。このとき方向継電
器19により電力の逆流を検知して遮断器〕0を開放す
る。
This is shown in Fig. 7, where 17 is a thyristor and 16 is a gate control device.1 Normally, power is supplied to the gate control device 16 from the upper power supply 2, but at the same time power is also supplied to the induction motor 1 connected in parallel. , and a parallel-connected capacitor], 5. When the upper power supply 2 that constantly charges the 7 high-level power supply 2 has a power outage, the power supply to the induction motor 1- is stopped, but the induction motor 1 continues to rotate due to inertia. In addition, an exciting current is supplied to the induction motor j from the capacitor 15 that was being charged at the same time as the power outage occurs, so the induction motor 1 acts as a generator to generate electricity and feed its output to the gate control device 16. At this time, the directional relay 19 detects the reverse flow of power and opens the circuit breaker]0.

この場合、サイリスタを保護するためのパルス処理に要
する時間は数ms〜数10m5の短い時間であるので上
記のようなバックアップ方式で十分であった。
In this case, the time required for pulse processing to protect the thyristor is a short time of several ms to several tens of m5, so the backup method as described above was sufficient.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はサイリスタを保護するために。 The above conventional technology is used to protect the thyristor.

サイリスタを制御するゲート制御装置への給電を数ms
〜数1.. Om s延ばすためのバックアップ方式で
、バックアップ時間が短いため誘動電動機の慣性エネル
ギーを積極的に利用する点について配慮されておらず、
バックアップ時間が数】00mg〜1.0 s程度必要
な場合、例えば沸騰水型原子炉のインターナルポンプ駆
動用電源として電圧形インバータを用いたときインター
ナルポンプの慣性が小さいので原子炉保護を容易にする
ために停電後数秒間インターナルポンプを乱動するバッ
クアップとして適用できない問題があった。
Power is supplied to the gate control device that controls the thyristor for several ms.
~Number 1. .. This is a backup method to extend the Om s, and because the backup time is short, no consideration is given to actively utilizing the inertial energy of the induction motor.
When a backup time of approximately 00 mg to 1.0 s is required, for example, when a voltage source inverter is used as the power source for driving the internal pump of a boiling water reactor, the inertia of the internal pump is small, making it easy to protect the reactor. There was a problem that it could not be used as a backup because the internal pump would be turbulent for several seconds after a power outage.

さらに、複数の上位電源やバックアップ用ディーゼル発
電機を組合せて無停@電源システムを構成するとき、電
源切換えあるいはディーゼル発電機を起動する数100
 m s〜10s程度負荷に給電するバックアップとし
て適用できない問題があった。
Furthermore, when configuring an uninterruptible @power supply system by combining multiple host power supplies and backup diesel generators, there are hundreds of times when switching power supplies or starting diesel generators is required.
There was a problem that it could not be applied as a backup for supplying power to a load for about ms to 10 seconds.

本発明の第1の目的は停電時に数]、 OOm s−・
10s程度負荷に給電できる瞬時停電バックアップ方式
を提供することにある。
The first object of the present invention is to reduce the number of OOm s-・
The object of the present invention is to provide a momentary power outage backup method that can supply power to a load for about 10 seconds.

本発明の第2の目的は、バックアップ方式を利用した無
停電源システムを提供する。
A second object of the present invention is to provide an uninterruptible power supply system using a backup method.

本発明の第3の目的は、面述のバックアップ方式や無停
電電源システムを利用した原子炉保護方式を提供する。
A third object of the present invention is to provide a nuclear reactor protection system that utilizes the aforementioned backup system and uninterruptible power supply system.

〔課題を解決するための手段〕[Means to solve the problem]

第1.の目的は電圧形インバータの出力側に負荷と並列
に誘導電動機を接続し、停電時は電圧形インバータで周
波数を制御して誘導電動機のすべりを発電機領域に保つ
ことにより、達成される。
1st. This objective is achieved by connecting an induction motor in parallel with the load on the output side of a voltage source inverter, and in the event of a power outage, controlling the frequency with the voltage source inverter to keep the slip of the induction motor within the generator range.

