JPH0131114B2 - - Google Patents

Info

Publication number
JPH0131114B2
JPH0131114B2 JP55028927A JP2892780A JPH0131114B2 JP H0131114 B2 JPH0131114 B2 JP H0131114B2 JP 55028927 A JP55028927 A JP 55028927A JP 2892780 A JP2892780 A JP 2892780A JP H0131114 B2 JPH0131114 B2 JP H0131114B2
Authority
JP
Japan
Prior art keywords
timer
capacity
compressor
indoor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55028927A
Other languages
Japanese (ja)
Other versions
JPS56124868A (en
Inventor
Toshio Maruke
Minoru Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2892780A priority Critical patent/JPS56124868A/en
Publication of JPS56124868A publication Critical patent/JPS56124868A/en
Publication of JPH0131114B2 publication Critical patent/JPH0131114B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、空気調和機における能力制御装置に
関するもので、特に複数台の室内熱交換器を有す
る空気調和機の負荷に応じた能力制御を行うこと
により、消費電力の低減化をはかるとともに、快
適性を損うことがない空気調和機を提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacity control device for an air conditioner, and in particular, it reduces power consumption by controlling the capacity according to the load of an air conditioner having a plurality of indoor heat exchangers. The purpose of the present invention is to provide an air conditioner that reduces energy consumption and does not impair comfort.

従来、この種の分離型空気調和機における冷凍
サイクルは第4図に示す如く構成され、またその
制御回路は第5図に示す如く構成されていた。
Conventionally, the refrigeration cycle in this type of separate air conditioner was constructed as shown in FIG. 4, and its control circuit was constructed as shown in FIG. 5.

すなわち、室外ユニツト101の圧縮機102
は、室外送風機104とともに室内ユニツト11
3aのリレーコイル117aの常開接点118a
と同じく室内ユニツト113bのリレーコイル1
17bの常開接点118bのOR回路を介して室
外電源126に接続されている。この場合、圧縮
機102は常開接点118aまたは118bのい
づれかがONすれば、全出力で運転するため室内
ユニツト113aもしくは113bの負荷が軽い
ときは無駄な電力を消費する欠点を有していた。
なお、第4図、第5図において、106,107
は電磁弁、115a,115bは室内送風機、1
03は室外熱交換器、114a,114bは室内
熱交換器、109,110,111はキヤピラリ
チユーブ、119a,119bはリレー接点、1
27a,127bは室内電源である。
That is, the compressor 102 of the outdoor unit 101
is the indoor unit 11 along with the outdoor blower 104.
Normally open contact 118a of relay coil 117a of 3a
Similarly, relay coil 1 of indoor unit 113b
17b is connected to the outdoor power source 126 via an OR circuit of the normally open contact 118b. In this case, the compressor 102 operates at full output when either the normally open contact 118a or 118b is turned on, which has the disadvantage of wasting power when the load on the indoor unit 113a or 113b is light.
In addition, in FIGS. 4 and 5, 106, 107
is a solenoid valve, 115a, 115b is an indoor blower, 1
03 is an outdoor heat exchanger, 114a, 114b are indoor heat exchangers, 109, 110, 111 are capillary tubes, 119a, 119b are relay contacts, 1
27a and 127b are indoor power supplies.

本発明は、上記従来の問題点に鑑み、室内ユニ
ツトの運転台数の変化による負荷変動及び空調空
間の負荷変動に応じた圧縮機の能力制御を行なう
ことを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to control compressor capacity in response to load fluctuations due to changes in the number of operating indoor units and load fluctuations in an air-conditioned space.

