JPH01309766A - Method and apparatus for producing cast billet - Google Patents

Method and apparatus for producing cast billet

Info

Publication number
JPH01309766A
JPH01309766A JP14043888A JP14043888A JPH01309766A JP H01309766 A JPH01309766 A JP H01309766A JP 14043888 A JP14043888 A JP 14043888A JP 14043888 A JP14043888 A JP 14043888A JP H01309766 A JPH01309766 A JP H01309766A
Authority
JP
Japan
Prior art keywords
molten metal
slurry
metal
ingot
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14043888A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
明 山崎
Akira Hideno
秀野 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14043888A priority Critical patent/JPH01309766A/en
Publication of JPH01309766A publication Critical patent/JPH01309766A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a high quality cast billet at high casting speed by holding molten metal temp. to lower than liquidus temp., stirring and adding metal powder into the molten metal. CONSTITUTION:The molten metal temp. is held to lower than the liquidus temp. in slurry forming chamber 3 arranged at lower part of a tundish 2. The molten metal in the slurry forming chamber 3 is stirred with a rotator 8. Then, the metal powder 13 in a hopper 12 is added into the molten metal in the slurry forming chamber 3 through a passage 7 forming in the rotator 8. The metal powder is mixed with pressurized gas and supplied. By this method, the high quality cast billet can be produced at high casting speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半溶融金属スラリーから鋳塊を製造する方法及
びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for producing an ingot from a semi-molten metal slurry.

(従来の技術〕 従来半溶融金属スラリー(以下スラリーと記す)から鋳
塊を製造する方法は一般にその金属の液相線温度以下の
固化温度領域において形成されるデンドライトを機械的
に剪断してスラリーを造り、該スラリーより製造してい
るものでおる。
(Prior Art) Conventional methods for producing ingots from semi-molten metal slurry (hereinafter referred to as slurry) generally involve mechanically shearing dendrites that are formed in the solidification temperature range below the liquidus temperature of the metal. The product is manufactured from the slurry.

これを例えば第2図に基づき説明する。This will be explained with reference to FIG. 2, for example.

即ち、金属溶場保持用の発熱体(1)を備えたタンデイ
ツシュ(2)と、該タンデイツシュ(2)の下端に溶1
 (19)をスラリー形成に適合した温度に保持するた
めの発熱体(1゛)を具備したスラリー形成室(3)を
設け、またその下方には、断熱材(4)を介して水冷鋳
型(5)を配置してあり、ざらに前記スラリー形成室(
3)の内部には溶湯の固化領域で形成するデンドライト
を機械的に剪断するため外周に周方向に凹凸を設けた回
転子(8)が挿入されている。
That is, there is a tundish (2) equipped with a heating element (1) for holding a metal melt field, and a tundish (2) with a melt 1 at the lower end.
A slurry forming chamber (3) equipped with a heating element (1) for maintaining the slurry (19) at a temperature suitable for slurry formation is provided, and below the slurry forming chamber (3), a water-cooled mold ( 5) is arranged, and the slurry forming chamber (
A rotor (8) whose outer periphery is provided with irregularities in the circumferential direction is inserted into the interior of the rotor (8) in order to mechanically shear the dendrites formed in the solidified region of the molten metal.

そして溶g(19)は図示せぬ保持炉より連続的にタン
デイツシュ(2)に移送され、その場面(20)高さが
常に一定となる様に図示せぬ制御手段によって制御され
ている。またタンデイツシュ(2)内の溶湯(19)の
温度は、鋳造金属の融点より5〜10℃以上高い温度に
保持されており、一方該スラリー形成室(3)内の温度
は鋳造金属の液相線温度より僅かに低く保持されている
ので、タンデイツシュ(2)からスラリー形成室(3)
に導入された溶1(19)は冷却されてデンドライトを
晶出し、回転子(8)の回転により直ちに剪断されて1
次固体粒子、すなわちセル(固相) (21)となる。
The molten g (19) is continuously transferred from a holding furnace (not shown) to the tundish (2), and is controlled by a control means (not shown) so that the height of the scene (20) is always constant. Furthermore, the temperature of the molten metal (19) in the tundish (2) is maintained at a temperature 5 to 10°C higher than the melting point of the cast metal, while the temperature in the slurry forming chamber (3) is maintained at the liquid phase of the cast metal. Since the temperature is maintained slightly below the line temperature, the temperature is maintained slightly lower than the line temperature, so that the temperature is
The melt 1 (19) introduced into is cooled to crystallize dendrites, which are immediately sheared by the rotation of the rotor (8) to form
Next, it becomes a solid particle, that is, a cell (solid phase) (21).