また、電圧形インバータと並列に誘導電動機と同期発電
機を組み合せたM−Gセラ1−を接続し、停電時は電圧
形インバータからM−Gセットへ切換えてることにより
、達成される。
Furthermore, this can be achieved by connecting an MG Sera 1-, which is a combination of an induction motor and a synchronous generator, in parallel with the voltage type inverter, and switching from the voltage type inverter to the MG set in the event of a power outage.

さらに、負荷と並列に同期電動機を接続し、停電時は別
電源により同期電動機の励磁を制御して同期電動機のす
ベリを発電機領域を保つことにより、達成される。
Furthermore, this can be achieved by connecting a synchronous motor in parallel with the load and controlling the excitation of the synchronous motor by a separate power supply during a power outage to maintain the synchronous motor's full power in the generator area.

第2の目的は複数の上位電源をそれぞれ遮断器を介して
並列にして電圧形インバータの入力側に接続し、電圧形
インバータの出力側に負荷と並列に誘動電動機を接続し
、」三位電源の1つが停電した場合はすみやかに他の電
源に切換え、切り換える間は誘導電動機の慣性による発
電で給電することにより、達成される。
The second purpose is to connect multiple host power supplies in parallel via circuit breakers to the input side of a voltage source inverter, and connect an induction motor in parallel with the load on the output side of the voltage source inverter. This is achieved by quickly switching to another power source when one of the power sources is out of power, and supplying power through power generation from the inertia of the induction motor while switching.

また、上位電源と並列にディーゼル発電機を接続し、電
圧形インバータの出力側に負荷と並列に誘起電動機を接
続し、停電時にはディーゼル発電機を起動させ、停電し
てからディーゼル発電機が起動するまでは誘動電動機の
慣性による発電で給電することにより、達成される。
In addition, a diesel generator is connected in parallel with the host power supply, and an induction motor is connected in parallel with the load on the output side of the voltage source inverter, and the diesel generator is started in the event of a power outage, and the diesel generator is started after the power outage. This can be achieved by supplying power through power generation from the inertia of an induction motor.

第3の目的は目的1,2を解決する手段を原子炉のイン
ターナルポンプあるいは再循環ポンプの電源に用いるこ
とにより、達成される。
The third objective is achieved by using the means for solving objectives 1 and 2 as a power source for an internal pump or a recirculation pump of a nuclear reactor.

〔作用〕[Effect]

負荷と並列に誘導電動機を接続した場合、上位電源より
負荷と同時に誘動電動機にも給電されているが、上位電
源が停電しても誘動電動機は慣性エネルギーをもつ。第
8図に誘導機器のすべりとトルク、電流の関係を示すが
、20はすべり、21は電流、22はトルクを示す。停
電時の誘導電動機のすべりSlは発電機領域になるため
発電機として動作する。ところが誘導電動機のローター
は慣性でまわっているだけなので周波数が制御されてい
なければすべりがすぐに−1に近くなっていき電流が大
きくなり発電できなくなってしまうが、周波数を電圧形
インバータで制御し、すベリを81に保つようにするの
で誘導電動機の慣性エネルギーを有効に発電させること
ができ、負荷に給電することができる。
When an induction motor is connected in parallel with a load, power is supplied to the induction motor at the same time as the load from the host power supply, but even if the host power supply fails, the induction motor retains inertial energy. FIG. 8 shows the relationship between slip, torque, and current of an induction device, where 20 indicates slip, 21 indicates current, and 22 indicates torque. Since the slip Sl of the induction motor during a power outage is in the generator region, the induction motor operates as a generator. However, since the rotor of an induction motor only rotates due to inertia, if the frequency is not controlled, the slip will quickly approach -1 and the current will increase, making it impossible to generate electricity.However, by controlling the frequency with a voltage source inverter, Since the height is maintained at 81, the inertial energy of the induction motor can be effectively generated and power can be supplied to the load.

