JPH01309973A - Thin film-forming equipment - Google Patents

Thin film-forming equipment

Info

Publication number
JPH01309973A
JPH01309973A JP13854988A JP13854988A JPH01309973A JP H01309973 A JPH01309973 A JP H01309973A JP 13854988 A JP13854988 A JP 13854988A JP 13854988 A JP13854988 A JP 13854988A JP H01309973 A JPH01309973 A JP H01309973A
Authority
JP
Japan
Prior art keywords
window
plasma chamber
thin film
wave
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13854988A
Other languages
Japanese (ja)
Inventor
Hiroshi Osame
浩史 納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13854988A priority Critical patent/JPH01309973A/en
Publication of JPH01309973A publication Critical patent/JPH01309973A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Abstract

PURPOSE:To prevent a change with the lapse of time in microwave introduction efficiency and also prevent the adhesion of a film to a window for introducing microwaves by keeping the above window at a distance from a plasma chamber and also providing a means of purging a microwave-introducing part in magnetic field microwave thin film-forming equipment using a coaxial-type cavity resonator. CONSTITUTION:A gaseous raw material introduced into a plasma chamber 41 in a coaxial-type cavity resonator formed of a vacuum vessel 31 and a cylindrical base material 100 set in the vessel 31 is formed into plasmic state by means of microwaves introduced through a window 40 in a microwave introducing part 1 provided to the vessel 31, by which a thin film is deposited on the base material 100. In this equipment, the window is constituted so that it is kept at a distance from the plasma chamber 41, and a means 2 of purging the microwave-introducing part 1 with a purge gas is provided. By this constitution, the window 40 is kept at a distance from the plasma chamber 41 and further purged by means of a purge gas supplied by the purging means 2, so that the window 40 is not exposed to the plasma produced in the plasma chamber 41 and the adhesion of film to the window 40 can be practically removed.

Description

【発明の詳細な説明】 〔概要〕 同軸型空胴共振器を用いた有磁場μ波薄膜形成装置の改
良に関し、 真空容器に設けられたμ波導入部の窓への膜の付着が少
なくなるようにすることを目的とし、真空容器内のプラ
ズマ室に導入した原料ガスを前記真空容器に設けられた
マイクロ波導入部の窓から導入されるマイクロ波により
プラズマ化し、前記真空容器内にセットされた円筒基体
上に薄膜を堆積させる薄膜形成装置において、前記マイ
クロ波導入部の窓を前記プラズマ室から遠ざけるととも
に、前記マイクロ波導入部内をパージ用ガスを用いてパ
ージするパージ手段を設けた構成とする。
[Detailed Description of the Invention] [Summary] Regarding the improvement of a magnetic field μ-wave thin film forming apparatus using a coaxial cavity resonator, there is less adhesion of the film to the window of the μ-wave introduction part provided in the vacuum container. For the purpose of this, a raw material gas introduced into a plasma chamber in a vacuum container is turned into plasma by microwaves introduced through a window of a microwave introduction section provided in the vacuum container, and the material gas is set in the vacuum container. In the thin film forming apparatus for depositing a thin film on a cylindrical substrate, the window of the microwave introducing section is moved away from the plasma chamber, and a purge means is provided for purging the inside of the microwave introducing section using a purge gas. do.

または、上記構成に、前記マイクロ波導入部を磁気シー
ルドする超伝導体を付加した構成とする。
Alternatively, a superconductor for magnetically shielding the microwave introducing section may be added to the above structure.

〔産業上の利用分野〕[Industrial application field]

本発明は同軸型空胴共振器を用いた有磁場マイクロ波(
μ波)薄膜形成装置の改良に関する。
The present invention utilizes magnetic field microwaves (
(μ wave) relating to improvements in thin film forming equipment.