そして本発明は上記目的を達成するために能力
可変式の1台の圧縮機と、室外熱交換器と、キヤ
ピラリチユーブと、複数台の室内熱交換器によつ
て冷凍サイクルを構成し、さらに室内温度が設定
値に到達したとき、前記圧縮機の運転を停止する
複数個のサーモスタツトと、前記圧縮機の能力を
可変する能力制御装置を設け、この能力制御装置
を、前記圧縮機の能力を増減する能力可変手段
と、前記圧縮機の停止時から作動し、第1の設定
時間経過後に出力する第1タイマーと、いずれか
1個のサーモスタツトのON動作による圧縮機の
運転時から作動し、第2の設定時間経過後に出力
する第2タイマーと、前記第1タイマーの出力お
よび前記複数個のサーモスタツトのOFF動作に
よつて前記能力可変手段を能力減方向に作動し、
前記第2タイマーの出力および前記いずれか1個
のサーモスタツトのON動作によつて前記能力可
変手段を能力増方向に作動すると共に、前記複数
個のサーモスタツトのON動作によつて、前記第
1および第2タイマーの出力を解除して、前記能
力可変手段を能力増方向に作動する切換手段より
構成したものである。
In order to achieve the above object, the present invention configures a refrigeration cycle by one variable capacity compressor, an outdoor heat exchanger, a capillary tube, and a plurality of indoor heat exchangers, and further A plurality of thermostats that stop the operation of the compressor when the indoor temperature reaches a set value, and a capacity control device that changes the capacity of the compressor are provided, and the capacity control device is configured to adjust the capacity of the compressor. a first timer that operates from when the compressor is stopped and outputs an output after a first set time has elapsed; and operating the capacity variable means in the capacity reduction direction by a second timer that outputs after a second set time has elapsed, the output of the first timer, and the OFF operation of the plurality of thermostats;
The output of the second timer and the ON operation of any one of the thermostats operate the capacity variable means in the direction of increasing the capacity, and the ON operation of the plurality of thermostats operates the first thermostat. and switching means for canceling the output of the second timer and operating the capacity variable means in the direction of increasing the capacity.

以下、本発明をその一実施例を示す添付図面の
第1図〜第3図を参考に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS. 1 to 3 of the accompanying drawings showing one embodiment thereof.

まず、第1図により冷凍サイクルについて説明
する。
First, the refrigeration cycle will be explained with reference to FIG.

同図において、1は室外ユニツトで、バイパス
回路2aを有する能力可変式の圧縮機2と、室外
熱交換器3と、この室外熱交換器3を空冷する室
外送風機4と、圧縮機2のバイパス回路2aを制
御する電磁三方弁(切換手段)5と、電磁二方弁
6,7,8およびキヤピラリチユーブ9,10,
11,12をそれぞれ具備している。13a,1
3bはそれぞれ室内熱交換器14a,14bおよ
び室内熱交換器14a,14b用の室内送風機1
5a,15bをそれぞれ具備した室内ユニツト
で、それぞれ前記室外ユニツト1と並列に配管接
続されている。ここで、前記能力可変式の圧縮機
2は、従来周知の構造でよく、本実施例の場合
は、バイパス回路2aに連通するように電磁三方
弁5が作動すると、このバイパス回路2aにかか
る高圧冷媒圧力によつて圧縮機2内部の圧縮空間
(図示せず)へ開口する能力可変吐出口が弁を介
して閉塞され、圧縮冷媒がすべて室外熱交換器3
へ流れて大能力になり、また電磁三方弁5がバイ
パス回路2aを遮断するように作動すると、前記
能力可変吐出口が開口することから、圧縮冷媒の
一部がバツク回路2bを介して圧縮機2の戻り管
へ流入し、室外熱交換器3への冷媒流量が減少し
て能力が低下する構造を採用している。の構造
は、本考案の要旨と直接関係しないため、詳細な
説明ならびに図示を省略する。
In the figure, 1 is an outdoor unit, which includes a variable capacity compressor 2 having a bypass circuit 2a, an outdoor heat exchanger 3, an outdoor blower 4 for cooling the outdoor heat exchanger 3, and a bypass circuit for the compressor 2. An electromagnetic three-way valve (switching means) 5 that controls the circuit 2a, an electromagnetic two-way valve 6, 7, 8, and capillary tubes 9, 10,
11 and 12, respectively. 13a,1
3b is the indoor heat exchanger 14a, 14b and the indoor blower 1 for the indoor heat exchanger 14a, 14b, respectively.
5a and 15b, each of which is connected via piping in parallel to the outdoor unit 1. Here, the variable capacity compressor 2 may have a conventionally well-known structure, and in the case of this embodiment, when the electromagnetic three-way valve 5 is operated to communicate with the bypass circuit 2a, high pressure is applied to the bypass circuit 2a. Depending on the refrigerant pressure, a variable capacity discharge port that opens into a compression space (not shown) inside the compressor 2 is closed via a valve, and all of the compressed refrigerant is transferred to the outdoor heat exchanger 3.
When the three-way electromagnetic valve 5 operates to cut off the bypass circuit 2a, the variable capacity discharge port opens, and a part of the compressed refrigerant flows to the compressor via the back circuit 2b. A structure is adopted in which the refrigerant flows into the return pipe of No. 2 and the flow rate of the refrigerant to the outdoor heat exchanger 3 decreases, resulting in a decrease in capacity. Since the structure is not directly related to the gist of the present invention, detailed description and illustration thereof will be omitted.