そしてスラリー形成室(3)の出口の断熱材(4)近傍
に至ると、その数を増してスラリーが生成し、引き続い
て該スラリーは水冷鋳型(5)内に送入され、冷却され
て完全固体となり鋳塊(18)としてピンチロール(1
7)により連続して引き出される。
When the slurry reaches the vicinity of the insulating material (4) at the outlet of the slurry forming chamber (3), the number of slurries increases and slurry is produced.Subsequently, the slurry is fed into the water-cooled mold (5), where it is cooled and completely removed. It becomes solid and becomes an ingot (18) with a pinch roll (1
7) is continuously drawn out.

(発明が解決しようとする課題〕 ところが上記方法により得られる従来の鋳塊の品質は次
のような欠点を有するものであった。
(Problems to be Solved by the Invention) However, the quality of conventional ingots obtained by the above method has the following drawbacks.

(1)結晶はスラリー中のセル(同相)と液相により新
たに晶出したデンドライトが混在する組織でおる。
(1) The crystal has a structure in which cells in the slurry (in the same phase) and dendrites newly crystallized by the liquid phase are mixed.

(2)添加元素が偏析する。(2) Added elements segregate.

イ、鋳肌近傍に逆偏析層がある。B. There is a reverse segregation layer near the casting surface.

口、中心部の合金元素濃度が高くなる。The concentration of alloying elements in the mouth and center increases.

そしてこれら欠点は次に示すような原因によるものでお
る。
These defects are due to the following causes.

即ち、スラリーを形成しようとする溶湯温度■において
剪断による固相率fsはp famの式と平衡状態図か
ら下記(1)式で求められる。
That is, the solid phase fraction fs due to shearing at the molten metal temperature (2) at which a slurry is to be formed is determined by the following equation (1) from the equation of p fam and the equilibrium phase diagram.

TM:純金属の融点(°K) TL:合金の液相線(°K) K :分配係数 従って、固相率fsは、スラリーを形成しようとする溶
湯の温度Tで決定され、その温度が低いほど同相率fs
は高くなるが、一方次第にスラリーの流動性が劣化する
ために実際の溶湯温度は液相線温度近傍としている。こ
のため実際は液体を多く含む同相率の低いスラリーを使
用することとなり、スラリーの凝固潜熱が多く存在する
ことになる。よって凝固の際に充分な冷却速度を与える
事が出来ず、低速鋳造となる事、及び第2図に示すよう
にスラリーと完全固体(鋳塊)との境界線(以下ズンプ
と記す)(22)は中心部が極端に凹んだ形状となる事
等が原因となっている。
TM: Melting point of pure metal (°K) TL: Liquidus line of alloy (°K) K: Partition coefficient Therefore, the solid phase fraction fs is determined by the temperature T of the molten metal in which the slurry is to be formed; The lower the in-phase rate fs
However, the fluidity of the slurry gradually deteriorates, so the actual molten metal temperature is set near the liquidus temperature. Therefore, in reality, a slurry containing a large amount of liquid and a low homophase ratio is used, and a large amount of latent heat of solidification is present in the slurry. Therefore, it is not possible to provide a sufficient cooling rate during solidification, resulting in low-speed casting, and as shown in Figure 2, the boundary line between slurry and completely solid (ingot) (hereinafter referred to as Zump) (22 ) is caused by the extremely concave shape of the center.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討した結果、これらの問題を
全て排除可能にした鋳塊の製造方法とその装置を開発し
たものである。
In view of this, the present invention has been made as a result of various studies and has developed an ingot manufacturing method and apparatus that can eliminate all of these problems.

即ち本発明方法は溶融金属をその金属の液相線温度以下
の固化温度領域に保持し、さらにこの溶融金属を機械的
に撹拌して半溶融金属スラリーから鋳塊を製造する方法
において、撹拌されている溶融金属に金属粉末を添加す
ることを特徴とするものであり、加圧したガスに金属粉
末を混合した混合体を撹拌されている溶融金属に供給す
るのは有効である。
That is, the method of the present invention maintains a molten metal in a solidification temperature range below the liquidus temperature of the metal, and further mechanically stirs the molten metal to produce an ingot from a semi-molten metal slurry. It is characterized by adding metal powder to the molten metal being stirred, and it is effective to supply a mixture of pressurized gas and metal powder to the molten metal being stirred.