円筒基体上に感光層を形成した感光体の表面を一様に帯
電させ、この上に印字情報に基づいてレーザ光等を選択
的に照射し感光層の帯電電位を選択的に減衰させて潜像
を形成した後、これを現像して得られた1−ナー像を記
録紙に転写、走者して記録する電子写真装置は周知であ
るが、この場合に使用される感光体としては、近年、セ
レン系よりも、機械的強度の強いアモルファスシリコン
膜の感光層を備えたものが用いられるようになってきて
いる。
The surface of the photoreceptor, which has a photosensitive layer formed on a cylindrical substrate, is uniformly charged, and a laser beam or the like is selectively irradiated on the photoreceptor based on the printed information to selectively attenuate the charged potential of the photoreceptor layer. Electrophotographic devices that form an image, develop it, transfer the resulting 1-toner image onto recording paper, and record it by running it are well known. , those equipped with a photosensitive layer of an amorphous silicon film, which has stronger mechanical strength than selenium-based ones, have come to be used.

〔従来の技術〕[Conventional technology]

このアモルファスシリコン膜形成に使用される従来の同
軸型空胴共振器を用いた有磁場μ波CVD装置(薄膜形
成装置)の構造を第3図に示す。この装置は、本出願人
の出願に係る特願昭61−187710号に開示された
もので、第3図(a)は要部平面図、第3図(b)は全
体概要を示す正面図である。図中、31は真空容器、1
00は電子写真用感光体の円筒基体である。この装置に
よる円筒基体100の表面へのアモルファスシリコン膜
の形成は次のように行われる。
FIG. 3 shows the structure of a magnetic field μ-wave CVD apparatus (thin film forming apparatus) using a conventional coaxial cavity resonator used for forming this amorphous silicon film. This device is disclosed in Japanese Patent Application No. 187710/1989 filed by the present applicant, and FIG. 3(a) is a plan view of the main part, and FIG. 3(b) is a front view showing the overall outline. It is. In the figure, 31 is a vacuum container, 1
00 is a cylindrical base of an electrophotographic photoreceptor. Formation of an amorphous silicon film on the surface of the cylindrical substrate 100 using this apparatus is performed as follows.