次に、第2図により上記空気調和機の制御回路
について説明する。ここで、第1図と同一のもの
については同一の番号を付して説明を省略する。
Next, the control circuit of the air conditioner will be explained with reference to FIG. Here, the same numbers as those in FIG. 1 are given the same numbers, and the description thereof will be omitted.

同図において、室外ユニツト1の第2タイマー
T2は、第1タイマーT1のタイマー接点24を介
し、また電磁二方弁8と電磁三方弁5は、前記第
1タイマーT1のタイマー接点23を介し、それ
ぞれ圧縮機2と室外送風機4とともに、室内ユニ
ツト13a,13bのリレーコイル17a,17
bのリレー接点18a,18bのOR回路を介し
て室外電源26に接続されている。また前記リレ
ーコイル17a,17bはそれぞれ室内ユニツト
13a,13bのサーモスタツト16a,16b
を介して室内送風機15a,15bとともに室内
電源27a,27bにそれぞれ接続されている。
さらに、前記第1タイマーT1は、リレーコイル
17a,17bのリレー接点21a,21bから
なるNOR回路を介して室外電源26に接続され、
また前記NOR回路と並列にリレー接点20a,
20bのNAND回路と第1タイマーT1のタイマ
ー接点22および第2タイマーT2のタイマー接
点25からなる自己保持回路が前記室外電源26
へ接続されている。また電磁二方弁6,7はリレ
ーコイル17a,17bのリレー接点19a,1
9bを介して室外電源26に接続されている。
In the figure, the second timer of outdoor unit 1
T2 is connected to the compressor 2 and the outdoor blower 4 through the timer contact 24 of the first timer T1 , and the solenoid two-way valve 8 and the solenoid three-way valve 5 are connected to the compressor 2 and the outdoor blower 4, respectively, through the timer contact 23 of the first timer T1 . At the same time, the relay coils 17a, 17 of the indoor units 13a, 13b
It is connected to an outdoor power source 26 via an OR circuit of relay contacts 18a and 18b. Further, the relay coils 17a and 17b are connected to the thermostats 16a and 16b of the indoor units 13a and 13b, respectively.
are connected to indoor power supplies 27a, 27b together with indoor blowers 15a, 15b, respectively.
Further, the first timer T1 is connected to an outdoor power source 26 via a NOR circuit consisting of relay contacts 21a and 21b of relay coils 17a and 17b,
In addition, a relay contact 20a is connected in parallel with the NOR circuit.
A self-holding circuit consisting of a NAND circuit 20b, a timer contact 22 of the first timer T1, and a timer contact 25 of the second timer T2 is connected to the outdoor power supply 26.
connected to. Further, the electromagnetic two-way valves 6 and 7 are connected to the relay contacts 19a and 1 of the relay coils 17a and 17b.
It is connected to the outdoor power source 26 via 9b.

上記構成において、室内ユニツト13a,13
bのサーモスタツト16a,16bがともにON
した状態、すなわち、二室運転の状態では、リレ
ーコイル17a,17bがともにONし、それぞ
れのリレー接点、18a,18b,19a,19
bはONとなり、リレー接点20a,20b,2
1a,21bはOFFとなる。したがつて、圧縮
機2、室外送風機4、電磁二方弁6,7,8がそ
れぞれONし、室内ユニツト13a,13bの室
内熱交換器14a,14bを冷却する。ここで、
電磁三方弁5がON状態では、圧縮機2のバイパ
ス回路2aはOFF状態となるように設定されて
いるため、圧縮機2は全出力状態で運転する。ま
たこの二室運転時では、第1タイマーT1は、リ
レー接点20a,20b,21a,21bがとも
に開のためONしない。したがつて第2タイマー
T2もONしない。
In the above configuration, the indoor units 13a, 13
Both thermostats 16a and 16b of b are ON.
In this state, that is, in the state of two-chamber operation, both relay coils 17a and 17b are turned on, and the respective relay contacts 18a, 18b, 19a, and 19
b becomes ON, relay contacts 20a, 20b, 2
1a and 21b are turned off. Therefore, the compressor 2, the outdoor blower 4, and the two-way electromagnetic valves 6, 7, and 8 are turned on, respectively, to cool the indoor heat exchangers 14a, 14b of the indoor units 13a, 13b. here,
When the electromagnetic three-way valve 5 is in the ON state, the bypass circuit 2a of the compressor 2 is set to be in the OFF state, so the compressor 2 operates at full output. Further, during this two-chamber operation, the first timer T1 does not turn on because the relay contacts 20a, 20b, 21a, and 21b are all open. Therefore, the second timer
T2 also does not turn on.

