JPH01309242A - Surface conductive type emission element and image display device using the same - Google Patents

Surface conductive type emission element and image display device using the same

Info

Publication number
JPH01309242A
JPH01309242A JP1006042A JP604289A JPH01309242A JP H01309242 A JPH01309242 A JP H01309242A JP 1006042 A JP1006042 A JP 1006042A JP 604289 A JP604289 A JP 604289A JP H01309242 A JPH01309242 A JP H01309242A
Authority
JP
Japan
Prior art keywords
electron
fine particles
carbonaceous
image display
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1006042A
Other languages
Japanese (ja)
Other versions
JP2715312B2 (en
Inventor
Yoshikazu Sakano
坂野 嘉和
Ichiro Nomura
一郎 野村
Tetsuya Kaneko
哲也 金子
Toshihiko Takeda
俊彦 武田
信之 斉藤
伸也 三品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP604289A priority Critical patent/JP2715312B2/en
Publication of JPH01309242A publication Critical patent/JPH01309242A/en
Application granted granted Critical
Publication of JP2715312B2 publication Critical patent/JP2715312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/316Cold cathodes, e.g. field-emissive cathode having an electric field parallel to the surface, e.g. thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To make it possible to obtain a surface conductive type emission element of an excellent stability to the gas by forming a carbonaceous membrane at the electron emission member. CONSTITUTION:On a base 4, island-form compositions 7 of electron emission material are formed in the forming or the like. That is, a membrane 3 of electron emission material is formed by a pattern, and after the electrode material is mask-evaporated, a voltage is applied between electrodes 1 and 2, to destroy, to deform, or to regenerate locally the membrane 3 of exposed electron emission material by the Joule heat, and an electron emission member 5 of a high resistance of condition electrically is formed. And on the electron emission member 5, a carbonaceous material 6 is formed to cover the emission member 5. As a result, a surface conductive type emission element of an excellent stability to the gas can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷陰極素子の一つである表面伝導形放出素子
及びそれを用いた画像表示装置に関するもので、特に電
子放出性能、ひいては画像の安定性及び寿命の向上に関
する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a surface conduction type emission device, which is one of cold cathode devices, and an image display device using the same. Regarding improvement of stability and lifespan.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子として、
例えば、エム・アイ・エリンソン(M、 I。
[Prior Art] Conventionally, as an element that can emit electrons with a simple structure,
For example, M.I. Ellingson (M, I.

Elinsonl等によって発表された冷陰極素子が知
られている[ラジオ エンジニアリング エレクトロン
 フィジイッス(Radfo Eng、 Electr
on。
The cold cathode device announced by Elinson et al. is known [Radio Engineering Electron Physics (Radfo Eng, Electr.
on.

Phys、)第10巻、  1290〜1296頁、 
 1965年] 。
Phys,) Volume 10, pp. 1290-1296,
1965].

これは、基板上に形成された小面積の薄膜に。This is a thin film with a small area formed on a substrate.

膜面に平行に電流を流すことにより、電子放出が生ずる
現象を利用するもので、一般には表面伝導形放出素子と
呼ばれている。
It utilizes the phenomenon that electron emission occurs when a current is passed parallel to the film surface, and is generally called a surface conduction type emission device.

この表面伝導形放出素子としては、前記エリンソン等に
より発表されたSnO□(Sb)ii#膜を用いたもの
の他、Au薄膜によるもの[ジー・ディットマー0スイ
ン・ソリッド・フィルムス”(G。
This surface conduction type emission device includes one using the SnO□(Sb)ii# film disclosed by Ellingson et al., as well as one using an Au thin film [G.

Dittmer:“Th1n 5olid Films
”)、9巻、317頁、 (1972年) ] 、 I
TO薄膜によるもの[エム・ハートウェル・アンド・シ
ー・ジー・フォンスタッド”アイ・イー・イー・イー・
トランス・イー・デイ−・コンフ” (14,tlar
twell and C,G。
Dittmer: “Th1n 5olid Films
”), vol. 9, p. 317, (1972) ], I
By TO thin film [M. Hartwell and C.G. Fonstad” I.E.E.
Trans E Day Conf” (14, tlar
twell and C,G.

Fonstad: −IEEE Trans、 ED 
Conf、−) 519頁。
Fonstad: -IEEE Trans, ED
Conf, -) 519 pages.

(1975年)]、カーボン凄膜によるもの[荒木久他
: “真空”、第26巻、第1号、22頁、  (19
83年)]などが報告されている。
(1975)], by carbon thin film [Hisashi Araki et al.: “Vacuum”, Vol. 26, No. 1, p. 22, (19
1983)] have been reported.

これらの表面伝導水放出素子の典型的な素子構成を第7
図に示す、同第7図において、1および2は電気的接続
を得る為の電極、3は電子放出材料で形成される薄膜、
4は基板、5は電子放出部を示す。
Typical device configurations of these surface conduction water release devices are shown in the seventh section.
In the figure shown in FIG. 7, 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron-emitting material,
4 is a substrate, and 5 is an electron emitting part.

