JPH0131151B2 - - Google Patents

Info

Publication number
JPH0131151B2
JPH0131151B2 JP56089667A JP8966781A JPH0131151B2 JP H0131151 B2 JPH0131151 B2 JP H0131151B2 JP 56089667 A JP56089667 A JP 56089667A JP 8966781 A JP8966781 A JP 8966781A JP H0131151 B2 JPH0131151 B2 JP H0131151B2
Authority
JP
Japan
Prior art keywords
sampling
phasing
received signal
receiving
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089667A
Other languages
Japanese (ja)
Other versions
JPS57204477A (en
Inventor
Shinichiro Umemura
Masao Kuroda
Kageyoshi Katakura
Toshio Ogawa
Yuriko Takabayashi
Suminori Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP56089667A priority Critical patent/JPS57204477A/en
Publication of JPS57204477A publication Critical patent/JPS57204477A/en
Publication of JPH0131151B2 publication Critical patent/JPH0131151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/345Circuits therefor using energy switching from one active element to another

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、受信整相装置たとえば超音波断層撮
像装置の受信部に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a receiving section of a receiving phasing device, such as an ultrasonic tomographic imaging device.

電子走査型超音波断層装置では、アレイ型受信
器を構成する複数の受信素子によつて変換された
電気信号を処理することにより、音響レンズと等
価な機能を実現し、超音波像を得ている。即ち、
第1図のように、視野内の注目する点Piから拡散
する波面WViが各受信素子E1〜Eoに到達する時
刻は、各素子により異る。そこで、Piに対する受
波指向性を得るためには、各素子からの信号につ
きその時間差を補償して位相あわせ(この操作を
一般に整相とよぶ。)をした後アダーAにより互
いに加算する必要がある。
An electronic scanning ultrasonic tomography system achieves a function equivalent to an acoustic lens by processing electrical signals converted by multiple receiving elements that make up an array receiver, and obtains ultrasonic images. There is. That is,
As shown in FIG. 1, the time at which the wavefront WV i that diffuses from the point of interest P i in the field of view reaches each of the receiving elements E1 to E o differs depending on each element. Therefore, in order to obtain the reception directivity for P i , it is necessary to compensate for the time difference of the signals from each element and align the phases (this operation is generally called phasing), and then add them together using adder A. There is.

各受信信号をサンプリングしメモリーMに一旦
保持した後上記の整相加算を行なう従来の方式で
は、第1図のように、各受信信号について共通の
サンプリングクロツクCL(クロツクパルス発生器
CGから得られる)を用いている。このため、上
記の時間差補償をメモリーアドレシングのみで行
なつた場合、サンプリングクロツク周期を単位と
する時間量子化により誤差がその時間精度をきめ
る。より高い時間精度を求める場合には、サンプ
ル点間の値を内挿処理によつて求めなければなら
ず、第1図IP1〜IPoのような内挿器が必要にな
る。従つて、整相精度は、主としてその内挿処理
の精度によつてきまる場合が多い。特に、信号処
理の高速性が要求される診断用超音波断層撮像装
置に応用するためには、高精度でありながら高速
な内挿器をもたねばならず、これがハードウエア
上大きな負担となる。
In the conventional method, in which each received signal is sampled and temporarily stored in memory M, and then the above-described phasing and addition is performed, a common sampling clock CL (clock pulse generator) is used for each received signal, as shown in Figure 1.
(obtained from CG) is used. Therefore, when the above-mentioned time difference compensation is performed only by memory addressing, the error determines the time accuracy due to time quantization in units of sampling clock cycles. In order to obtain higher time accuracy, values between sample points must be obtained by interpolation processing, and interpolators such as IP 1 to IP o in FIG. 1 are required. Therefore, the phasing accuracy often depends mainly on the accuracy of the interpolation process. In particular, in order to apply it to diagnostic ultrasound tomographic imaging devices that require high-speed signal processing, it is necessary to have a high-precision yet high-speed interpolator, which places a large burden on the hardware. .

本発明は、複数個の受信素子を配列した受信装
置、特に、アレイ型受信器を用いた超音波撮像装
置において、焦点あわせを受信信号の簡単な電気
的処理により行なうことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to perform focusing by simple electrical processing of received signals in a receiving device in which a plurality of receiving elements are arranged, particularly in an ultrasonic imaging device using an array type receiver.