まず、図示のように真空容器31内で円筒基体100を
支持台32に支持させてセットし、真空容器31内を真
空ポンプ等により所定の真空度に達するまでバルブ33
を介し排気する。次に、モータ34により円筒基体10
0を支持台32とともに回転させるとともに、円筒基体
100の内側に配置されたヒータ35により円筒基体1
00を150℃〜350 ”Cに加熱する。この場合、
ヒータ電#36は基体温度をモニタして一定温度になる
ように調整する。ここで、バルブ37を開き原料ガス供
給口31aから原料ガスであるシリコン原子含有ガス(
ジシラン等)を真空容器31内にら導入し、μ被電源3
8で発生したμ波を導波管39で導いて真空容器31に
設けられたμ波涛入部43の窓40から真空容器31内
のプラズマ室41に入れる。真空容器31と円筒基体1
00は同軸型空胴共振器を構成しているので、これらの
間のプラズマ室41に入ったμ波は共振し、これにより
、プラズマ室内の原料ガスは励起されてプラズマ化する
。このμ波導入と同時に、所定波形の電流I mag、
 r ’ magをマグネット42.42’に流し磁界
を発生させてプラズマを基体付近に閉じ込める。そこで
、導入ガスが効率よく分解され、円筒基体100上にア
モルファスシリコン膜が形成される。この場合、電源に
μ波が使用され、ガス圧が10−’〜10−’torr
程度の低圧で成膜が可能であるため、RF電源の場合に
問題となる粉状物質が装置内にたまるごとはなくなる。
First, as shown in the figure, the cylindrical base 100 is supported and set on the support stand 32 in the vacuum container 31, and the valve 33 is pressed until the inside of the vacuum container 31 reaches a predetermined degree of vacuum using a vacuum pump or the like.
Exhaust through. Next, the cylindrical base 10 is
0 together with the support base 32, and the heater 35 disposed inside the cylindrical base 100 rotates the cylindrical base 1.
00 to 150°C to 350”C. In this case,
Heater #36 monitors the substrate temperature and adjusts it to a constant temperature. Here, the valve 37 is opened and the silicon atom-containing gas (
Disilane, etc.) is introduced into the vacuum container 31, and the
The μ waves generated in step 8 are guided by a waveguide 39 and introduced into a plasma chamber 41 inside the vacuum container 31 through a window 40 of a μ wave input section 43 provided in the vacuum container 31. Vacuum container 31 and cylindrical base 1
Since 00 constitutes a coaxial cavity resonator, the μ-waves that enter the plasma chamber 41 between them resonate, and the raw material gas in the plasma chamber is thereby excited and turned into plasma. At the same time as this μ wave is introduced, a current I mag of a predetermined waveform,
r' mag is applied to the magnets 42 and 42' to generate a magnetic field and confine the plasma near the base. There, the introduced gas is efficiently decomposed and an amorphous silicon film is formed on the cylindrical substrate 100. In this case, μ-waves are used as the power source, and the gas pressure is 10-' to 10-'torr.
Since the film can be formed at a relatively low pressure, there is no possibility of powdery substances building up inside the device, which is a problem when using an RF power source.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この従来方式では、成膜時に、石英ガラス等で
形成される窓40にも薄膜が堆積し、このため、ここで
μ波の吸収や反射が起こってμ波の導入効率が低下して
いく。そして、最終的には、導入されるμ被電力が著る
しく減じ、放電を維持することができな(なってしまう
。このため、1回あたりの成膜時間が制限され、アモル
ファスシリコン感光体のような比較的厚い膜の場合は、
成膜の初期と後期で条件が変わり、膜質に分布ができて
しまう。また、窓部分の膜が厚くなると、掃除や交換が
必要になる。
However, in this conventional method, during film formation, a thin film is also deposited on the window 40 formed of quartz glass or the like, and as a result, absorption and reflection of μ waves occur here, reducing the efficiency of introducing μ waves. go. Eventually, the introduced μ power decreases significantly, and it becomes impossible to maintain the discharge.This limits the time for each film formation, and the amorphous silicon photoreceptor For relatively thick films such as
Conditions change between the early and late stages of film formation, resulting in a distribution in film quality. Additionally, when the film on the window gets thicker, it will need to be cleaned or replaced.

本発明は真空容器に設けられたμ波導入部の窓への膜の
付着が少なくなるようにすることのできる薄膜形成装置
を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film forming apparatus that can reduce the amount of film adhering to the window of a microwave introducing section provided in a vacuum container.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するため、本発明では、真空容器内の
プラズマ室に導入した原料ガスを前記真空容器に設けら
れたμ波導入部の窓から導入されるμ波によりプラズマ
化し、前記真空容器内に七ノドされた円筒基体上に薄膜
を堆積させる薄膜形成装置において、前記μ波導入部の
窓を前記プラズマ室から遠ざけるとともに、前記μ波導
入部内をパージ用ガスを用いてパージするパージ手段を
設けた構成とする。
In order to achieve the above-mentioned object, in the present invention, a raw material gas introduced into a plasma chamber in a vacuum container is turned into plasma by a μ wave introduced from a window of a μ wave introduction section provided in the vacuum container, and In a thin film forming apparatus for depositing a thin film on a cylindrical substrate having a cylindrical shape, a purge means moves a window of the μ-wave introducing section away from the plasma chamber and purges the inside of the μ-wave introducing section using a purge gas. The configuration includes the following.

または、上記構成に前記μ波導入部を磁気シールドする
超伝導体を付加した構成とする。
Alternatively, a superconductor for magnetically shielding the μ-wave introducing section may be added to the above structure.