一方、室内温度が低下して圧縮機2が停止し、
室内ユニツト13a,13bのリレーコイル17
a,17bがともにOFFの場合は、リレー接点
21a,21bが閉となり、第1タイマーT1
通電され、第1タイマーT1の設定時間t1後にタイ
マー接点22が閉じ、リレー接点20a,20b
のNAND回路と第2タイマーT2のタイマー接点
(常閉)25を介して、第1タイマーT1を自己保
持する。なお、第1タイマーT1の設定時間t1以内
に室内ユニツト13a,13bのいずれかのサー
モスタツト16a,16bがONすれば第1タイ
マーT1の自己保持は起こらない、また第1タイ
マーT1の自己保持後に室内ユニツト13a,1
3bのいずれかのサーモスタツト16a,16b
がONしても第1タイマーT1は実己保持を続ける
ことは明らかである。
Meanwhile, the indoor temperature drops and compressor 2 stops,
Relay coil 17 of indoor units 13a, 13b
When both a and 17b are OFF, the relay contacts 21a and 21b are closed, the first timer T1 is energized, and after the set time t1 of the first timer T1 , the timer contact 22 is closed and the relay contacts 20a and 20b are turned off.
The first timer T 1 is self-maintained through the NAND circuit of and the timer contact (normally closed) 25 of the second timer T 2 . Note that if either the thermostat 16a or 16b of the indoor units 13a or 13b is turned on within the set time t1 of the first timer T1 , the self-holding of the first timer T1 will not occur; After the self-holding of the indoor units 13a, 1
3b either thermostat 16a, 16b
It is clear that even if T1 is turned on, the first timer T1 continues to hold its true value.

上記第1タイマーT1がON状態(自己保持)で
室内ユニツト13a,13bいずれかが温度上昇
により再びONした一室運転の場合は、圧縮機
2、室外送風機4がONすると同時に第1タイマ
ーT1によつてタイマー接点24がONしているこ
とから第2タイマーT2も通電される。また電磁
三方弁5と電磁二方弁8は第1タイマーT1のタ
イマー接点23が開のためOFF状態であり、電
磁三方弁5は圧縮機2のバイパス回路をONに
し、キヤピラリチユーブ12とともに作用して圧
縮機2の負荷を減少し、出力および消費電力を低
減する。
In the case of single-room operation where the first timer T 1 is ON (self-holding) and either indoor unit 13a or 13b is turned ON again due to a temperature rise, the first timer T 1 is turned on at the same time as the compressor 2 and outdoor blower 4 are turned ON. 1 , the timer contact 24 is turned on, so the second timer T2 is also energized. Furthermore, the electromagnetic three-way valve 5 and the electromagnetic two-way valve 8 are in the OFF state because the timer contact 23 of the first timer T1 is open, and the electromagnetic three-way valve 5 turns on the bypass circuit of the compressor 2, and together with the capillary tube 12. This reduces the load on the compressor 2, reducing output and power consumption.

上記圧縮機2の出力低減状態で運転中、何らか
の要因でいずれかの室内ユニツト13a,13b
の冷房負荷が大きくなつた場合は、圧縮機2は能
力不足の状態で長時間運転することになり好まし
くない。これを防止し、当該室内ユニツト13
a,13bの負荷状態の変動を時間的に検出する
ものとして、第2タイマーT2が具備されている。
したがつて第2タイマーT2の設定時間t2後には、
タイマー接点25が開となり、第1タイマーT1
の自己保持が解除されて第1タイマーT1はOFF
となり、タイマー接点23が閉となるので電磁三
方弁5、電磁二方弁8がONし、圧縮機2のバイ
パス回路2aはOFFとなり全出力で運転するこ
とになる。
During operation with the output of the compressor 2 reduced, one of the indoor units 13a, 13b may be damaged due to some reason.
If the cooling load increases, the compressor 2 will have to operate for a long time with insufficient capacity, which is undesirable. To prevent this, the indoor unit 13
A second timer T 2 is provided to temporally detect changes in the load conditions of a and 13b.
Therefore, after the set time t2 of the second timer T2 ,
The timer contact 25 is opened, and the first timer T 1
Self-holding is released and the first timer T1 is turned OFF.
As a result, the timer contact 23 is closed, so the electromagnetic three-way valve 5 and the electromagnetic two-way valve 8 are turned ON, and the bypass circuit 2a of the compressor 2 is turned OFF, causing the compressor to operate at full output.