本発明の整相原理は、アレイ型受信器を構成す
る複数の受信素子からの信号をサンプリングして
メモリーに一旦保持した後整相加算する方式にお
いて、第2図のように、視野内に仮想的に配列し
た点(…、Pi、…)から拡散する波面について同
一位相面(…、WVi、…)が各受信素子E1〜Eo
に到達する時刻に各受信信号をサンプリングする
方式(以下では、整相時刻サンプル方式とよぶ。)
である。この方式は整相処理における時間差補償
を各受信信号のサンプリングクロツクCL1〜CLo
を制御することにより行ない。メモリーに書きこ
むのは時間差補償済みの値であるので、従来方式
が必要としていたメモリー読み出し後の内挿処理
が本質的に不要となる。特に、信号処理の高速性
が要求される診断用超音波撮像装置の場合には、
内挿処理が不要であり、信号処理が簡略化される
ことは、大きな利点となる。
The phasing principle of the present invention is based on a method in which signals from a plurality of receiving elements constituting an array receiver are sampled, temporarily stored in memory, and then phased and summed. The same phase front (..., WV i ,...) of the wave front diffusing from the points (..., P i ,...) arranged in
A method of sampling each received signal at the time when it reaches (hereinafter referred to as phasing time sampling method)
It is. This method uses the sampling clocks CL 1 to CL o of each received signal to compensate for time differences in phasing processing.
This is done by controlling the Since the time difference-compensated value is written to the memory, interpolation processing after reading the memory, which is required in the conventional method, is essentially unnecessary. In particular, in the case of diagnostic ultrasound imaging devices that require high-speed signal processing,
It is a great advantage that interpolation processing is not required and signal processing is simplified.

ところで、一般に、第3図のようなスペクトル
をもつ、中心周波数C、最高周波数M、比帯域巾
α=2(MC)/C(<2)の信号を、情報を損
わずにサンプリングするためには、必ずしも、通
常のサンプリング定理の要求する2M以上のサン
プルレートは必要でない。たとえば、第4図のよ
うにCについて90゜位相差に相当する時間差のサ
ンプリング(サンプリング点をCi,Siで示す。但
しiは整数である)をペア(以下では、90゜ペア
と呼ぶ。したがつて、第4図は5ペアを示す。)
として扱うquadrature sampling(以下では、90゜
サンプル法と呼ぶ。)を用いれば、90゜ペアのサン
プルレートが包絡線帯域±αC/2に対し標本化
定理をみたせばよいので、平均サンプルレートを
αCまで低下させることができる。2M以下のサン
プルレートを用いることのできるこの種の方法を
サンプリングを用いて整相処理を行なう従来方式
に応用してサンプルレートを低下させる場合に
は、2M以上のサンプルレートを用いる場合に比
べて、さらに高精度の内挿処理が必要となる点が
不利であるのに対し、本質的に内挿処理を必要と
しない本発明の整相時刻サンプル方式と組合わせ
た場合には、サンプルレートを容易に上記の理論
値ま低下させることができる。
By the way, in general, a signal with a center frequency C , a maximum frequency M , and a fractional bandwidth α=2( MC )/ C (<2), which has a spectrum as shown in Figure 3, can be sampled without loss of information. In order to do this, it is not necessarily necessary to have a sample rate of 2 M or more, which is required by the usual sampling theorem. For example, as shown in Figure 4, a pair (hereinafter referred to as a 90° pair) is sampled with a time difference corresponding to a 90° phase difference for C (the sampling points are shown as C i and S i , where i is an integer). Therefore, Figure 4 shows 5 pairs.)
If quadrature sampling (hereinafter referred to as 90° sampling method) is used, the sampling rate of the 90° pair only needs to satisfy the sampling theorem for the envelope band ±α C /2, so the average sampling rate can be reduced to α C. When applying this type of method that can use a sample rate of 2 M or less to a conventional method that performs phasing processing using sampling to lower the sample rate, it is difficult to reduce the sample rate when using a sample rate of 2 M or more. However, when combined with the phased time sampling method of the present invention, which essentially does not require interpolation processing, the sample The rate can be easily lowered to the above theoretical value.