また本発明装置は溶融金属をその金属の液相線温度以下
の固化温度領域に保持する加熱装置を備えたスラリー形
成室の内部に先端撹拌部を有する回転子を設けて、該回
転子を回転することにより、その先端撹拌部を回転させ
て溶融金属を機械的に撹拌し、半溶融金属スラリーから
鋳塊を製造する装置において、回転子に通路を形成し、
先端撹拌部に通路と外部とを連通ずる孔を設け、通路の
他端部から該通路内に金属粉末と加圧ガスとの混合体を
供給して該混合体を上記孔より撹拌されている溶融金属
内に放出することを特徴とするものである。
In addition, the apparatus of the present invention includes a rotor having a stirring section at the tip inside the slurry forming chamber equipped with a heating device that maintains the molten metal in a solidification temperature range below the liquidus temperature of the metal, and rotates the rotor. In an apparatus for producing an ingot from semi-molten metal slurry by rotating its tip stirring part to mechanically stir molten metal, a passage is formed in the rotor,
A hole is provided in the tip stirring section to communicate the passage with the outside, and a mixture of metal powder and pressurized gas is supplied into the passage from the other end of the passage, and the mixture is stirred through the hole. It is characterized by being released into molten metal.

[作 用] このように金属粉末を溶湯中へ分散させるのは、該粉末
を咳として同相を晶出させ、またはこの粉末自体を固相
とするためであり回転子の回転によるデンドライトの剪
断と相まって高い固相率のスラリーを形成できるからで
あり、このためスラリーの持つ凝固潜熱を従来より大幅
に減少することができ、該スラリーに高い冷却速度を与
えて凝固させることが可能となる特徴を有する。
[Function] The purpose of dispersing the metal powder into the molten metal in this way is to use the powder to crystallize the same phase, or to make the powder itself into a solid phase, which is caused by the shearing of the dendrites due to the rotation of the rotor. This is because a slurry with a high solid phase ratio can be formed, and the latent heat of solidification of the slurry can be significantly reduced compared to conventional methods, and the slurry can be solidified at a high cooling rate. have

即ち回転子の回転によるデンドライトの剪断による同相
の生成と、スラリー形成学内に金属粉末を添加して該金
属粉末を核とする同相を生成させることによりスラリー
中の同相率を高めることができるものである。
That is, the in-phase ratio in the slurry can be increased by generating in-phase by shearing the dendrites due to the rotation of the rotor, and by adding metal powder to the slurry forming system to generate in-phase with the metal powder as a core. be.

また金属粉末を溶湯中に分散させるのに加圧ガスと混合
して供給することにより、該ガスが溶湯中をバブルとな
って浮上する際に溶湯中からの脱ガスを促進する等の溶
湯5I!X理効果を有する利点をもつ。なおガスとして
はNガス等の不活性ガスでも良く、またC12ガス等の
活性ガスであっても良い。そしてガスの圧力はFgtA
のもつ静水圧よりもわずかに大きく設定する。
In addition, by supplying the metal powder mixed with pressurized gas to disperse it in the molten metal, when the gas floats in the form of bubbles in the molten metal, degassing from the molten metal is promoted. ! It has the advantage of having an X-physical effect. Note that the gas may be an inert gas such as N gas or an active gas such as C12 gas. And the gas pressure is FgtA
Set the pressure to be slightly larger than the hydrostatic pressure.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1図に示すように従来と同様に発熱体(1)を備えた
タンデイツシュ(2)及びその下端に発熱体(1°)を
具煤したスラリー形成室(3)を設け、ざらにその下方
に断熱材(4)を介して水冷鋳型(5)を配設した装置
において、スラリー形成室(3)に上方から、先端の外
周に周方向に凹凸を形成した先端撹拌部(6)を設け、
内部に中空の通路(7)を形成した回転子(8)を挿入
した。該通路(7)の一端は先端撹拌部(6)の各凹部
に設けた放射状横孔(9)を通して外部のスラリー形成
室(3)内に通じ、ざらに他端は回転子(8)を上端で
支えるロータリージヨイント(10)内の陣ガスの供給
口(11)に接続した。またロータリージヨイント(1
0)内には別置きのホッパー(12)内から金属粉末(
13)をスパイラルシャフト(14)で送り、加圧凌ガ
ス(15)と混合する混合至(16)が設けられている
。なお(17)は冷却された鋳塊(18)を引き出すピ
ンチロールを示す。
As shown in Fig. 1, as in the past, a tundish (2) equipped with a heating element (1) and a slurry forming chamber (3) equipped with a heating element (1°) are provided at its lower end, and roughly below it. In an apparatus in which a water-cooled mold (5) is disposed through a heat insulating material (4), a tip stirring part (6) having irregularities formed in the circumferential direction on the outer periphery of the tip is provided from above in the slurry forming chamber (3). ,
A rotor (8) with a hollow passageway (7) formed therein was inserted. One end of the passageway (7) communicates with the external slurry forming chamber (3) through radial horizontal holes (9) provided in each concave portion of the tip stirring section (6), and the other end communicates with the rotor (8). It was connected to the gas supply port (11) in the rotary joint (10) supported at the upper end. There is also a rotary joint (1
0), metal powder (
13) is fed by a spiral shaft (14) and mixed with a pressurized gas (15). Note that (17) indicates a pinch roll for pulling out the cooled ingot (18).