負荷と並列に同期電動機を接続した場合、上記と同じ理
由で同期電動機は発電機となり、同期電動機のすべりを
SLに保つように励磁を制御して同期電動機の慣性エネ
ルギーを有効に発電し、負荷に給電することができる。
When a synchronous motor is connected in parallel with the load, the synchronous motor becomes a generator for the same reason as above, and the excitation is controlled to keep the slip of the synchronous motor at SL, effectively generating the inertial energy of the synchronous motor, and generating the load. can be powered.

電圧形インバータと並列にM−Gセットを接続した場合
、上位電源が停電すると負荷への給電は電圧形インバー
タよりM−Gセットへ切換えられ、M−Gセットはその
慣性により発電するため、負荷に給電することができる
When an MG set is connected in parallel with a voltage source inverter, if the host power supply fails, the power supply to the load is switched from the voltage source inverter to the MG set, and the MG set generates power by its inertia, so the load can be powered.

複数の上位電源と組み合せた無停電電源システムの場合
、上位電源の1つが停電すると遮断器により別の上位電
源への切換え操作が行われる。負荷はこの切換え操作の
間、上位電源より給電されないが、誘導電動機が慣性に
より発電するため負荷へは給電が続けられるため無停電
とすることができる。
In the case of an uninterruptible power supply system that is combined with a plurality of host power supplies, when one of the host power supplies experiences a power outage, a circuit breaker performs a switching operation to another host power supply. During this switching operation, the load is not supplied with power from the host power source, but since the induction motor generates electricity due to inertia, power continues to be supplied to the load, so there can be no power outage.

ディーゼル発電機と組み合せた無停電電源システムの場
合、上位電源が停電するとディーゼル発電機が起動され
負荷へ給電する。ディーゼル発電機の起動が完了するま
では誘導電動機の慣性による発電により負荷へ給電が続
けられるため無停電することができる。
In the case of an uninterruptible power supply system combined with a diesel generator, when the upper power source experiences a power outage, the diesel generator is started and supplies power to the load. Until the start-up of the diesel generator is completed, power continues to be supplied to the load through power generation by the inertia of the induction motor, allowing for uninterrupted power outages.

原子炉のインターナルポンプ、再循環ポンプに上記の電
源を適用した場合、上位電源が停電しても上記の作用に
よりインターナルポンプあるいは再循環ポンプには給電
が続けられるため、原子炉への冷却材供給は続けられ原
子炉の保護操作を容易にすることができる。
When the above power supply is applied to the internal pump or recirculation pump of a nuclear reactor, the power supply to the internal pump or recirculation pump will continue due to the above action even if the upper power supply fails, thereby cooling the reactor. Material supply can continue to facilitate reactor protection operations.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第6図により説明する
Embodiments of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は本発明の一実施例で、瞬時停電バックアップ方
式を用いた電源装置の単線図を示す。
FIG. 1 is an embodiment of the present invention, and shows a single line diagram of a power supply device using an instantaneous power failure backup method.

第1図で、1は誘導電動機、2は上位電源、3は負荷、
4は電圧形インバータ、5はインバータ制御装置、6は
母線、7aは電圧形インバータ4への入力変圧器、7b
は電圧形インバータ4からの出力変圧器を示す。
In Figure 1, 1 is an induction motor, 2 is a host power supply, 3 is a load,
4 is a voltage source inverter, 5 is an inverter control device, 6 is a bus bar, 7a is an input transformer to the voltage source inverter 4, 7b
indicates an output transformer from voltage source inverter 4.