すなわち、第3図のAで示すように、圧縮機2
の停止後から第1タイマーT1の設定時間t1内に圧
縮機2が再起動する場合は、単位時間当りの室内
温度上昇率が高いことから大能力運転を行い、室
内を急速に冷房する。また同図のBで示すよう
に、圧縮機2の停止後から第1タイマーT1の設
定時間t1が経過して、一室運転(サーモスタツト
16aON)により圧縮機2が再起動する場合は、
第1タイマーT1の設定時間t1経過時点で室内温度
が圧縮機2の再起動温度まで上昇していないこと
から負荷が小さいと判断するため、第1タイマー
T1は設定時間t1時点で電磁三方弁5をOFFにし
て圧縮機2の能力を小能力に切換える。したがつ
てこのBの場合は、圧縮機2の再起動時は圧縮機
2が小能力運転を行い、室内を緩やかに冷房す
る。さらに同図のCで示すように、圧縮機2停止
後の設定時間t1後に再起動が始まり、第2タイマ
ーT2の設定時間t2が経過しても連続して圧縮機2
が運転している場合は、小能力運転では能力が不
足していることから負荷が大きいと判断し、設定
時間t2経過時点で電磁三方弁5をONにし、圧縮
機2を大能力運転に切換える。また一室小能力運
転状態から、二室運転になる場合は、第1タイマ
T1および第2タイマT2が解除(OFF)されるた
め、圧縮機2は、大能力運転に切換わる。
That is, as shown by A in FIG.
If the compressor 2 is restarted within the set time t 1 of the first timer T 1 after the compressor 2 is stopped, the indoor temperature rise rate per unit time is high, so high-capacity operation is performed to quickly cool the room. . Furthermore, as shown by B in the figure, when the compressor 2 is restarted due to single-room operation (thermostat 16a ON) after the set time t1 of the first timer T1 has elapsed after the compressor 2 was stopped. ,
The first timer T1 determines that the load is small because the indoor temperature has not risen to the restart temperature of the compressor 2 after the elapse of the set time t1 of the first timer T1.
T 1 turns off the electromagnetic three-way valve 5 at the set time t 1 and switches the capacity of the compressor 2 to a small capacity. Therefore, in the case of B, when the compressor 2 is restarted, the compressor 2 operates at a low capacity to slowly cool the room. Further, as shown by C in the same figure, the restart of the compressor 2 starts after the set time t 1 after the compressor 2 is stopped, and even after the set time t 2 of the second timer T 2 has elapsed, the compressor 2 continues to be restarted.
is operating, it is determined that the load is large because the capacity is insufficient in low-capacity operation, and when the set time t2 has elapsed, the solenoid three-way valve 5 is turned ON, and the compressor 2 is switched to high-capacity operation. Switch. In addition, when changing from one room small capacity operation to two room operation, the first timer
Since T 1 and the second timer T 2 are canceled (OFF), the compressor 2 switches to high capacity operation.

以上の動作すなわち、負荷に応じた各運転制御
A、B、Cもしくはその各運転制御の組合わせに
より結果的にその都度の負荷に応じた運転制御を
行う。
The above operations, that is, the operation controls A, B, and C according to the load, or a combination of these operation controls, result in the operation control according to the load each time.

したがつて、1室運転時はもちろんのこと2室
運転時において一方がある時間停止した1室運転
時でも負荷が低下すれば自動的に圧縮機2の能力
(出力)を低減して消費電力の削減をはかること
ができ、また負荷が途中で増加しても自動的に大
容量に切換わるため、冷房効果が低減することも
ない。また不必要な電力消費も防止できる。
Therefore, when the load decreases, the capacity (output) of compressor 2 is automatically reduced to reduce power consumption, not only during single-room operation but also during two-room operation when one room is stopped for a certain period of time. Furthermore, even if the load increases midway through, the capacity is automatically switched to a larger capacity, so the cooling effect will not be reduced. Also, unnecessary power consumption can be prevented.