従来、これらの表面伝導水放出素子に於ては、電子放出
を行なう前にあらかじめフォーミングと呼ばれる通電加
熱処理によって電子放出部を形成する。即ち、前記電極
1と電極2の間に電圧を印加する事により、薄膜3に通
電し、これにより発生するジュール熱で薄膜3を局所的
に破壊、変形もしくは変質せしめ、電気的に高抵抗な状
態にした電子放出部5を形成することにより電子放出機
能を得ている。
Conventionally, in these surface conduction water emitting devices, an electron emitting portion is formed in advance by an electrical heating process called forming before emitting electrons. That is, by applying a voltage between the electrodes 1 and 2, electricity is applied to the thin film 3, and the Joule heat generated thereby locally destroys, deforms, or alters the thin film 3, resulting in a high electrical resistance. The electron emitting function is obtained by forming the electron emitting portion 5 in the state.

上記電気的に高抵抗な状態とは、薄膜3の一部に0.5
 gI11〜5pmの亀裂を有し、且つ亀裂内が所謂島
構造を有する不連続状態となっていることをいう、島構
造とは、一般に数十人から数hm径の微粒子が基板4上
にあり、各微粒子は空間的に不連続で電気的に連続な状
態をいう。
The electrically high resistance state mentioned above means that a part of the thin film 3 has a resistance of 0.5
The island structure means that the crack has a gI of 11 to 5 pm, and the inside of the crack is in a discontinuous state with a so-called island structure.Generally, fine particles with a diameter of several tens to several hm are on the substrate 4. , each particle is spatially discontinuous and electrically continuous.

表面伝導水放出素子は上述高抵抗不連続状態の電子放出
部5を有する薄膜3に、電極1.2により電圧を印加し
、電流を流すことにより、上記微粒子より電子を放出せ
しめるものである。
The surface conduction water emitting device causes the fine particles to emit electrons by applying a voltage through the electrode 1.2 to the thin film 3 having the electron emitting portions 5 in the high resistance discontinuous state and causing a current to flow therethrough.

こうした表面伝導水放出素子は、真空条件下で放出電子
を蛍光板で受けて発光させる画像表示装置への利用が試
みられている。特に画像表示装置としては、近年、情報
機器や家庭用TV受像器の分野で、薄型で高精細、高輝
度の視認性が良く、しかも信頼性の高いものが求められ
ており、表面伝導水放出素子はこのような画像表示装置
を可能にする電子源として期待されている。
Attempts have been made to use such surface conduction water emitting elements in image display devices that emit light by receiving emitted electrons with a fluorescent screen under vacuum conditions. In particular, as image display devices, in recent years there has been a demand for thin, high-definition, high-brightness, highly visible, and highly reliable image display devices in the fields of information equipment and home TV receivers. The device is expected to serve as an electron source that enables such image display devices.

[発明が解決しようとする課題] ところで、表面伝導水放出素子は、一般に10−6〜1
0−’Torr程度の高真空下において良好な電子放出
性能を示す一方、上記高真空状態が破壊されてガス存在
下にさらされると、電子放出性能が低下し、はなはだし
いときには電子放出を起さなくなることも生じる。従っ
て、表面伝導水放出素子を画像表示装置等に利用する場
合、表面伝導水放出素子を上記高真空下におきつつ、か
つ表面伝導形放出素子周囲の雰囲気を長期に亘って高真
空状態に維持できるよう製品を製造する必要がある。
[Problems to be Solved by the Invention] By the way, surface conduction water release elements generally have a
While it shows good electron emission performance under a high vacuum of about 0-'Torr, when the high vacuum state is broken and it is exposed to the presence of gas, the electron emission performance decreases, and in extreme cases, it no longer emits electrons. It also happens. Therefore, when using a surface conduction water discharge device in an image display device, etc., it is necessary to place the surface conduction water discharge device under the above-mentioned high vacuum and maintain the atmosphere around the surface conduction water discharge device in a high vacuum state for a long period of time. We need to manufacture products that allow us to do so.

しかしながら、全製造工程を通して、表面伝導形放出素
子周囲を厳格に高真空状態に維持し、かつ表面伝導形放
出素子周囲を長期に亘って高真空雰囲気に維持できる製
品とするのは、技術面及び手間の面のいずれからも大変
である。このため、表面伝導形放出素子自体の性能にバ
ラツキを生じやす(、また画像表示装置に利用したとき
に長期に亘る安定した画像が得にくい問題がある。
However, it takes technical and It is difficult both in terms of time and effort. For this reason, the performance of the surface conduction type emission device itself tends to vary (and when used in an image display device, there is a problem that it is difficult to obtain a stable image over a long period of time).