負荷3と誘導電動機1には上位電源2から母線6、入力
変圧器7a、電圧形インバータ4.出力変圧器7bを介
して給電される。上位電源2が停電すると誘導電動機1
はその慣性エネルギーにより発電を始める。その周波数
を別電源のインバータ制御装置5により電圧形インバー
タ4を運転することで制御し、誘導電動機1のすベリを
一定に保つことで、より長く発電をすることができる。
The load 3 and the induction motor 1 are connected to a host power source 2, a bus 6, an input transformer 7a, a voltage source inverter 4. Power is supplied via the output transformer 7b. When the upper power supply 2 has a power outage, the induction motor 1
starts generating electricity using its inertial energy. By controlling the frequency by operating the voltage source inverter 4 using the inverter control device 5 provided as a separate power source, and by keeping the current of the induction motor 1 constant, it is possible to generate electricity for a longer period of time.

本実施例によれば誘導電動機の慣性エネルギーを十分に
利用し、瞬時停電を数100ms〜10s程度バックア
ップする方式を提供する効果がある6第2図は本発明の
他の実施例で、上記以外に8は同期電動機、9は同期電
動機8の励磁制御装置、10は遮断器を示す。
According to this embodiment, the inertial energy of the induction motor is fully utilized, and there is an effect of providing a system for backing up instantaneous power outages of several 100 ms to 10 seconds.6 Figure 2 shows another embodiment of the present invention, other than the above. 8 is a synchronous motor, 9 is an excitation control device for the synchronous motor 8, and 10 is a circuit breaker.

負荷3と同期電動機8には上位電源2より母線6、遮断
器】Oを介して給電される。」三位電源2が停電すると
遮断器10を開き、上位電源と負荷を切離す、また同期
電動機8はその慣性エネルギーと、その励磁が別電源で
行われるために発電を始める。さらに同期電動機8のす
ベリを一定に保つように励磁制御装置9で制御し、より
長く発電し負荷をバックアップする。本実施例によれば
同期電動機の慣性エネルギーを十分に利用し、瞬時停電
を数:+、 OOm s〜10s程度バックアップする
方式を提供する効果がある。
Power is supplied to the load 3 and the synchronous motor 8 from the host power supply 2 via the bus 6 and the circuit breaker ]O. '' When the third power source 2 loses power, the circuit breaker 10 is opened to disconnect the upper power source and the load, and the synchronous motor 8 starts generating power because its inertial energy and excitation are performed by a separate power source. Further, the excitation control device 9 controls the synchronous motor 8 to maintain a constant level, thereby generating power for a longer period of time and backing up the load. According to this embodiment, the inertial energy of the synchronous motor is fully utilized, and there is an effect of providing a system for backing up momentary power outages by approximately 100 ms to 10 s.

第3図は本発明の他の実施例で、上記以外に11はM−
GセラI−を示す。
FIG. 3 shows another embodiment of the present invention, in which 11 is M-
G-Sera I- is shown.

負荷3は上位電源2より母線6.入力変圧器7a、1を
原形インバータ4.出力変圧器7b、遮断器10aを介
して給電される。M−Gセラ1−11は」三位電源2よ
り母線6.遮断器LOcを介して給電される。遮断器]
0))は開放しである。
The load 3 is connected to the bus 6 from the upper power supply 2. The input transformer 7a, 1 is connected to the original inverter 4. Power is supplied via the output transformer 7b and the circuit breaker 10a. MG Sera 1-11 is connected to the bus 6 from the third power supply 2. Power is supplied via circuit breaker LOc. Circuit breaker]
0)) is open.