〔作用〕[Effect]

円筒基体の表面への成膜に際しては、原料ガス供給口か
ら原料ガスを、窓から71波電力を、それぞれプラズマ
室内に導入して成膜を行う。この場合、実際には、円筒
基体をヒータ等により所定温度に加熱するとともに、該
円筒基体をモータ等により回転させて成膜を行う。
When forming a film on the surface of the cylindrical substrate, the film is formed by introducing the source gas from the source gas supply port and the 71 wave power from the window into the plasma chamber. In this case, in practice, the cylindrical substrate is heated to a predetermined temperature by a heater or the like, and the cylindrical substrate is rotated by a motor or the like to form a film.

この成膜時に、μ波導入部の窓はプラズマ室から離れて
おり、さらにμ波導入部内はパージ用ガスを用いたパー
ジ手段によりパージされるため、プラズマ室で発生した
プラズマに窓がさらされない。従って、窓への膜の付着
はほとんどなくなる。
During this film formation, the window of the μ-wave introduction part is away from the plasma chamber, and the inside of the μ-wave introduction part is purged by a purge means using a purge gas, so the window is not exposed to the plasma generated in the plasma chamber. . Therefore, there is almost no film adhesion to the window.

ここで重要なことは、μ波エネルギを全てプラズマ室に
伝えるため、μ波型力の最も強いμ波導入部でパージガ
スが放電を起こさない条件にすることである。そこでパ
ージガスとしては、放電を起こしにくい(電離エネルギ
、解離エネルギが高い)こと、そして膜に対して不純物
にならないことが必要である。具体的には、例えば、a
 −Si :H(水素化アモルファスシリコン)を成膜
する場合、+12希釈、Ar希釈等の5iHt、5i2
1To等が用いられていることから、パージガスとして
llzガス、Arガス等が考えられるが、1(2ガスが
最も適している。
What is important here is to create conditions in which the purge gas does not cause discharge at the μ-wave introduction section where the μ-wave type force is strongest, in order to transmit all the μ-wave energy to the plasma chamber. Therefore, the purge gas must be difficult to cause discharge (high ionization energy and dissociation energy) and must not become an impurity to the film. Specifically, for example, a
-Si: When forming H (hydrogenated amorphous silicon), 5iHt, 5i2 such as +12 dilution, Ar dilution, etc.
Since 1To, etc. are used, llz gas, Ar gas, etc. can be considered as the purge gas, but 1 (2 gas) is most suitable.

++、とArを比較して見ると、電離エネルギは計原子
15.7eV、 H原子13.6eνとほぼ等しいが、
電離断面積は計原子が約3倍大きい。また、Arは準安
定準位を経由した累積電離も生じるので低電力で放電し
やすい。これに対し、11□は分子の解離エネルギ4.
47eVも必要なため放電しにくいガスである。
Comparing ++ and Ar, the ionization energy is 15.7 eV for a total atom, which is almost equal to 13.6 eν for a H atom, but
The ionization cross section of the total atom is approximately three times larger. Furthermore, since cumulative ionization occurs in Ar via a metastable level, it is easy to discharge with low power. On the other hand, 11□ is the molecular dissociation energy 4.
It is a gas that is difficult to discharge because it requires 47 eV.

また、ガスを放電しにくい圧力にすることも重要であり
、マグネット等により磁場をかけられたプラズマ室だけ
で放電させることが可能である。
It is also important to maintain a pressure that makes it difficult for gas to discharge, and it is possible to discharge only in a plasma chamber where a magnetic field is applied by a magnet or the like.

このとき、前記磁場がμ波導入部に入らないように超伝
導体で磁気シールドすることで、μ波4人部でパージガ
スが放電−しないようにできる。
At this time, by magnetically shielding with a superconductor so that the magnetic field does not enter the μ-wave introducing section, it is possible to prevent the purge gas from discharging in the μ-wave quadrant.

さらに、μ波導入部を磁気シールドする超伝導体を設け
れば、パージガスがμ波放電部で放電を起こさないよう
にすることができ、原料ガスの分解効率が向上する。
Furthermore, by providing a superconductor that magnetically shields the μ-wave introduction section, it is possible to prevent the purge gas from causing discharge in the μ-wave discharge section, and the decomposition efficiency of the raw material gas is improved.