本発明は、上記課題に鑑みてなされたもので、ガスに対
する安定性に優れた表面伝導水放出素子及び、これを用
いることによって、長期に亘って安定した画像が得られ
る長寿命の画像表示装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and provides a surface conduction water emitting element with excellent stability against gas, and a long-life image display device that can provide stable images over a long period of time by using the same. The purpose is to provide

[課題を解決するための手段] 上記ガスに対する安定性に優れた表面伝導水放出素子と
するために、請求項第1項の発明においては、第1図(
al 、 (blに示されるように、電子放出部5に炭
素質被膜6゛を形成するという手段を講じているもので
ある。また、請求項第3項の発明においては、第2図(
al 、 fblに示されるように、炭素質材料の微粒
子〇と他の電子放出材料の微粒子7の複合微粒子によっ
て電子放出部5を形成するという手段を講じているもの
である。
[Means for Solving the Problems] In order to provide a surface conduction water release element having excellent stability against the above-mentioned gas, in the invention of claim 1, the method shown in FIG. 1 (
As shown in FIG.
As shown in al and fbl, the electron emitting portion 5 is formed by composite fine particles of carbonaceous material fine particles 〇 and other electron emitting material fine particles 7.

まず、請求項第1項の発明について説明すると、基板4
.電極1.2は、後述の請求項第3項の発明と同様なも
のであるが、電子放出部5に炭素質被膜6゛を形成した
ものとなっている。
First, to explain the invention of claim 1, the substrate 4
.. The electrode 1.2 is similar to the invention described in claim 3, which will be described later, except that a carbonaceous film 6' is formed on the electron emitting portion 5.

本発明において電子放出部5を形成する電子放出材料は
、後述する請求項第3項の発明で用いる非炭素質電子放
出材料の他、炭素質の電子放出材料2例久ば、炭素の他
、Tic、 ZrC,HfC,TaC。
In addition to the non-carbonaceous electron-emitting material used in the invention of claim 3 described later, the electron-emitting material forming the electron-emitting portion 5 in the present invention includes two examples of carbonaceous electron-emitting materials. Tic, ZrC, HfC, TaC.

Si(:、 WCなどの炭化物であってもよい、また本
発明で用いる炭素質は後述の請求項第3項の発明におけ
るものと同様で、特に有機質炭素を用いる場合、被膜化
後の熱処理等でその(炭素)/(水素)比を調整するこ
ともできる。
It may be a carbide such as Si(:, WC), and the carbon material used in the present invention is the same as that in the invention of claim 3 described below. In particular, when organic carbon is used, heat treatment etc. after forming a film is necessary. The (carbon)/(hydrogen) ratio can also be adjusted by

請求項第1項の発明に係る表面伝導形放出素子を、その
製法と共に更に説明する。
The surface conduction type emission device according to the invention of claim 1 will be further explained along with its manufacturing method.

まず、洗浄された基板4上に、蒸着もしくはスパッタ法
、メツキ法等により電極1.2となる薄膜を形成する0
次いでフォトリソグラフィーにより電子放出部5となる
微小間隔を有する電極1゜2に形成する。
First, a thin film that will become the electrode 1.2 is formed on the cleaned substrate 4 by vapor deposition, sputtering, plating, etc.
Then, by photolithography, electrodes 1.degree. 2, which will become electron emitting portions 5, are formed with minute intervals.

次に電子放出材料の島状構造体を形成するが、その方法
としては、フォーミングによる他、電子放出材料の微粒
子7°を吹き付けて直接堆積する方法や微粒子7°を分
散形成する方法、熱処理による局所的な析出現象を利用
する方法等が挙げられる。
Next, an island-like structure of electron-emitting material is formed, which can be done by forming, directly depositing electron-emitting material by spraying fine particles of 7°, dispersing and forming fine particles of electron-emitting material, or by heat treatment. Examples include methods that utilize local precipitation phenomena.

フォーミング型素子を例にして説明すると、まず電子放
出材料の薄膜3をパターン形成し、次いで電極材料をマ
スク蒸着した後、電極1.2間に電圧を印加して、露出
している電子放出材料の薄膜3をジュール熱で局所的に
破壊、変形、もしくは変質せしめることで電気的に高抵
抗な状態の電子放出部5を形成できる。
To explain a forming type element as an example, first, a thin film 3 of electron emitting material is patterned, then an electrode material is deposited using a mask, and then a voltage is applied between the electrodes 1 and 2 to expose the exposed electron emitting material. By locally destroying, deforming, or altering the thin film 3 using Joule heat, it is possible to form the electron-emitting region 5 in an electrically high-resistance state.

上記電子放出部5上に炭素質を被覆形成する。A carbonaceous material is coated on the electron emitting part 5.

その方法としては、炭素質を適当な溶剤に溶解させて、
スピンコード法等で塗布乾燥させたり、抵抗加熱法やE
B蒸着法のように炭素質を蒸発させて被着させたり、ス
パッタ法やプラズマ重合法などの乾式のコーティング法
も適用でき、これらによって炭素質を電子放出部上に被
覆させることができる。
The method is to dissolve carbon in a suitable solvent,
Coating and drying using spin code method, resistance heating method, E
It is also possible to apply the carbonaceous material by evaporating it as in the B vapor deposition method, or to apply a dry coating method such as the sputtering method or the plasma polymerization method, and by these methods, the carbonaceous material can be coated on the electron-emitting portion.