上位電源2が停電すると遮断器10a、eが開放され、
遮断器10bが投入さハる。MG上セツト1はその同期
発電機が別電源で励磁されるのでその慣性エネルギーに
より発電する。また同期発電機の励磁を励磁制御装置9
で制御することにより、同期発電機のすべりを一定に保
ち、より長く発電し負荷をバッタアップする。本実施例
によればM−Gセットの慣性エネルギーを十分利用し、
瞬時停電を数100m5〜10s1度バックアップする
方式を提供する効果がある。
When the upper power supply 2 has a power outage, the circuit breakers 10a and 10e are opened,
The circuit breaker 10b is closed. Since the MG upper set 1 has its synchronous generator excited by a separate power source, it generates electricity using its inertial energy. Also, the excitation control device 9 controls the excitation of the synchronous generator.
By controlling this, the slip of the synchronous generator is kept constant, generating electricity for a longer period of time and increasing the load. According to this embodiment, the inertial energy of the M-G set is fully utilized,
This has the effect of providing a method for backing up momentary power outages once every few 100 m5 to 10 seconds.

第4図は本発明の他の実施例で、上記以外に1.2はデ
ィーゼル発電機を示す。
FIG. 4 shows another embodiment of the present invention, in which 1.2 shows a diesel generator in addition to the above.

負荷3と誘導電動機1へは上位電源2より遮断器10 
aを介して第1図と同様にして給電される。
A circuit breaker 10 is connected to the load 3 and the induction motor 1 from the upper power supply 2.
Power is supplied via a in the same manner as in FIG.

遮断器10 bは開放しである。上位電源2が停電する
と遮断器10aが開放される。負荷3には第1図と同様
にして誘導電動機1の慣性発電により給電される。また
、ディーゼル発電機】2が起動されるが、起動が完了す
ると遮断器10 bが投入されてディーゼル発電機12
より遮断器10b。
The circuit breaker 10b is open. When the upper power supply 2 loses power, the circuit breaker 10a is opened. Power is supplied to the load 3 by the inertial power generation of the induction motor 1 in the same manner as in FIG. In addition, the diesel generator 12 is started, but when the start is completed, the circuit breaker 10b is closed and the diesel generator 12
breaker 10b.

母線6.入力変圧器7a、電圧形インバータ4゜出力変
圧器7bを介して負荷3に給電される。本実施例によれ
ば無停電の電源システムを提供する効果がある。
Bus line 6. Power is supplied to the load 3 via an input transformer 7a, a voltage source inverter 4°, and an output transformer 7b. This embodiment has the effect of providing an uninterruptible power supply system.

第5図は、本発明の一実施例である無停電の電源システ
ムを示している。第5図で、負荷3と誘導電動機1へは
上位電源2aより遮断器10 aを介して第1図と同様
にして給電される。遮断器10bは開放しである。上位
電源2aで停電すると遮断器1.0 aが開放され、遮
断器]−0bが投入されて上位電源2bから遮断器】−
Obを介して第1図と同様にして負荷3へ給電される。
FIG. 5 shows an uninterruptible power supply system that is an embodiment of the present invention. In FIG. 5, power is supplied to the load 3 and the induction motor 1 from the host power source 2a via the circuit breaker 10a in the same manner as in FIG. The circuit breaker 10b is open. When there is a power outage in the upper power supply 2a, the circuit breaker 1.0a is opened, and the circuit breaker]-0b is turned on, and the circuit breaker 1.0a is opened and the circuit breaker 1.0a is turned on and the circuit breaker 1.0a is opened and the circuit breaker 1.0a is turned on and the circuit breaker 1.0a is opened and the circuit breaker 1.0a is turned on and the circuit breaker 1.
Power is supplied to the load 3 via Ob in the same manner as in FIG.

遮断器10a、bの切換えの間は第1図と同様にして誘
導電動機1の慣性発電により負荷3へ給電される9本実
施例によれば無停電の電源システムを提供する効果があ
る。
During switching of the circuit breakers 10a and 10b, power is supplied to the load 3 by inertial power generation of the induction motor 1 in the same manner as shown in FIG. 1. According to this embodiment, an uninterruptible power supply system is provided.

第6図は、原子炉のインターナルポンプ電源装置を示し
、上記以外に13はインターナルポンプ、14は原子炉
を示す。
FIG. 6 shows an internal pump power supply device for a nuclear reactor. In addition to the above, 13 indicates an internal pump, and 14 indicates a nuclear reactor.