〔実施例〕〔Example〕

以下、第1図及び第2図に関連して本発明の詳細な説明
する。
The present invention will now be described in detail with reference to FIGS. 1 and 2.

第1図に第1の実施例を示す。A first embodiment is shown in FIG.

第1図(a)は薄膜形成装置の要部構造を示す平面図、
第1図(b)は同全体概要を示す正面図で、図中、lは
μ波導入部、2はパージ手段である。なお、従来と同様
の部材には同じ符号を付している。
FIG. 1(a) is a plan view showing the main structure of the thin film forming apparatus;
FIG. 1(b) is a front view showing the general outline of the same. In the figure, 1 is a μ-wave introduction part, and 2 is a purge means. Note that the same reference numerals are given to the same members as in the conventional one.

μ波導入部1に設けられた窓40は従来に比ベプラズマ
室41から遠ざかっており、パージ手段2は、窓40の
近くでμ波導入部1に接続するパージガス供給管3と、
該パージガス供給管3にバルブ4等を介し接続する図示
しないパージガス供給源とより構成されている。
The window 40 provided in the μ-wave introduction section 1 is located farther away from the plasma chamber 41 than in the past, and the purge means 2 includes a purge gas supply pipe 3 connected to the μ-wave introduction section 1 near the window 40;
It is comprised of a purge gas supply source (not shown) connected to the purge gas supply pipe 3 via a valve 4 or the like.

成膜に際しては、従来と同様に、真空容器31内をバル
ブ33を介して真空排気し、ヒータ35′により円筒基
体100を150〜350°Cに加熱するとともに、該
円筒基体100をモータ34により回転させ、バルブ3
7を介して真空容器31内にシラン系ガス例えば5iH
aを供給するが、このとき、バルブ4を介してμ波導入
部1にH2ガス等のパージ用ガスを供給する。そして、
マイクロ波型a38から導波管39、窓40を介してμ
波をプラズマ室41に導入し、原料ガスを分解して円筒
基体100上にa−St:H膜を堆積させる。
During film formation, the inside of the vacuum container 31 is evacuated via the valve 33, and the cylindrical substrate 100 is heated to 150 to 350°C by the heater 35', and the cylindrical substrate 100 is heated by the motor 34, as in the conventional case. Rotate valve 3
A silane gas, for example, 5iH, is introduced into the vacuum container 31 through the
At this time, a purge gas such as H2 gas is supplied to the μ-wave introducing section 1 via the valve 4. and,
μ from the microwave type a38 through the waveguide 39 and window 40
Waves are introduced into the plasma chamber 41 to decompose the source gas and deposit an a-St:H film on the cylindrical substrate 100.

この成膜時に、窓40はプラズマ室41から離れており
、さらにμ波導入部1内はパージ手段2により供給され
るパージ用ガスによってパージされるため、プラズマ室
41で発生したプラズマに窓40がさらされず、窓40
への膜の付着はほとんどなくなる。
During this film formation, the window 40 is away from the plasma chamber 41, and the inside of the μ-wave introducing section 1 is purged with the purge gas supplied by the purge means 2. is not exposed and the window 40
There is almost no film adhesion to the surface.

上述の手順を従来の第3図の装置で行った場合、円筒基
体lOO上の膜厚が5μm程度になったところで整合が
とれなくなり、30μmで放電が維持できなくなってし
まった。これに対し、本例の装置による成膜では、30
.crm堆積堆積成電は安定であり、窓40への膜の付
着も従来の1/10以下になることが確かめられた。
When the above-described procedure was carried out using the conventional apparatus shown in FIG. 3, alignment could no longer be achieved when the film thickness on the cylindrical substrate lOO reached approximately 5 μm, and discharge could no longer be maintained at 30 μm. On the other hand, in film formation using the apparatus of this example, 30
.. It was confirmed that the crm deposition electrode formation was stable and that the film adhesion to the window 40 was less than 1/10 that of the conventional method.