次に、炭素質被膜6°に高温熱処理を必要に応じて施す
、この熱処理は、素子そのものを所定の温度にまで適宜
加熱したり、画像表示装置の製造工程の高温加熱処理、
例λば脱ガス処理や低融点ガラスフリットによる封着等
の工程で行ってもよい、なお、抵抗加熱法やEB蒸着法
、スパッタ法、プラズマ重合法等の条件によっては、上
記高温加熱処理を行わな(とも本発明の構成を実現する
ことは可能である。電子放出部5以外の部分にも炭素質
が被覆されることになるが、本発明の被覆厚では実際上
はぼ問題とならない、場合によっては電極1,2の表面
をマスクして被着する方法も可能である。
Next, the carbonaceous coating 6° is subjected to high-temperature heat treatment as necessary.
For example, λ may be performed in a process such as degassing treatment or sealing with a low-melting glass frit. However, depending on the conditions of the resistance heating method, EB evaporation method, sputtering method, plasma polymerization method, etc., the above-mentioned high-temperature heat treatment may be performed. However, it is possible to realize the configuration of the present invention.Although parts other than the electron emitting part 5 will also be coated with carbonaceous material, it will not be a problem in practice with the coating thickness of the present invention. In some cases, it is also possible to cover the surfaces of the electrodes 1 and 2 with a mask.

上記炭素質被膜6°の厚さは、炭素質が炭素又は金属炭
化物の場合300Å以下、特に10〜200人が好まし
く、炭素質が有機質炭素の場合200Å以下、特に50
〜100人が好ましい、いずれの場合も被覆厚が大き過
ぎると放出電流量や効率が損われやす(なり、逆に小さ
過ぎると被覆効果が得にくくなる。
The thickness of the carbonaceous coating 6° is preferably 300 Å or less, especially 10 to 200 Å when the carbonaceous material is carbon or metal carbide, and 200 Å or less when the carbonaceous material is organic carbon, especially 50 Å or less.
~100 people is preferred. In either case, if the coating thickness is too large, the amount of emitted current and efficiency will be likely to be impaired (on the contrary, if it is too small, it will be difficult to obtain the coating effect).

次に、請求項第3項の発明について更に説明すると、基
本的には従来のものと同様で、基板4上に電極1.2を
設け、この電極1.2間に電子放出部5を形成したもの
であるが、本発明においては、電子放出部5が炭素質の
微粒子6と他の電子放出材料(以下「非炭素質電子放出
材料」という)の微粒子7の複合微粒子によって形成さ
れている。
Next, to further explain the invention of claim 3, it is basically the same as the conventional one, and an electrode 1.2 is provided on the substrate 4, and an electron emitting section 5 is formed between the electrodes 1.2. However, in the present invention, the electron emitting portion 5 is formed of composite fine particles of carbonaceous fine particles 6 and fine particles 7 of another electron-emitting material (hereinafter referred to as "non-carbonaceous electron-emitting material"). .

非炭素質電子放出材料は、非常に広い範囲におよび、炭
素質以外であれば、通常の金属、半金属、半導体といっ
た導電性材料のほとんど全てを使用可能である。なかで
も低仕事関数で高融点かつ低蒸気圧という性質をもつ通
常の陰極材料や、フォーミング処理で表面伝導形放出素
子を形成する薄膜材料や、2次電子放出係数の大きな材
料などが好適である。
Non-carbonaceous electron-emitting materials have a very wide range, and almost all conductive materials other than carbonaceous materials such as ordinary metals, semimetals, and semiconductors can be used. Among these, ordinary cathode materials with a low work function, high melting point, and low vapor pressure, thin film materials that form surface conduction type emission elements through forming treatment, and materials with large secondary electron emission coefficients are suitable. .

具体例としては、LaBa、 CeBa、 YB4. 
GdB4などの硼化物、TiN、 ZrN、 HfNな
どの窒化物、Nb。
Specific examples include LaBa, CeBa, YB4.
Borides such as GdB4, nitrides such as TiN, ZrN, HfN, Nb.

MO,Rh、 Hf、 Ta、 Vj、 Re、Ir、
 Pt、 Ti、 Au、 Ag。
MO, Rh, Hf, Ta, Vj, Re, Ir,
Pt, Ti, Au, Ag.

Cu、 Cr、A−、Go、 Ni、 Fe、 Pb、
 Pd、 Cs、 Baなどの金属、InJs、 Sn
ow、 5btOsなどの金属酸化物、Si、 Geな
どの半導体、Jllgなどを挙げることができる。
Cu, Cr, A-, Go, Ni, Fe, Pb,
Metals such as Pd, Cs, Ba, InJs, Sn
Examples include metal oxides such as ow, 5btOs, semiconductors such as Si and Ge, and Jllg.

電極1.2の材料としては、一般的な導電性材料、Au
、 Pt、 Ag等の金属の他SnO,,ITO等の酸
化物導電性材料も使用できる。電極1.2の厚みは数1
00人から数μm程度が好ましい。また、電極1.2間
の間隔りは数1000人〜数IQOgm 、幅Wは数μ
m〜数mm程度が好ましい。
The material of the electrode 1.2 is a general conductive material, Au.
In addition to metals such as , Pt, and Ag, oxide conductive materials such as SnO and ITO can also be used. The thickness of electrode 1.2 is several 1
The thickness is preferably about 0.00 to several μm. In addition, the spacing between the electrodes 1.2 is several thousand to several IQOgm, and the width W is several μm.
m to several mm is preferable.