以上の様に溝成された装置を用いA1−5%Cu合金の
半溶融スラリーから連続して外径25mの鋳塊を製出し
た。
An ingot having an outer diameter of 25 m was continuously produced from a semi-molten slurry of A1-5% Cu alloy using the grooved apparatus as described above.

スラリー形成室(3)の内径を25m、回転子の外径を
20mとし、両者のクリアランスを2.5#とじた。タ
ンデイツシュ(2)内の溶湯(19)の温度はA1−5
%Cu合金の液相線温度(TL)より5℃高い651°
Cとし、スラリー形成室(3)内の溶場温度は635℃
に保持した。そして回転子(8)を300 rpmで回
転させると共に、11/minのNガスを送入する。こ
の状態で晶出したデンドライトは剪断されて約50%の
同相率のスラリーが形成される。このスラリーを水冷鋳
型(5)内に導びき、50m/minの鋳造速度で鋳塊
(18)を引き出した。その俊、鋳造が安定したところ
でスパイラルシャフト(14)を始動させホッパー(1
2)に貯蔵した1〜50μmの純A1粉末を’l’9/
minの割合で連続的に添加を開始した。この直接、ス
ラリー形成室(3)内の温度は1〜2°C低下したが、
温調器の作用により復帰し一定に保たれた。そのq17
0m/minまで徐々に鋳造速度を上げて行き、定速鋳
造を行った。このときズンプ(22)の形状は滑らかな
曲面状に形成されている。
The inner diameter of the slurry forming chamber (3) was 25 m, the outer diameter of the rotor was 20 m, and the clearance between them was 2.5#. The temperature of the molten metal (19) in the tundish (2) is A1-5
651° 5°C higher than the liquidus temperature (TL) of the %Cu alloy
C, and the melt field temperature in the slurry forming chamber (3) is 635°C.
was held at Then, the rotor (8) is rotated at 300 rpm, and N gas is fed at a rate of 11/min. The dendrites crystallized in this state are sheared to form a slurry with a homomorphic ratio of about 50%. This slurry was introduced into a water-cooled mold (5), and an ingot (18) was drawn out at a casting speed of 50 m/min. When the casting became stable, Shun started the spiral shaft (14) and started the hopper (1).
2) Pure A1 powder of 1 to 50 μm stored in 'l'9/
Continuous addition was started at a rate of min. This direct temperature in the slurry forming chamber (3) decreased by 1-2°C, but
The temperature was restored and kept constant by the action of the temperature controller. Its q17
The casting speed was gradually increased to 0 m/min, and constant speed casting was performed. At this time, the shape of the jumper (22) is formed into a smooth curved surface.

尚、粉末の添加量は1分間当りの鋳造量に対し3xlO
−3%であり、合金組成の影響は無視出来る量で必る。
The amount of powder added is 3xlO per minute of casting amount.
-3%, and the influence of alloy composition is negligible.