原子炉14のインターナルポンプ13へは」三位電源2
より第12図と同様にして給電される。上位電源2が停
電すると原子炉1−4は停止し出力が下がっていくが、
しばらくの間熱を発生する。しかし、第1図と同様にし
て誘導電動機1の慣性発電によりインターナルポンプ1
3へは数秒間給電され、インターナルポンプ1,3ば運
転され、るので冷却材を供給し、その熱を除去する。本
実施例によれば原子炉を保護するためのインターナルポ
ンプ電源装置を提供する効果がある6 〔発明の効果〕 本発明によれば、誘導電動機、同期電動機2M=Gセッ
トの慣性エネルギーを十分発電↓こ利用できるので、数
Looms〜10s程度バックアップできる電源装置を
供給する効果がある。また、このバックアップ電源装置
と他電源装置との組合せにより無停電電源装置を供給す
る効果がある。
To the internal pump 13 of the reactor 14, the third power source 2
Power is then supplied in the same manner as in FIG. When upper power supply 2 loses power, reactors 1-4 stop and their output decreases, but
Generates heat for a while. However, in the same way as shown in Fig. 1, the internal pump 1 is
3 is supplied with power for several seconds, and the internal pumps 1 and 3 are operated to supply coolant and remove the heat. According to this embodiment, it is possible to provide an internal pump power supply device for protecting a nuclear reactor.6 [Effects of the Invention] According to the present invention, the inertial energy of the induction motor and synchronous motor 2M=G set can be sufficiently Since power generation can be used, it is effective to supply a power supply device that can back up several looms to 10 seconds. Further, the combination of this backup power supply device and other power supply devices has the effect of supplying an uninterruptible power supply device.

さらにこのバックアップ電源装置を原子炉のインターナ
ルポンプあるいは再循環ポンプに用いることで、電源喪
失による原子炉停止のときも冷却材を供給できるので原
子炉を保護する効果がある。
Furthermore, by using this backup power supply for the internal pump or recirculation pump of a nuclear reactor, it is possible to supply coolant even when the reactor is shut down due to power loss, thereby protecting the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である瞬時停電バックアップ
方式の構成図、第2図及び第3図は本発明の他の実施例
である瞬時停電バックアップ方式の構成図、第4図及び
第5図は瞬時停電バックアップ方式を用いた本発明の実
施例である無停電電源システムの構成図、第6図は瞬時
停電バックアップ方式を用いた本発明の実施例である原
子炉保護方式を示す図、第7図は従来のサイリスタ保護
用の瞬時停電バックアップ方式を示す構成図、第8図は
電動機のすべりと電流、トルクの関係を示した特性図で
ある。 1・・・誘導電動機、2a、2b・・・上位電源、3・
・・負荷、4・・・電圧形インバータ、5・・・インバ
ータ制御装置、6・・・母線、7a・・・入力変圧器、
7b・・・出力変圧器、8・・・同期電動機、9・・・
励磁制御装置。 10a、b−遮断器、11−M−Gセット、12・・・
ディーゼル発電機、13・・・インターナルポンプ、1
4・・・原子炉、15・・・コンデンサ、16・・・ゲ
ート制御装置、17・・・サイリスタ、18・・・変流
器。 19・・・方向継電器、20・・・すべり、21・・・
電流、22・・・トルク。 躬1図 萬2図 第3図 率午喝 宅S図 第6図 I午−″″売善ビ
FIG. 1 is a block diagram of an instantaneous power outage backup method which is an embodiment of the present invention, FIGS. 2 and 3 are block diagrams of a momentary power outage backup method which is another embodiment of the present invention, and FIGS. Figure 5 is a configuration diagram of an uninterruptible power supply system that is an embodiment of the present invention using a momentary power outage backup method, and Figure 6 is a diagram showing a nuclear reactor protection system that is an embodiment of the present invention that uses an instantaneous power outage backup method. , FIG. 7 is a block diagram showing a conventional instantaneous power failure backup system for thyristor protection, and FIG. 8 is a characteristic diagram showing the relationship between motor slip, current, and torque. 1...Induction motor, 2a, 2b...Upper power supply, 3.
...Load, 4...Voltage type inverter, 5...Inverter control device, 6...Bus bar, 7a...Input transformer,
7b...Output transformer, 8...Synchronous motor, 9...
Excitation control device. 10a, b-breaker, 11-MG set, 12...
Diesel generator, 13... Internal pump, 1
4... Nuclear reactor, 15... Capacitor, 16... Gate control device, 17... Thyristor, 18... Current transformer. 19... Directional relay, 20... Slip, 21...
Current, 22...torque. Figure 1, figure 2, figure 3, rate of sale, figure S, figure 6, figure I,