基板4としては、例えば石英、ガラス等の電気的絶縁性
を有する材料が使用される。
As the substrate 4, an electrically insulating material such as quartz or glass is used.

本発明に3ける炭素質とは、純粋な炭素及び炭化物をい
い、特に有機質炭素をも含む。
The carbonaceous material according to the present invention refers to pure carbon and carbide, and particularly includes organic carbon.

有機質炭素とは、純粋なカーボンや金属炭化物のみで構
成されるものでなく、炭素元素を主体に含むものをさす
、一般的には、炭素と水素を含むものをさすが、一部の
水素のかわりにあるいは水素に加えてフッ素、塩素など
のハロゲン元素を含んでいてももちろん良い。
Organic carbon is not only composed of pure carbon or metal carbides, but also refers to substances that mainly contain carbon elements.In general, it refers to substances that contain carbon and hydrogen, but some hydrogen may be substituted for organic carbon. Of course, it may also contain a halogen element such as fluorine or chlorine in addition to hydrogen.

本発明で用いられる有機質炭素は、(炭素)/(水素)
の比が2以上であることが好ましい、この比が2以下で
あると特性のバラツキ防止や低真空下での安定性・寿命
の向上が得られにくい傾向にある。
The organic carbon used in the present invention is (carbon)/(hydrogen)
It is preferable that the ratio is 2 or more; if this ratio is 2 or less, it tends to be difficult to prevent variations in properties and improve stability and life under low vacuum.

有機質炭素は、上記(炭素)/(水素)比が2以上のも
のを選んで微粒子として複合微粒子化に用いてもよいが
、(炭素)/(水素)比が2以下であっても複合微粒子
化した有機質炭素を熱処理等によって(炭素)/(水素
)比が2以上になるよう調整してもよい、従って、有機
質炭素としては、微粒子化できる有機化合物であれば、
はとんど全ての有機化合物が使用可能である。
Organic carbon with the above (carbon)/(hydrogen) ratio of 2 or more may be selected and used as fine particles for forming composite fine particles, but even if the (carbon)/(hydrogen) ratio is 2 or less, composite fine particles may The carbonized organic carbon may be adjusted by heat treatment etc. so that the (carbon)/(hydrogen) ratio is 2 or more. Therefore, as the organic carbon, as long as it is an organic compound that can be made into fine particles,
Almost all organic compounds can be used.

(炭素)/(水素)比は化学分析手段で分析できる0例
えば、試料を燃焼するCIIN元素分析法による測定に
よれば0.1%のオーダーで測定が可能である。
The (carbon)/(hydrogen) ratio can be determined to be 0, which can be analyzed by chemical analysis means, and can be determined to be on the order of 0.1%, for example, by CIIN elemental analysis, which involves burning a sample.

次に、請求項第3項の発明に係る表面伝導形放出素子を
、その製法と共に更に説明する。
Next, the surface conduction type emission device according to the third aspect of the invention will be further explained along with its manufacturing method.

複合微粒子とは、複数種の微粒子が均質な組成をもつ状
態をいい、一般には、触媒用のCu−Zn二元系超微粒
子がよく知られている。
Composite fine particles refer to a state in which multiple types of fine particles have a homogeneous composition, and Cu-Zn binary ultrafine particles for catalysts are generally well known.

本発明においては、上記複合微粒子を、少なくとも炭素
質の微粒子6を含む形態にするわけであるが、その製法
例を第3図に基づき説明する。勿論、この複合微粒子の
製法は以下の方法に限られるわけではない。
In the present invention, the composite fine particles are made to include at least carbonaceous fine particles 6, and an example of the manufacturing method will be explained based on FIG. 3. Of course, the method for producing this composite fine particle is not limited to the following method.

まず炭素質微粒子6の製造方法であるが、これには例え
ばマイクロ波分解法が利用できる。つまり原料ガスであ
る炭素質ガス(例えば1.ガス)を原料ガス導入口8か
ら、排気系9Iこより予め8 x 10−’Torr以
下の真空度にひいておいた空胴共振器lO内へキャリア
ガス(例えば水素)と共に導入する。そしてマイクロ波
発振器11でマイクロ波を導波管12を通して空胴共振
器10内へ石英ガラス窓(不図示)を通して導入する。
First, regarding the method for manufacturing the carbonaceous fine particles 6, for example, a microwave decomposition method can be used. In other words, a carbonaceous gas (for example, 1.gas), which is a raw material gas, is carried as a carrier from the raw material gas inlet 8 through the exhaust system 9I into the cavity resonator 10, which has been previously drawn to a vacuum of 8 x 10-' Torr or less. Introduced together with a gas (eg hydrogen). Then, a microwave oscillator 11 introduces microwaves through a waveguide 12 into the cavity resonator 10 through a quartz glass window (not shown).