以下、本発明を実施例を参照して詳細に説明す
る。第2図は、本発明の整相時刻サンプル方式を
超音波断層撮像装置の整相部に応用した例のブロ
ツク図である。アレイ型受信器を構成する各受信
素子E1〜Eoからの信号をサンプリングする時刻
の制御を行なうサンプリングクロツクCL1〜CLo
は、あらかじめメモリーM0に記録した値に従つ
て動作するクロツク発生器CGにより生成する。
サンプル手段SA1〜SA2によりサンプリングされ
た値はメモリーMに書きこまれ、互いに整相加算
されるべき各受信信号のサンプル値がメモリー内
にそろつた後アダAにより加算される。こうする
ことにより、サンプリングしないそのままの各受
信信号を何らかの方法で仮想的に整相加算し、そ
の信号をサンプリングすることにより得られる値
と等価な値が、アダAの出力として得られる。整
相処理において本質的に内挿処理を必要としない
という本発明の整相時刻サンプル方式の特長は、
さらに、サンプルレートを信号の包絡線帯域巾で
きまる論理値まで容易に低下できるという利点を
生じる。この利点を生かして、本発明の方式を
90゜サンプル法と組合わせて診断用超音波断層撮
像装置の整相部に適用した実施例の構成を第5図
に示す。サンプリングクロツク(CLC1〜CLCo
CLS1〜CLSo)に同期してサンプルホールド素子
(SHC1〜SHCo,SHS1〜SHSo)によりサンプルホ
ールドされた各受信信号は、A−D変換器
(ADC1〜ADCo,ADS1〜ADSo)によりデジタル値
に変換されラインメモリー(MC1〜MCo,MS1
MSo)に書きこまれる。なお、PA1,PA2…は前
置増幅器である。ラインメモリー(MC1〜MCo
MS1〜MSo)から読み出された値は、90゜ペアの片
方ずつ(これを以下COSブロツク、SINブロツク
と呼ぶ)、すなわち、COSブロツク(MC1〜MCo
SINブロツク(MS1〜MSo)独立に、整相加算を
それぞれ加算器AC,ASによつて行なう。次に、
演算回路RSにより、加算器AC及びASから得られ
たCOS振巾とSIN振巾の2乗和をとり、それを開
平して、包絡線振巾を得る。
Hereinafter, the present invention will be explained in detail with reference to Examples. FIG. 2 is a block diagram of an example in which the phasing time sampling method of the present invention is applied to a phasing section of an ultrasonic tomographic imaging apparatus. Sampling clocks CL 1 to CL o that control the times at which signals from each receiving element E 1 to E o configuring the array type receiver are sampled.
is generated by a clock generator CG which operates according to a value previously recorded in memory M0 .
The values sampled by the sampling means SA 1 -SA 2 are written into the memory M, and the sample values of the respective received signals to be phased and added together are added by the adder A after they are all in the memory. By doing so, a value equivalent to the value obtained by virtually phasing and adding each unsampled received signal as it is by some method and sampling the signal is obtained as the output of the adder A. The feature of the phasing time sampling method of the present invention that essentially does not require interpolation processing in phasing processing is that
A further advantage is that the sample rate can be easily reduced to a logical value determined by the envelope bandwidth of the signal. Taking advantage of this advantage, the method of the present invention
FIG. 5 shows the configuration of an embodiment in which the present invention is applied to a phasing section of a diagnostic ultrasonic tomographic imaging device in combination with the 90° sample method. Sampling clock (CL C1 ~ CL Co ,
Each received signal sampled and held by sample and hold elements (SH C1 - SH Co , SH S1 - SH So ) in synchronization with CL S1 - CL So ) is sent to an A-D converter (AD C1 - AD Co , AD S1) . 〜AD So ) is converted into a digital value by the line memory ( MC1 〜M Co , M S1
M So ). Note that PA 1 , PA 2 . . . are preamplifiers. Line memory (M C1 ~ M Co ,
The values read from each of the 90° pairs (hereinafter referred to as the COS block and SIN block), that is, the values read from the COS block (M C1 ~ M Co )
SIN blocks (M S1 to M So ) independently perform phasing and addition by adders AC and AS , respectively. next,
The arithmetic circuit RS calculates the sum of the squares of the COS amplitude and the SIN amplitude obtained from the adders A C and A S , and squares it to obtain the envelope amplitude.