なお、本実施例においては、圧縮機2の能力制
御をバイパス回路2aとバツク回路2bと、電磁
三方弁5によつて行う構成としたが、これに限ら
ず極数切換式圧縮機の使用あるいは位相制御、電
流制御等の手段を用いても同様に実施できる。す
なわち、電磁三方弁5に相当する極数切換えスイ
ツチ、位相制御スイツチ、電流制御スイツチ等を
第1、第2タイマーT1,T2によつて同様に切換
え動作させればよいものである。
In this embodiment, the capacity of the compressor 2 is controlled by the bypass circuit 2a, the back circuit 2b, and the electromagnetic three-way valve 5. However, the present invention is not limited to this. It can be similarly implemented using means such as phase control and current control. That is, the pole number changeover switch, phase control switch, current control switch, etc. corresponding to the electromagnetic three-way valve 5 may be switched in the same manner using the first and second timers T 1 and T 2 .

上記実施例より明らかなように、本発明におけ
る空気調和機の能力制御装置は、第1の設定時間
内において圧縮機が再起動する場合あるいは、圧
縮機の小能力運転時に第2の設定時間経過しても
圧縮機が停止しない場合のような大負荷時は、圧
縮機を大能力運転し、また圧縮機の再起動時は、
小能力運転とするため、必要以上の大能力運転が
極力防止でき、消費電力の削減化がはかれ、また
負荷に応じて圧縮機の能力の切換えを行うため、
冷房効果の快適さを損うことなく、さらに室内側
の制御回路を変更することがないため、室外側の
みを交換することにより既存の空気調和機を能力
制御用とすることができ、その用途が広がる等、
種々の利点を有するものである。
As is clear from the above embodiments, the capacity control device for an air conditioner according to the present invention is effective when the compressor is restarted within the first set time or when the compressor is operated at a low capacity. When the compressor does not stop even when the load is high, operate the compressor at high capacity, and when restarting the compressor,
Due to the low capacity operation, unnecessarily high capacity operation can be prevented as much as possible, reducing power consumption, and the compressor capacity can be switched according to the load.
Since the comfort of the cooling effect is not compromised, and the control circuit on the indoor side does not need to be changed, existing air conditioners can be used for capacity control by replacing only the outdoor side. spread, etc.
It has various advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における制御装置を
具備した分離型空気調和機の配管回路図、第2図
は同分離型空気調和機の制御回路図、第3図は同
制御装置による圧縮機と電磁三方弁のタイミング
チヤート図、第4図、第5図はそれぞれ従来例を
示す分離型空気調和機の配管回路図および制御回
路図である。 2……圧縮機、2a,2b……バイパス回路お
よびバツク回路(能力可変手段)、3……室外熱
交換器、5……電磁三方弁(切換手段)、9,1
0,11,12……キヤピラリチユーブ、14
a,14b……室内熱交換器、T1……第1タイ
マー(制御装置)、T2……第2タイマー(制御装
置)。
FIG. 1 is a piping circuit diagram of a separate air conditioner equipped with a control device according to an embodiment of the present invention, FIG. 2 is a control circuit diagram of the same separate air conditioner, and FIG. 3 is a compression circuit diagram of the same control device. 4 and 5 are a piping circuit diagram and a control circuit diagram, respectively, of a separate type air conditioner showing conventional examples. 2...Compressor, 2a, 2b...Bypass circuit and back circuit (capacity variable means), 3...Outdoor heat exchanger, 5...Solenoid three-way valve (switching means), 9,1
0, 11, 12... Capillary tube, 14
a, 14b...Indoor heat exchanger, T1 ...First timer (control device), T2 ...Second timer (control device).