また、導波管12の途中にパワーメータ13を設置し、
投入マイクロ波パワーをモニターしておく。このとき生
成する炭素質微粒子6の粒径は前述のキャリアガスと原
料ガスの流量比、総流量並びに投入するマイクロ波のパ
ワーにより制御可能である。
In addition, a power meter 13 is installed in the middle of the waveguide 12,
Monitor the input microwave power. The particle size of the carbonaceous fine particles 6 produced at this time can be controlled by the above-mentioned flow rate ratio of the carrier gas and source gas, the total flow rate, and the power of the microwave input.

非炭素質電子放出材料微粒子7の製造には、例λば抵抗
加熱法が利用できる6つまり微粒子生成室14中に配置
されたるつぼ15中に蒸発源として非炭素質電子放出材
料を入れ、外部電源16を用いてるつぼ15を蒸発源が
蒸発する温度まで加熱する。
To manufacture the non-carbonaceous electron-emitting material fine particles 7, for example, a resistance heating method can be used.6 In other words, the non-carbonaceous electron-emitting material is placed as an evaporation source in a crucible 15 disposed in the fine particle generation chamber 14, and The crucible 15 is heated using the power source 16 to a temperature at which the evaporation source evaporates.

るつぼ15はカーボンるつぼ、アルミするつぼ等より目
的に応じて適宜選択される。このとき微粒子生成室14
も前述と同様に排気系9により予め8×10°’Tor
r以下の真空度にひいてお(、更にこのときキャリアガ
スをキャリアガス導入口17から導入する。
The crucible 15 is appropriately selected from carbon crucibles, aluminum crucibles, etc. depending on the purpose. At this time, the particle generation chamber 14
Similarly to the above, the exhaust system 9 provides 8×10°'Tor in advance.
The degree of vacuum is reduced to below r (and further, at this time, a carrier gas is introduced from the carrier gas inlet 17.

そして、両微粒子6.7を微粒子堆積室18中に配置し
である基板4上の電極1.2間に分散堆積させるわけで
あるが、これには例えば微粒子ビーム吹き付は法を用い
ることができる。ここでいうビームとは、周囲の空間よ
りも高い密度で指向性をもって一定方向へ流れる微粒子
を含む噴流をいい、その断面形状は問わない、つまり炭
素質及び非炭素質の微粒子6.7をキャリアガスと共に
、空胴共振器10及び微粒子生成室14と微粒子堆積室
18の圧力差を利用し、個々に微粒子ビームを形成し、
この微粒子ビームの広がりを利用して両ビームを目的と
する所で重ね合わせ、複合微粒子な形成し、電極1.2
間に分散堆積させる。
Then, both particles 6.7 are placed in the particle deposition chamber 18 and deposited in a dispersed manner between the electrodes 1.2 on the substrate 4. For this purpose, for example, particle beam spraying can be used. can. The beam here refers to a jet stream containing fine particles that flows in a fixed direction with higher density than the surrounding space, and its cross-sectional shape does not matter; in other words, it carries carbonaceous and non-carbonaceous fine particles6.7. Using the pressure difference between the cavity resonator 10 and the particle generation chamber 14 and the particle deposition chamber 18 together with the gas, particle beams are formed individually,
Utilizing the spread of this fine particle beam, both beams are overlapped at the desired location to form composite fine particles, and electrodes 1.2
be dispersed and deposited between them.

上記微粒子ビームを形成するために、空胴共振器10と
微粒子堆積室18及び微粒子生成室14と微粒子堆積室
18の間それぞれに縮小拡大ノズル19.20を目的と
する方向を向は取り付けておく、この時のノズル径は目
的に応じて適宜選択される。勿論微粒子ビーム形成手段
としては、上記縮小拡大ノズル19.20以外にも、末
広ノズル、先細ノズル。
In order to form the above-mentioned particle beam, contraction/expansion nozzles 19 and 20 are installed between the cavity resonator 10 and the particle deposition chamber 18 and between the particle generation chamber 14 and the particle deposition chamber 18, respectively, with the desired directions. The nozzle diameter at this time is appropriately selected depending on the purpose. Of course, as particulate beam forming means, in addition to the above-mentioned contraction/expansion nozzle 19 and 20, a diverging nozzle and a tapering nozzle can also be used.

オリフィス、輸送管等従来公知のものすべてが適用可能
である。ただし微粒子ビームの指向性。
All conventionally known orifices, transport pipes, etc. are applicable. However, the directivity of the particle beam.

ビームの収束性を考慮すると、縮小拡大ノズル19、2
0がより好ましい。また1両ノズル19.20と基板間
距離は、目的に応じて適宜選定されるが、好ましくは1
0〜300mmである。
Considering the convergence of the beam, the contraction/expansion nozzles 19, 2
0 is more preferable. In addition, the distance between the two nozzles 19 and 20 and the substrate is appropriately selected depending on the purpose, but preferably 1
It is 0 to 300 mm.