Claims (1)

【特許請求の範囲】 1、上位電源より電圧形インバータを介して負荷に給電
する方式において、前記電圧形インバータの出力側に負
荷と並列に誘導電動機を接続し、前記上位電源が停電し
たときは前記電圧形インバータで、周波数を制御して誘
動電動機の慣性エネルギーによる発電出力を前記負荷に
給電することを特徴とする電源装置の瞬時停電バックア
ップ方式。 2、上位電源より負荷に給電する方式において、励磁が
別電源より行われる同期電動機を負荷と並列に設け、前
記上位電源が停電したときは前記同期電動機の励磁を制
御し、前記同期電動機の慣性エネルギーによる発電出力
を前記負荷に給電することを特徴とする電源装置の瞬時
停電バックアップ方式。 3、上位電源より電圧形インバータを介して負荷に給電
する方式において、前記電圧形インバータをバイパスす
るようにM−Gセットを接続し、前記上位電源が停電し
たときは前記負荷の電源を前記電圧形インバータから前
記M−Gセットに切り換え、前記M−Gセットの慣性エ
ネルギーによる発電出力を前記負荷に給電することを特
徴とする電源装置の瞬時停電バックアップ方式。 4、前記電圧形インバータの入力側にディーゼル発電機
を接続し、前記上位電源が停電したときは、前記ディー
ゼル発電機を起動し、前記上位電源が停電してから前記
ディーゼル発電機が起動するまでは前記誘動電動機の慣
性エネルギーによる発電出力を前記負荷に給電する請求
項1の無停電電源システム。 5、前記上位電源を複数設け、1つの上位電源が停電し
たときはすみやかに他の上位電源に切換え、この切換え
に要する間は前記誘導電動機の慣性エネルギーによる発
電出力を前記負荷に給電する請求項1の無停電電源シス
テム。 6、原子炉のインターナルポンプあるいは再循環ポンプ
の電源に請求項1、2、3、4または5の電源装置を用
い、上位電源が停電したときでも原子炉内へ冷却材が供
給され、原子炉を冷却することを特徴とする原子炉保護
方式。
[Claims] 1. In a system in which power is supplied to a load from an upper power source via a voltage source inverter, an induction motor is connected to the output side of the voltage source inverter in parallel with the load, and when the upper power source experiences a power outage, An instantaneous power outage backup method for a power supply device, characterized in that the voltage source inverter controls the frequency and supplies power generated by the inertial energy of the induction motor to the load. 2. In a system in which power is supplied to a load from an upper power source, a synchronous motor whose excitation is performed from a separate power source is installed in parallel with the load, and when the upper power source has a power outage, the excitation of the synchronous motor is controlled and the inertia of the synchronous motor is controlled. An instantaneous power outage backup method for a power supply device, characterized in that power generated by energy is supplied to the load. 3. In a system in which power is supplied from the upper power source to the load via the voltage source inverter, the M-G set is connected so as to bypass the voltage source inverter, and when the upper power source has a power outage, the power source of the load is switched to the voltage source. 1. An instantaneous power outage backup method for a power supply device, characterized in that the power supply unit switches from a type inverter to the M-G set, and supplies power generated by the inertial energy of the M-G set to the load. 4. A diesel generator is connected to the input side of the voltage source inverter, and when the upper power source has a power outage, the diesel generator is started, and from the time the upper power source loses power until the diesel generator is started. 2. The uninterruptible power supply system according to claim 1, wherein the power generation output generated by the inertial energy of the induction motor is supplied to the load. 5. A plurality of said upper power sources are provided, and when one upper power source has a power outage, it is promptly switched to another upper power source, and during the time required for this switching, the generated output from the inertial energy of the induction motor is supplied to the load. 1 uninterruptible power supply system. 6. The power supply device according to claim 1, 2, 3, 4 or 5 is used as the power supply for the internal pump or recirculation pump of the nuclear reactor, so that even when the upper power supply fails, coolant is supplied to the reactor and the nuclear A nuclear reactor protection method characterized by cooling the reactor.
JP63139316A 1988-06-08 1988-06-08 Instantaneous interruption backup system, uninterruptible power system and nuclear-reactor protective system Pending JPH01311837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139316A JPH01311837A (en) 1988-06-08 1988-06-08 Instantaneous interruption backup system, uninterruptible power system and nuclear-reactor protective system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139316A JPH01311837A (en) 1988-06-08 1988-06-08 Instantaneous interruption backup system, uninterruptible power system and nuclear-reactor protective system