Claims (1)

【特許請求の範囲】[Claims] 1 能力可変式の1台の圧縮機と、室外熱交換器
と、キヤピラリチユーブと、複数台の室内熱交換
器によつて冷凍サイクルを構成し、前記それぞれ
の室内熱交換器に対応した室内ユニツトに設けら
れたサーモスタツトと前記圧縮機の能力を可変す
る能力制御装置を備え、この能力制御装置を、前
記室内ユニツトのいずれか1室運転時には第1タ
イマーの時間以内T1−OFFは、前記サーモスタ
ツトのON信号で前記第1タイマーの動作を禁止
すると共に、切換手段をONし、前記圧縮機の能
力可変手段を能力増側に作動して大能力運転と
し、前記第1タイマーの時間後T1−ONは、第1
タイマーは自己保持して第2タイマーを作動する
と共に、切換手段の動作を禁止して能力可変手段
を能力減側に作動して小能力運転とし、かつ前記
第2タイマーの時間後T2−ONは、第2タイマー
で前記第1タイマーの自己保持を解除して大能力
運転を行ない、また前記室内ユニツトが複数台同
時運転時には、前記複数台のサーモスタツトの
ON信号で前記第1タイマーおよび第2タイマー
をOFFして大能力運転とする能力可変手段と、
切換手段より構成した空気調和機の能力制御装
置。
1 A refrigeration cycle is composed of one compressor with variable capacity, an outdoor heat exchanger, a capillary tube, and multiple indoor heat exchangers, and an indoor heat exchanger corresponding to each indoor heat exchanger is constructed. The unit is equipped with a thermostat installed in the unit and a capacity control device that varies the capacity of the compressor, and when any one of the indoor units is in operation, T 1 -OFF within the time of the first timer is as follows: The operation of the first timer is prohibited by the ON signal of the thermostat, and the switching means is turned on, and the capacity variable means of the compressor is operated to the capacity increasing side to achieve high capacity operation, and the time of the first timer is changed. After T 1 −ON is the first
The timer maintains itself and operates the second timer, and at the same time prohibits the operation of the switching means and operates the capacity variable means to the capacity reduction side to achieve low capacity operation, and after the time of the second timer T 2 −ON. The second timer cancels the self-holding of the first timer to perform high-capacity operation, and when multiple indoor units are operated simultaneously, the thermostats of the multiple units are activated.
capacity variable means for turning off the first timer and the second timer to achieve high capacity operation in response to an ON signal;
A capacity control device for an air conditioner consisting of a switching means.
JP2892780A 1980-03-06 1980-03-06 Capacity control device for air conditioner Granted JPS56124868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2892780A JPS56124868A (en) 1980-03-06 1980-03-06 Capacity control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2892780A JPS56124868A (en) 1980-03-06 1980-03-06 Capacity control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS56124868A JPS56124868A (en) 1981-09-30
JPH0131114B2 true JPH0131114B2 (en) 1989-06-23

Family

ID=12262027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2892780A Granted JPS56124868A (en) 1980-03-06 1980-03-06 Capacity control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS56124868A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135766B2 (en) * 2006-09-19 2008-08-20 ダイキン工業株式会社 Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53653A (en) * 1976-06-23 1978-01-06 Matsushita Refrig Co Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288343U (en) * 1975-12-26 1977-07-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53653A (en) * 1976-06-23 1978-01-06 Matsushita Refrig Co Air conditioner

Also Published As

Publication number Publication date
JPS56124868A (en) 1981-09-30

Similar Documents

Publication Publication Date Title
US4102390A (en) Control system for heat pump and furnace combination
JPH0131114B2 (en)
JP2000146360A (en) Air conditioner
JPS6071838A (en) Air conditioner
WO2020065929A1 (en) Heat exchange ventilation device
JP2006064257A (en) Air conditioner indoor unit and freezer
JPH0526496A (en) Apparatus for air conditioning
JPH0350379Y2 (en)
JPS6132302Y2 (en)
JPH031745Y2 (en)
JPS6317968Y2 (en)
JPH031744Y2 (en)
JPS586348A (en) Operation controlling device of air conditioner
JPH0228056A (en) Air conditioner for vehicle
JPH0439578B2 (en)
JPH0245795B2 (en) TASHITSUGATAKUKICHOWAKI
JPS5926202Y2 (en) air conditioner
JPS6029561A (en) Defroster for air conditioner
JP2656314B2 (en) Air conditioner
JPS6017636Y2 (en) Multi-room air conditioner
JPS6144129Y2 (en)
JPS5933943Y2 (en) air conditioner
JPH0533889Y2 (en)
JPH01121661A (en) Air conditioner
JPS5822045Y2 (en) Air conditioner/heater operation control device