その動作原理を第6図で説明する。照射された
パルス状超音波が視野内の注目する点Piにある点
状反射体により反射され、その点を中心に拡がる
超音波波面WViが生じたとする。WViに含まれる
同一位相面が、アレイ型受信器を構成する各受信
素子E1〜Eoに到達する時刻は、一般に、各受信
素子と注目する点Piの間の相対的位置関係により
異る。そこで、WViに含まれる同一位相面が各受
信素子に到達すべき時刻(時間をtで示す)に各
受信信号をサンプリングし互いに加算すれば、特
にPiからの反射信号が加算によつて強調されるこ
とになり、この方法により受信指向性が得られ
る。cについて90゜位相差の同一位相面のペアを
1パルス長あたり1〜3ペア程度の頻度で選び、
それぞれのペアについて、同一位相面加算値
(COS振巾、SIN振巾)の2乗和の平方根を求め
れば、整相加算された信号の包絡線をサンプリン
グしたものが充分な精度で得られる。なお、第6
図において、C11〜C1o及びS11〜S1oは受
信素子E1〜Eoからの信号の第1のサンプリング
点を示し、C41〜C4o及びS41〜S4oは受信
素子E1〜Eoからの信号の第4のサンプリング点
を示し、第1のサンプリング点に続く、第2及び
第3のサンプリング点は省略してある。また、サ
ンプリング点での振幅和をA1〜A4で示している。
The principle of operation will be explained with reference to FIG. Suppose that the emitted pulsed ultrasound is reflected by a point-like reflector at a point of interest P i in the field of view, and an ultrasound wavefront WV i is generated that spreads around that point. Generally, the time at which the same phase plane included in WV i reaches each receiving element E 1 to E o making up the array receiver depends on the relative positional relationship between each receiving element and the point of interest P i . Different. Therefore, if each received signal is sampled at the time when the same phase plane included in WV i should reach each receiving element (time indicated by t) and added together, the reflected signal from P i in particular will be This method provides reception directivity. For c , select pairs of the same phase plane with a 90° phase difference at a frequency of about 1 to 3 pairs per pulse length,
By finding the square root of the sum of squares of the same phase plane addition values (COS amplitude, SIN amplitude) for each pair, a sampled envelope of the phased and summed signal can be obtained with sufficient accuracy. In addition, the 6th
In the figure, C1 1 to C1 o and S1 1 to S1 o indicate the first sampling points of the signals from the receiving elements E 1 to E o , and C4 1 to C4 o and S4 1 to S4 o indicate the first sampling points of the signals from the receiving elements E 1 to E o. A fourth sampling point of the signal from ~E o is shown, with the second and third sampling points following the first sampling point omitted. Further, the amplitude sums at the sampling points are indicated by A 1 to A 4 .

ここで、サンプリングとメモリーとを活用して
整相を行なう従来方式と本発明の整相時刻サンプ
ル方式との比較を具体的な装置における必要サン
プルレートについて行なつてみる。中心周波数
3MHz包絡線帯域巾±1MHzのパルス超音波を用
い、時間精度10nsの整相処理を行なう受信装置を
例にとつて、整相のための内挿器を持たないとい
う条件下で比較する。従来方式の必要サンプルレ
ートが100MHzであるのに対し、整相時刻サンプ
ル方式を用い通常のサンプリング定理に従つた場
合には8MHz、さらに、90゜サンプル法と組合わせ
た場合に必要な平均サンプルレートは4MHzとな
る。このように、整相時刻サンプル方式によれ
ば、サンプルレートを大巾に低下させることがで
きる。
Here, a comparison will be made between the conventional method of performing phasing using sampling and memory and the phasing time sampling method of the present invention with respect to the required sample rate in a specific device. center frequency
Taking as an example a receiving device that uses pulsed ultrasound with a 3 MHz envelope bandwidth of ±1 MHz and performs phasing processing with a time accuracy of 10 ns, a comparison will be made under the condition that it does not have an interpolator for phasing. The required sample rate for the conventional method is 100 MHz, whereas when using the phased time sampling method and following the normal sampling theorem, the required average sample rate is 8 MHz, and when combined with the 90° sampling method, the required average sample rate is 100 MHz. is 4MHz. In this way, according to the phasing time sampling method, the sampling rate can be significantly reduced.

第5図の回路例では、包絡線振巾を抽出するこ
とを目的に、90゜ペアの同一位相面加算値(COS
振巾、SIN振巾)について2乗和の平方根を求め
たが、包絡線抽出精度をそれほど必要とせず、か
つ、ハードウエアを簡略化したいときには、
COS振巾とSIM振巾の絶対値和によつて包絡線
振巾を近似することもできる。
In the circuit example shown in Figure 5, for the purpose of extracting the envelope amplitude, the same phase plane sum value (COS
We calculated the square root of the sum of squares for the amplitude (SIN amplitude, SIN amplitude), but if you do not require high envelope extraction accuracy and want to simplify the hardware,
The envelope amplitude can also be approximated by the sum of the absolute values of the COS amplitude and the SIM amplitude.