このような本発明法で連続鋳造法により得られた直径2
5MのA1−5%OL+合金鋳塊の組織は0.2〜0.
4.の縮退し、丸味を帯びたデンドライトが形成されて
いた。また、Cuの偏析もなく、均一な組成を有してお
り、このような高品質鋳塊を、従来の鋳造速度の140
%の鋳造速度で得る事が出来た。
Diameter 2 obtained by continuous casting using the method of the present invention
The structure of 5M A1-5% OL + alloy ingot is 0.2-0.
4. Degenerate and rounded dendrites were formed. In addition, it has a uniform composition with no segregation of Cu, and such high quality ingots can be cast at a conventional casting speed of 140
% casting speed.

これに対し同一組成の従来のスラリーがら製造された鋳
塊の組織は剪断され縮退したデンドライトと液相より晶
出−したデンドライトの混在組織であった。
On the other hand, the structure of an ingot produced from a conventional slurry having the same composition was a mixed structure of sheared and degenerated dendrites and dendrites crystallized from the liquid phase.

以上の実施例ではA1−5%CLI合金について説明し
たが、本発明法は他の金属にも適用する事が出来る。
In the above examples, the A1-5% CLI alloy was explained, but the method of the present invention can also be applied to other metals.

更に回転子の先端撹拌部に設ける金属粉末の噴出孔は本
実施例では横方向に放射状に設けたが、真下に設けても
良く、また添加した金属粉末は純Alを用いたが、鋳造
金属と同種粉末でも良い。
Furthermore, the injection holes for the metal powder provided in the stirring part at the tip of the rotor were provided laterally and radially in this example, but they may also be provided directly below.Although pure Al was used as the metal powder added, cast metal The same kind of powder may also be used.

そして鋳造の方式も冷却鋳型を用いたがその方式はこれ
に限定されるものではない。
Although a cooling mold was used as the casting method, the method is not limited to this.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば固相率が高く、流動性の良好
なスラリーから均一なデンドライトの鋳造組織を有する
鋳塊が得られ、さらに該鋳塊は溶質元素の偏析もない等
工業上顕著な効果を奏するものである。
As described above, according to the present invention, an ingot having a uniform dendrite casting structure can be obtained from a slurry with a high solid phase ratio and good fluidity, and furthermore, the ingot has no segregation of solute elements, which is industrially remarkable. This has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す側断面図、第2図
は従来装置を示す側断面図である。 1.1゛・・・・・・発熱体 2・・・・・・・・タンデイツシュ 3・・・・・・・・スラリー形成室 4・・・・・・・・断熱材 5・・・・・・・・水冷鋳型 6・・・・・・・・先@撹拌部 7・・・・・・・・通路 8・・・・・・・・回転子 9・・・・・・・・横孔 10・・・・・・・・ロータリージヨイント11・・・
・・・・・礪ガス供給口 12・・・・・・・・ホッパー 13・・・・・・・・金属粉末 14・・・・・・・・スパイラルシャフト15・・・・
・・・・加圧〜ガス 16・・・・・・・・混合至 17・・・・・・・・ピンチロール 18・・・・・・・・鋳塊 19・・・・・・・・溶湯 20・・・・・・・・湯面 21・・・・・・・・セル(固相) 22・・・・・・・・ズンプ 第1図
FIG. 1 is a side sectional view showing one embodiment of the device of the present invention, and FIG. 2 is a side sectional view showing a conventional device. 1.1゛...Heating element 2...Tundish 3...Slurry forming chamber 4...Insulating material 5...・・・・・・Water cooling mold 6・・・・・・・ Tip @ Stirring part 7・・・・・・Passage 8・・・・・・Rotor 9・・・・・・・Side Hole 10...Rotary joint 11...
..... Gas supply port 12 ..... Hopper 13 ..... Metal powder 14 ..... Spiral shaft 15 ....
・・・・Pressure to gas 16・・・・・・・Mixing 17・・・・・・・Pinch roll 18・・・・・・・Ingot 19・・・・・・・・・Molten metal 20...Mold surface 21...Cell (solid phase) 22...Zump Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)溶融金属をその金属の液相線温度以下の固化温度
領域に保持し、さらにこの溶融金属を機械的に攪拌して
半溶融金属スラリーから鋳塊を製造する方法において、
撹拌されている溶融金属に金属粉末を添加することを特
徴とする鋳塊の製造方法。
(1) In a method of producing an ingot from a semi-molten metal slurry by maintaining the molten metal in a solidification temperature range below the liquidus temperature of the metal and mechanically stirring the molten metal,
A method for producing an ingot, characterized by adding metal powder to molten metal being stirred.
(2)加圧したガスに金属粉末を混合した混合体を撹拌
されている溶融金属に供給する請求項(1)記載の鋳塊
の製造方法。
(2) The method for producing an ingot according to claim (1), wherein a mixture of pressurized gas and metal powder is supplied to the stirred molten metal.
(3)溶融金属をその金属の液相線温度以下の固化温度
領域に保持する加熱装置を備えたスラリー形成室の内部
に先端撹拌部を有する回転子を設け、該回転子を回転す
ることにより、その先端撹拌部を回転させて溶融金属を
機械的に撹拌し、半溶融金属スラリーから鋳塊を製造す
る装置において、回転子に通路を形成し、先端撹拌部に
通路と外部とを連通する孔を設け、通路の他端部から該
通路内に金属粉末と加圧ガスとの混合体を供給して該混
合体を上記孔より攪拌されている溶融金属内に放出する
ことを特徴とする鋳塊の製造装置。
(3) By providing a rotor with a stirring section at the tip inside a slurry forming chamber equipped with a heating device that maintains the molten metal in a solidification temperature range below the liquidus temperature of the metal, and rotating the rotor. , a device that mechanically stirs molten metal by rotating its tip stirring section to produce an ingot from semi-molten metal slurry, in which a passage is formed in the rotor and the passage is communicated with the outside in the tip stirring section. A hole is provided, a mixture of metal powder and pressurized gas is supplied into the passage from the other end of the passage, and the mixture is discharged from the hole into the molten metal being stirred. Ingot manufacturing equipment.
JP14043888A 1988-06-09 1988-06-09 Method and apparatus for producing cast billet Pending JPH01309766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14043888A JPH01309766A (en) 1988-06-09 1988-06-09 Method and apparatus for producing cast billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14043888A JPH01309766A (en) 1988-06-09 1988-06-09 Method and apparatus for producing cast billet