炭素質及び非炭素質電子放出材料微粒子6.7の粒径は
、炭素質微粒子6が非炭素質電子放出材料微粒子の17
3以下であることが好ましい、炭素質微粒子6に関して
は、100Å以下が好ましく、より好ましくは50Å以
下である。非炭素質電子放出材料微粒子に関しては、5
0人〜100OAが好ましく、より好ましくは100人
〜200人である。
The particle size of the carbonaceous and non-carbonaceous electron emitting material fine particles 6.7 is such that the carbonaceous fine particles 6 are 17.
Regarding the carbonaceous fine particles 6, which is preferably 3 or less, the thickness is preferably 100 Å or less, more preferably 50 Å or less. Regarding non-carbonaceous electron-emitting material fine particles, 5
0 to 100OA is preferable, and more preferably 100 to 200 people.

上記粒径の制御性に関しては、炭素質微粒子6は、前述
の様に、原料ガスとキャリアガスの流量比、総流量並び
に投入するマイクロ波パワーにより制御できる。つまり
マイクロ波パワーが大きい程、原料ガスの流量比が小さ
い程、更には総流量が少ない程粒径が小さくなる。非炭
素質電子放出材料微粒子7は、蒸発源温度、キャリアガ
ス流量により制御できる。つまり蒸発源温度が高い程、
キャリアガス流量が大きい程粒径が大きくなる。
Regarding the controllability of the particle size, the carbonaceous fine particles 6 can be controlled by the flow rate ratio of the raw material gas and the carrier gas, the total flow rate, and the input microwave power, as described above. In other words, the larger the microwave power, the smaller the raw material gas flow rate, and the smaller the total flow rate, the smaller the particle size becomes. The non-carbonaceous electron-emitting material fine particles 7 can be controlled by the evaporation source temperature and carrier gas flow rate. In other words, the higher the evaporation source temperature,
The larger the carrier gas flow rate, the larger the particle size.

いずれも比較的容易に粒径を制御することが可能である
In either case, the particle size can be controlled relatively easily.

この様にして形成された両ビームが、その広がりにより
重ね合わさり、複合微粒子を形成するわけであるが、炭
素質微粒子6が非炭素質電子放出材料微粒子7と複合化
し、その安定性で非炭素質電子放出材料微粒子7を不安
定性から保護する。
Both beams formed in this way overlap due to their spread and form composite fine particles, but the carbonaceous fine particles 6 are composited with the non-carbonaceous electron emitting material fine particles 7, and due to their stability, non-carbon This protects the electron-emitting material fine particles 7 from instability.

上記概念により作製した電子放出素子の断面模式図を第
2図(alに示す、つまり炭素質微粒子6が非炭素質電
子放出材料微粒子7をおおう様な状態になっていると考
えられる。勿論、炭素質微粒子6同志及び非炭素質電子
放出材料微粒子7同志が凝集することはあるが、この確
率は炭素質微粒子6と非炭素質電子放出材料微粒子7が
複合化する確率に比べてきわめて低いので、実質上問題
とならない、多少の上記の凝集が起こったとしても、素
子特性上−切問題とはならない、また、この割合も両微
粒子生成量によりある程度制御可能である。
A schematic cross-sectional view of the electron-emitting device produced according to the above concept is shown in FIG. Although the carbonaceous fine particles 6 and the non-carbonaceous electron-emitting material fine particles 7 may aggregate together, the probability of this is extremely low compared to the probability that the carbonaceous fine particles 6 and the non-carbonaceous electron-emitting material fine particles 7 form a composite. However, even if a certain amount of aggregation occurs, it does not pose any serious problem in terms of device characteristics, and this ratio can also be controlled to a certain extent by the amount of both fine particles produced.

本発明の表面伝導形放出素子は、例えば画像表示装置の
電子源として利用されるもので、1個のみを用いて単一
の電子源による画像表示装置としてもよいが、複数個を
一列又は複数列に並べ、マルチ形の電子源を備久た画像
表示装置とした方が有利である。
The surface conduction type emitter of the present invention is used, for example, as an electron source in an image display device, and although only one device may be used to create an image display device using a single electron source, a plurality of devices may be used in a row or in a plurality. It is advantageous to arrange multiple electron sources in a row to form a permanent image display device.

[作 用] 炭素質の微粒子6又は被膜6°によって、特性のバラツ
キが少なくなり、安定で、輝度ムラの少な(なる理由に
ついて詳細は不明であるが、電子放出を行う微粒子の表
面より上記炭素質の表面がガス分子の吸着等による電子
放出部5の表面変質が避けられ、その結果として特性変
化を防いでいると考えられる。
[Function] The carbonaceous fine particles 6 or the coating 6° reduce the variation in characteristics, are stable, and have little brightness unevenness (although the details of the reason for this are unknown, the above carbon particles are lower than the surface of the fine particles that emit electrons). It is thought that the surface of the electron emitting portion 5 is prevented from being altered due to the adsorption of gas molecules, and as a result, changes in characteristics are prevented.