一般に、整相加算後信号の包絡線振巾値を1点
求めるためには、整相加算前の各受信信号につい
て、振巾・位相の2自由度と等価な2点以上の実
数値が得られていればよい。従つて、整相加算後
信号の包絡線振巾を整相加算前の各受信信号をサ
ンプリングすることにより抽出する方法は、上記
の方法のみに限定されない。たとえば、高速アダ
を活用した次にのべる方法も可能である。上記の
1つの波面につき90゜位相差の同一位相面を4面
連続して選び、各受信信号について第7図のよう
に値をサンプリングする。高速アダにより1番目
の値(C1)から3番目の値(C2)をさしひいた
もの(C1−C2)をCOS振巾、2番目の値(S1
から4番目の値(S2)をひいたもの(S1−S2)を
SIN振巾としてラインメモリーに書きこみ、以後
を処理は第5図の場合と同様に行なう。この方法
によれば、AD変換器を含みそれより前段の回路
系の直流ドリフトの影響を除くことができる。
Generally, in order to obtain one point of the envelope amplitude value of the signal after phasing and addition, two or more real values equivalent to the two degrees of freedom of amplitude and phase are obtained for each received signal before phasing and addition. It would be good if it was. Therefore, the method of extracting the envelope amplitude of the signal after phasing and addition by sampling each received signal before phasing and addition is not limited to the above method. For example, the next method using high-speed adda is also possible. For each wavefront mentioned above, four identical phase planes having a phase difference of 90° are consecutively selected, and the values of each received signal are sampled as shown in FIG. The third value (C2) is subtracted from the first value (C1) by the high-speed adder (C1 - C2), and the second value (S 1 ) is the COS width.
Subtract the fourth value (S 2 ) from (S 1S 2 ).
It is written to the line memory as a SIN width, and the subsequent processing is performed in the same manner as in the case of FIG. According to this method, it is possible to eliminate the influence of DC drift in the circuit system in the preceding stage including the AD converter.

以上説明したごとく本発明によれば、アレイ型
受信器を構成する複数の受信素子からの信号をサ
ンプリングして整相処理する場合、内挿処理が本
質的に不要となり、この特徴により次の効果を生
ずる。
As explained above, according to the present invention, when sampling and phasing signals from a plurality of receiving elements constituting an array receiver, interpolation processing is essentially unnecessary, and this feature provides the following effects. will occur.

サンプルレートを受信信号の包絡線帯域巾に
よつてきまる理論上の必要サンプルレートまで
容易に低下させることができるようになる。
The sample rate can be easily reduced to the theoretically required sample rate determined by the envelope bandwidth of the received signal.

整相加算のための内挿処理が省略され、処理
すべきデータ数を必要最小限に抑えることがで
きるので、整相加算を含みそれより後段のデー
タ処理のためのハードウエアの負担が小さくて
すむようになる。
Interpolation processing for delay-and-sum is omitted, and the number of data to be processed can be kept to the minimum necessary, so the burden on hardware for subsequent data processing including delay-and-sum is reduced. I will come to live.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アレイ型受信器の受信信号を整相加
算する従来装置のブロツク図、第2図は、本発明
の一実施例の構成を示すブロツク図。第3図は、
中心周波数C、最高周波数M、比帯域幅αの信号
のスペクトル図であり、第4図は本発明で用いる
サンプル法の説明図、第5図は、本発明の他の実
施例の構成を示すブロツク図、第6図は、その動
作説明図、第7図は、本発明で用いるサンプル法
の他の説明図である。
FIG. 1 is a block diagram of a conventional device for phasing and adding received signals of an array type receiver, and FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention. Figure 3 shows
This is a spectral diagram of a signal with a center frequency C , a maximum frequency M , and a fractional bandwidth α, FIG. 4 is an explanatory diagram of the sampling method used in the present invention, and FIG. 5 is a diagram showing the configuration of another embodiment of the present invention. The block diagram, FIG. 6, is an explanatory diagram of its operation, and FIG. 7 is another explanatory diagram of the sample method used in the present invention.