第2図に第2の実施例を示す。FIG. 2 shows a second embodiment.

第2図は薄膜形成装置の要部構造を示す平面図で、図中
、11はμ波導入部1に設けられた磁気シールド用の円
筒状の超伝導体、12は超伝導体11の冷却手段である
。また、前例と同様に、窓40は、プラズマ室41から
離れており、パージ手段2によりパージされるようにな
っている。
FIG. 2 is a plan view showing the main structure of the thin film forming apparatus. In the figure, 11 is a cylindrical superconductor for magnetic shielding provided in the μ-wave introducing section 1, and 12 is a cooling member for the superconductor 11. It is a means. Further, as in the previous example, the window 40 is separated from the plasma chamber 41 and is designed to be purged by the purging means 2.

成膜時に重要なことは、前述したように、μ波エネルギ
を全てプラズマ室に伝えるため、μ被電力の最も強いμ
波導入部1でパージガスが放電を起こさない条件にする
ことである。また、本例のような有磁場μ波CVDによ
る成膜では、一般に10−’torr以下(好適には1
0−’torr以下)の低い圧力を使っており、磁場な
しでは放電が起こらない。
What is important during film formation is that, as mentioned above, in order to transmit all the μ wave energy to the plasma chamber, the μ
The purpose is to create a condition in which the purge gas does not cause discharge in the wave introduction section 1. In addition, in film formation by magnetic field μ-wave CVD as in this example, generally 10-'torr or less (preferably 10-'torr or less)
A low pressure (below 0-'torr) is used, and no discharge occurs without a magnetic field.

そこで、本例では、プラズマ室41に磁場を作るように
設けられたマグネット42.42’の磁場がμ波導入部
1に入らないように超伝導体11で磁気シールドするこ
とで問題を解決している。
Therefore, in this example, the problem is solved by magnetically shielding with the superconductor 11 so that the magnetic field of the magnets 42 and 42' provided to create a magnetic field in the plasma chamber 41 does not enter the μ-wave introducing section 1. ing.

磁気シールドの材料としては強磁性体(鉄、ニッケル、
コバルト等)があるが、これを用いると、その周辺に強
い磁界が発生するため、プラズマ室内のプラズマに強い
かたよりを生じさせ、好ましくない。これに対し、超伝
導体11を用いる場合は、そのマイスナー効果により磁
束が該超伝導体11を避けて通るため、超伝導体11で
囲まれたμ波導入部1には磁束が進入できず、磁気シー
ルドができる。この場合、μ波導入部1の付近で若干の
磁界の乱れは発生するが、強磁性体のように強い磁界が
集中することはないので、プラズマに与える影響は少な
い。超伝導体11は、冷却手段12に液体窒素を供給す
ることで、超伝導状態となる温度に冷却される。13及
び14は液体窒素の流入口及び排出口である。
Ferromagnetic materials (iron, nickel,
Cobalt, etc.), but when this is used, a strong magnetic field is generated around it, which causes a strong bias in the plasma in the plasma chamber, which is undesirable. On the other hand, when the superconductor 11 is used, the magnetic flux avoids the superconductor 11 due to the Meissner effect, so the magnetic flux cannot enter the μ-wave introducing section 1 surrounded by the superconductor 11. , magnetic shielding is possible. In this case, although some disturbance of the magnetic field occurs near the μ-wave introducing section 1, the magnetic field is not concentrated as strong as in ferromagnetic materials, so the influence on the plasma is small. The superconductor 11 is cooled to a temperature at which it becomes superconducting by supplying liquid nitrogen to the cooling means 12. 13 and 14 are an inlet and an outlet for liquid nitrogen.