Publications (1)

Publication Number Publication Date
JPH01311837A true JPH01311837A (en) 1989-12-15

Family

ID=15242468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139316A Pending JPH01311837A (en) 1988-06-08 1988-06-08 Instantaneous interruption backup system, uninterruptible power system and nuclear-reactor protective system

Country Status (1)

Country Link
JP (1) JPH01311837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126576A2 (en) * 2000-01-21 2001-08-22 PILLER-GmbH Device for uninterrupted supply of a load with AC current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126576A2 (en) * 2000-01-21 2001-08-22 PILLER-GmbH Device for uninterrupted supply of a load with AC current
EP1126576A3 (en) * 2000-01-21 2005-02-02 RWE Piller Gmbh Device for uninterrupted supply of a load with AC current

Similar Documents

Publication Publication Date Title
JP2008237018A (en) Uninterruptible power supply and electric power generating system
JP2000134994A (en) Command and control system method for multiturbo generator
WO2010111828A1 (en) Power supply system and method
WO2015098004A1 (en) Emergency power system for nuclear power plant and emergency independent power source
JPH01311837A (en) Instantaneous interruption backup system, uninterruptible power system and nuclear-reactor protective system
CA1167921A (en) Static var generator
Bose Ore-grinding cycloconverter drive operation and fault: My experience with an australian grid
JP2002374625A (en) Cogeneration system provided with uninterruptible power supply function
CN212435345U (en) Waste heat utilization generating set and protection device thereof
JPH10260294A (en) Power facility
JP3529530B2 (en) Inverter protection device for grid connection
CN116388234B (en) Control method, system, controller and storage medium of grid-connected power generation system
JP2002374628A (en) Cogeneration system having reverse power flow preventing function
CN109274300B (en) Starting and excitation system and method for gas turbine generator set
US4394614A (en) Static VAR generators
JP2016195491A (en) Power generating system
JP3748008B2 (en) Power supply system
Abbas et al. Monitoring and Control of Reverse Feed Current in Grid Tied PV Systems Using Multiple MPPT Inverter
US11817709B2 (en) Method for stabilizing an AC voltage grid
JP3212701B2 (en) Static variable voltage variable frequency power supply and power supply system
CN206559031U (en) Water power type three-phase pump machine starter
JP2009239987A (en) Expansion turbine brake
JPH11295469A (en) Reactor cooling material recirculation pump power supply system
JPH01187776A (en) Start and stop device for fuel battery
JPH0559653B2 (en)