Publications (1)

Publication Number Publication Date
JPH01309766A true JPH01309766A (en) 1989-12-14

Family

ID=15268651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14043888A Pending JPH01309766A (en) 1988-06-09 1988-06-09 Method and apparatus for producing cast billet

Country Status (1)

Country Link
JP (1) JPH01309766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524704A (en) * 1994-02-14 1996-06-11 Unimetal, Societe Francaise Des Aciers Longs Process and device for the continuous casting of very small-diameter wires directly from liquid metal
US6988529B2 (en) * 2002-03-13 2006-01-24 Evgenij Sterling Method and apparatus for preparing a metal or metal-alloy product for a casting process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524704A (en) * 1994-02-14 1996-06-11 Unimetal, Societe Francaise Des Aciers Longs Process and device for the continuous casting of very small-diameter wires directly from liquid metal
US6988529B2 (en) * 2002-03-13 2006-01-24 Evgenij Sterling Method and apparatus for preparing a metal or metal-alloy product for a casting process
AU2003200990B2 (en) * 2002-03-13 2008-05-22 Evgenij Sterling Process and device for preparing a melt of an alloy for a casting process

Similar Documents

Publication Publication Date Title
US4960163A (en) Fine grain casting by mechanical stirring
US5400851A (en) Process of producing monotectic alloys
JP2793430B2 (en) Die casting method for producing high mechanical performance parts by injection of semi-fluid metal alloy
JPH051102B2 (en)
JPH01309766A (en) Method and apparatus for producing cast billet
JPS63286246A (en) Method of casting aluminum alloy
JPS5950738B2 (en) Continuous production equipment for high-purity aluminum
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JPH05169193A (en) Method for casting semi-solidified metal
US3694199A (en) Method of producing zinc alloy
JPS61296940A (en) Continuous casting method
JPH05131B2 (en)
JPH0113951B2 (en)
JP3062339B2 (en) Method for producing semi-solid metal
KR200197013Y1 (en) Vertical continuous casting apparratus for the billet of reactor using the electromagnetic stirrer
JPH11320050A (en) Continuous casting method
JPS6364504B2 (en)
JPH0970656A (en) Production of metal and alloy cast block
JPH01313141A (en) Method for casting semi-molten metal
SU865945A1 (en) Method of producing porous material
JPS6313650A (en) Continuous casting for molten steel
JPH0585258B2 (en)
JP2984065B2 (en) Method and apparatus for producing semi-solid metal
JPS62280334A (en) Rotary cooling body for apparatus for producing high-purity aluminum
JPH06328200A (en) Manufacture of billet for rheo-working semi-molten metal