本例の場合も、前例と同様の手順により成膜が行われる
が、超伝導体11によりμ波導入部1を磁気シールドし
ているため、パージガスがμ波放電部1で放電を起こさ
ないようにすることができ、μ波エネルギを全てプラズ
マ室41に伝えることができる。従って、前例と同様の
効果の他に、原料ガスの分解効率を向上させることがで
きるという効果が得られる。
In this example, the film is formed using the same procedure as in the previous example, but the superconductor 11 magnetically shields the μ-wave introduction section 1, so that the purge gas does not cause discharge in the μ-wave discharge section 1. , and all of the μ-wave energy can be transmitted to the plasma chamber 41. Therefore, in addition to the same effect as in the previous example, the effect of improving the decomposition efficiency of the raw material gas can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、μ波導入部の窓へ
の膜付着が少なくなるため、成膜時間によるμ波導入効
率の変化がなく、長時間安定したプラズマを得ることが
できる。また窓材の交換や掃除の回数も少なくすること
ができる。
As described above, according to the present invention, since there is less film adhesion to the window of the μ-wave introduction part, the μ-wave introduction efficiency does not change depending on the film formation time, and stable plasma can be obtained for a long time. . In addition, the number of times window materials need to be replaced and cleaned can be reduced.

さらに、μ波導入部を磁気シールドする超伝導体を設け
れば、プラズマ室に作用する磁場がμ波導入部に入らな
いようにしてμ波導入部におけるパージガスの放電を防
止することができ、原料ガスの分解効率を向上させるこ
とができる。
Furthermore, by providing a superconductor that magnetically shields the μ-wave introducing section, it is possible to prevent the magnetic field acting on the plasma chamber from entering the μ-wave introducing section, thereby preventing discharge of the purge gas in the μ-wave introducing section. The decomposition efficiency of raw material gas can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の第1の実施例の薄
膜形成装置の構造説明図、 第2図は本発明の第2の実施例の薄膜形成装置の要部構
造を示す平面図、 第3図(a) 、 (b)は従来のアモルファスシリコ
ン膜形成装置の構造説明図で、 図中、 1はμ波導入部、 2はパージ手段、 11は超伝導体、 31は真空容器、 38はμ波電源、 39は導波管、 40は窓、 41はプラズマ室、 100は円筒基体である。
FIGS. 1(a) and (b) are structural explanatory diagrams of a thin film forming apparatus according to a first embodiment of the present invention, and FIG. 2 shows the main structure of a thin film forming apparatus according to a second embodiment of the present invention. The plan view and FIGS. 3(a) and 3(b) are structural explanatory diagrams of a conventional amorphous silicon film forming apparatus, in which 1 is a μ-wave introducing section, 2 is a purge means, 11 is a superconductor, and 31 is a superconductor. A vacuum container, 38 a μ-wave power source, 39 a waveguide, 40 a window, 41 a plasma chamber, and 100 a cylindrical base.

Claims (1)

【特許請求の範囲】 1、真空容器(31)とその中にセットされた円筒基体
(100)とより形成される同軸空胴共振器のプラズマ
室(41)内に導入した原料ガスを、前記真空容器(3
1)に設けられたマイクロ波導入部(1)の窓(40)
から導入されるマイクロ波によりプラズマ化し、前記円
筒基体(100)上に薄膜を堆積させる薄膜形成装置に
おいて、 前記窓(40)を前記プラズマ室(41)から遠ざける
とともに、 前記マイクロ波導入部(1)をパージ用ガスを用いてパ
ージするパージ手段(2)を設けたことを特徴とする薄
膜形成装置。 2、前記マイクロ波導入部(1)に該部を磁気シールド
する超伝導体(11)を設けたことを特徴とする請求項
1記載の薄膜形成装置。
[Claims] 1. The raw material gas introduced into the plasma chamber (41) of the coaxial cavity resonator formed by the vacuum container (31) and the cylindrical base (100) set therein, Vacuum container (3
Window (40) of the microwave introduction part (1) provided in 1)
In a thin film forming apparatus that generates plasma by microwaves introduced from the cylindrical substrate (100) and deposits a thin film on the cylindrical substrate (100), the window (40) is moved away from the plasma chamber (41), and the microwave introduction section (1) ) using a purge gas. 2. The thin film forming apparatus according to claim 1, wherein the microwave introduction section (1) is provided with a superconductor (11) for magnetically shielding the section.
JP13854988A 1988-06-07 1988-06-07 Thin film-forming equipment Pending JPH01309973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13854988A JPH01309973A (en) 1988-06-07 1988-06-07 Thin film-forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13854988A JPH01309973A (en) 1988-06-07 1988-06-07 Thin film-forming equipment