Claims (1)

【特許請求の範囲】 1 複数の配列した受信素子と、視野内の注目す
る点に指向性を合わせるよう前記複数の受信素子
からの複数の受信信号を整相加算する手段とを有
する受信装置において、前記整相加算手段は上記
注目する点から拡散する音波の同一位相面が各受
信素子に到達する時刻にてそれぞれの受信素子の
受信信号をサンプリングするサンプリング手段
と、サンプリングされた各受信信号をそれぞれ一
担保持するメモリと、保持された各受信信号を相
互に加算する加算手段を含んで成ることを特徴と
する受信装置。 2 前記整相加算手段は、互いに前記受信信号の
中心周波数の90゜位相差をもつてそれぞれサンプ
リングを行なう第1、第2の整相加算手段を含
み、前記受信信号の包絡線帯域を±αc/2とす
るとき90°位相差で対をなすサンプリングのくり
返し周波数はαcであることを特徴とする特許請
求の範囲第1項に記載の受信装置。
[Claims] 1. A receiving device comprising a plurality of arrayed receiving elements and means for phasing and adding a plurality of received signals from the plurality of receiving elements so as to match the directivity to a point of interest within the field of view. , the phasing and addition means includes a sampling means for sampling the received signal of each receiving element at the time when the same phase front of the sound wave diffusing from the point of interest reaches each receiving element, and a sampling means for sampling each sampled received signal. 1. A receiving device comprising a memory that holds one part of each of the received signals, and an adding means that adds the held received signals to each other. 2. The phasing and addition means includes first and second phasing and addition means that respectively perform sampling with a 90° phase difference of the center frequency of the received signal, and the envelope band of the received signal is ±αc. 2. The receiving device according to claim 1, wherein the repetition frequency of sampling paired with a 90° phase difference is αc.
JP56089667A 1981-06-12 1981-06-12 Receiving device Granted JPS57204477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56089667A JPS57204477A (en) 1981-06-12 1981-06-12 Receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56089667A JPS57204477A (en) 1981-06-12 1981-06-12 Receiving device

Publications (2)

Publication Number Publication Date
JPS57204477A JPS57204477A (en) 1982-12-15
JPH0131151B2 true JPH0131151B2 (en) 1989-06-23

Family

ID=13977093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56089667A Granted JPS57204477A (en) 1981-06-12 1981-06-12 Receiving device

Country Status (1)

Country Link
JP (1) JPS57204477A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195170A (en) * 1983-04-21 1984-11-06 Nec Corp Beam forming circuit
JP2008259891A (en) * 2008-08-04 2008-10-30 Hitachi Medical Corp Ultrasonic diagnostic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067160A (en) * 1973-10-15 1975-06-05
JPS5366760A (en) * 1976-11-27 1978-06-14 Canon Inc Transmission and reception of sound waves

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067160A (en) * 1973-10-15 1975-06-05
JPS5366760A (en) * 1976-11-27 1978-06-14 Canon Inc Transmission and reception of sound waves

Also Published As

Publication number Publication date
JPS57204477A (en) 1982-12-15

Similar Documents

Publication Publication Date Title
US5318033A (en) Method and apparatus for increasing the frame rate and resolution of a phased array imaging system
EP3132281B1 (en) Ultrasonic imaging compression methods and apparatus
CN108324319B (en) System and method for distortion-free multibeam ultrasound receive beamforming
US4817617A (en) Diagnostic imaging apparatus
JP4039643B2 (en) Ultrasonic beam forming device
EP0224014B1 (en) Variable focusing in ultrasound imaging using non-uniform sampling
JP3329575B2 (en) Multi-channel digital receiver and ultrasonic diagnostic apparatus
O'Donnell et al. Real-time phased array imaging using digital beam forming and autonomous channel control
Karaman et al. VLSI circuits for adaptive digital beamforming in ultrasound imaging
JPH0679606B2 (en) Method and apparatus for delaying ultrasonic signal
KR101971620B1 (en) Method for sampling, apparatus, probe, beamforming apparatus for receiving, and medical imaging system performing the same
US4930514A (en) Ultrasonic imaging apparatus
US5591911A (en) Ultrasound signal processor
US5831168A (en) Ultrasound signal processor
JPS63179276A (en) Ultrasonic imaging device
US6514205B1 (en) Medical digital ultrasonic imaging apparatus capable of storing and reusing radio-frequency (RF) ultrasound pulse echoes
JPH0131151B2 (en)
US6544184B1 (en) Imaging with reduced artifacts for medical diagnostic ultrasound
JP3134618B2 (en) Ultrasonic signal processor
KR101646627B1 (en) Phase rotation beamformer and beamforming method for envelope error compensating
KR101334381B1 (en) A synthetic aperture beamforming system of using phase rotation beamformers
JP3677815B2 (en) Ultrasonic device
JPH0332152Y2 (en)
JPH0429032B2 (en)
JPH0216142B2 (en)