Publications (1)

Publication Number Publication Date
JPH01309973A true JPH01309973A (en) 1989-12-14

Family

ID=15224747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13854988A Pending JPH01309973A (en) 1988-06-07 1988-06-07 Thin film-forming equipment

Country Status (1)

Country Link
JP (1) JPH01309973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564359A1 (en) * 1992-04-03 1993-10-06 Commissariat A L'energie Atomique Microwave applicator and plasma reactor using the same
WO2003063216A1 (en) * 2002-01-23 2003-07-31 Ips Ltd. Method of forming a thin film using atomic layer deposition(ald)
JP2016036020A (en) * 2014-07-30 2016-03-17 ラム リサーチ コーポレーションLam Research Corporation Methods and apparatuses for showerhead backside parasitic plasma suppression in secondary purge enabled ald system
US11111581B2 (en) 2012-06-25 2021-09-07 Lam Research Corporation Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564359A1 (en) * 1992-04-03 1993-10-06 Commissariat A L'energie Atomique Microwave applicator and plasma reactor using the same
FR2689717A1 (en) * 1992-04-03 1993-10-08 Commissariat Energie Atomique Microwave application device and plasma reactor using this device.
WO2003063216A1 (en) * 2002-01-23 2003-07-31 Ips Ltd. Method of forming a thin film using atomic layer deposition(ald)
KR100449645B1 (en) * 2002-01-23 2004-09-22 주식회사 아이피에스 Method for depositing thin film using magnetic field
US11111581B2 (en) 2012-06-25 2021-09-07 Lam Research Corporation Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region
US11725282B2 (en) 2012-06-25 2023-08-15 Novellus Systems, Inc. Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region
JP2016036020A (en) * 2014-07-30 2016-03-17 ラム リサーチ コーポレーションLam Research Corporation Methods and apparatuses for showerhead backside parasitic plasma suppression in secondary purge enabled ald system

Similar Documents

Publication Publication Date Title
US5601883A (en) Microwave enhanced CVD method for coating plastic with carbon films
JPS6396267A (en) Thin film forming device
JP2886752B2 (en) Microwave introduction device having endless annular waveguide and plasma processing device provided with the device
JPH0544041A (en) Film forming device and film formation
JPH03122273A (en) Film forming device using microwave
JPH0215174A (en) Microwave plasma cvd device
EP0284436B1 (en) Substrate-treating apparatus
JPH01272A (en) Microwave plasma CVD equipment
US6010755A (en) Method and apparatus for forming thin films using dual ECR plasma generators
JPH01309973A (en) Thin film-forming equipment
JP2942899B2 (en) Electrode device for plasma CVD equipment
JPH09241406A (en) Apparatus for forming membrane and membrane formation
JP2808922B2 (en) Method for forming diamond-like carbon film
JPH0463284A (en) Microwave plasma cvd device
JPH01205533A (en) Plasma deposition apparatus
JPH084039B2 (en) Plasma generation method and thin film deposition method
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
JPS63301517A (en) Dry type thin film processor
JP2936790B2 (en) Thin film forming equipment
JP2646664B2 (en) Microwave plasma film deposition equipment
JPH0582449A (en) Electron cycrotron resonance plasma cvd equipment
Kidder Jr et al. Diamondlike carbon films sputter deposited with an electron cyclotron resonance reactor
JP3193178B2 (en) Thin film formation method
JP2925291B2 (en) Deposition film forming equipment
JPH08302465A (en) Film forming device utilizing sputtering by plasma