[実施例] 第4図は本発明に係る画像表示装置の一実施例を示すも
ので、図中、後方から前方にかけて順に、氷表面伝導形
放出素子2】を多数並べて配置した背面基体22、第1
のスペーサー23.電子ビーム流を制御する制御電極2
4と電子ビームを蛍光体25に集束させるための集束電
極26とを具備し、一定の間隔で孔27のおいている電
極基板28、第2のスペーサー29、各氷表面伝導形放
出素子21に対向する蛍光体25及び電子ビームの加速
電極(図示されていない)を具備した画像表示部となる
フェースプレート30が設けられている。上記各構成部
品は、端部を低融点ガラスフリットにて封着され内部を
真空にして収納される。真空排気は、真空排気管31に
て排気しつつ、前記フェースプレート30、背面基体2
2、スペーサー2j、 29等の外囲器全体を加熱脱ガ
ス処理し、低融点ガラスフリットの軟化後封着して冷却
し、真空排気部31を封止して終了する。即ちフェース
プレート30、スペーサー23、29と背面基体22と
で構成される内部空間は、融着した低融点ガラスにより
封着された気密構造となっている。
[Embodiment] FIG. 4 shows an embodiment of the image display device according to the present invention. In the figure, from the rear to the front, a back substrate 22 on which a large number of ice surface conduction type emission elements 2 are arranged, 1st
spacer 23. Control electrode 2 that controls the electron beam flow
4 and a focusing electrode 26 for focusing the electron beam on the phosphor 25, an electrode substrate 28 having holes 27 at regular intervals, a second spacer 29, and each ice surface conduction type emission element 21. A face plate 30, which serves as an image display section, is provided with opposing phosphors 25 and electron beam accelerating electrodes (not shown). Each of the above-mentioned components is sealed at the end with a low-melting glass frit and housed in a vacuum inside. Evacuation is carried out using the vacuum exhaust pipe 31 while the face plate 30 and the rear substrate 2
2. The entire envelope including the spacers 2j, 29, etc. is heated and degassed, the low melting point glass frit is softened, sealed and cooled, and the evacuation section 31 is sealed. That is, the internal space constituted by the face plate 30, spacers 23 and 29, and the rear substrate 22 has an airtight structure sealed by fused low-melting glass.

スペーサー23.29や電極基板28はガラス、セラミ
ックス等を使用し、電極24.26はスクリーン印刷、
蒸着等により形成される。
The spacers 23, 29 and the electrode substrate 28 are made of glass, ceramics, etc., and the electrodes 24, 26 are made of screen printing,
It is formed by vapor deposition or the like.

上記画像表示装置によれば、制御電極24で電子ビーム
をコントロールしつつ、集束電極26と加速電極に電圧
を印加して、本表面伝導形放出素子21から放出された
電子を任意の蛍光体25に照射してこれを発光させ、画
像を形成することができる。
According to the above image display device, while controlling the electron beam with the control electrode 24, a voltage is applied to the focusing electrode 26 and the accelerating electrode, and the electrons emitted from the surface conduction type emission device 21 are transferred to the arbitrary phosphor 25. can be irradiated to cause it to emit light and form an image.

実施例1 石英ガラスからなる絶縁性の基板4上に、膜厚1000
人の5nOsからなる薄′MA3と、膜厚1000人の
N1かうなる電極1,2を形成した。
Example 1 A film with a thickness of 1000 mm was deposited on an insulating substrate 4 made of quartz glass.
Electrodes 1 and 2 were formed by forming a thin MA3 of 5 nOs and a N1 film of 1000 nOs.

次いで、電極1と電極2の間に約30Vの電圧を印加し
、薄膜3に通電し、これにより発生するジュール熱で薄
膜3を局所的に、電気的に高抵抗な状態にした電子放出
部5を形成し、該電子放出部5の表面に炭素をアーク蒸
着して膜厚100人に成膜し、炭素被膜を形成した電子
放出素子を得た。
Next, a voltage of about 30 V is applied between the electrodes 1 and 2 to energize the thin film 3, and the Joule heat generated thereby makes the thin film 3 locally in an electrically high resistance state. 5 was formed, and carbon was arc-deposited on the surface of the electron-emitting portion 5 to form a film with a thickness of 100 mm, thereby obtaining an electron-emitting device with a carbon film formed thereon.

この様にして得られた電子放出素子の電子放出特性を測
定した結果、15Vの印加電圧で平均放出電流0.5.
A 、放出電流の安定性±5%程度の安定した電子放出
が得られた。
As a result of measuring the electron emission characteristics of the electron-emitting device thus obtained, the average emission current was 0.5 at an applied voltage of 15V.
A: Stable electron emission with an emission current stability of about ±5% was obtained.

実施例7 第5図は炭素被膜の膜厚に対する放出電流の安定性を示
すグラフである。実施例1と同様の構造体において、絶
縁性の基板4に石英ガラスを用い、薄膜3に膜厚100
0人のInJ* 、電極1,2に膜厚1G00人のNi
を用い、電極1と電極2の間に約30Vの電圧を印加し
て薄膜3に通電し、これにより発生するジュール熱によ
り薄膜3を局所的に、電気的に高抵抗な状態にした電子
放出部5を形成し、該電子放出部5の表面に炭素をアー
ク蒸着により成膜し炭素被膜を形成して電子放出素子な
得た。
Example 7 FIG. 5 is a graph showing the stability of emission current with respect to the thickness of the carbon film. In the same structure as in Example 1, quartz glass was used for the insulating substrate 4, and the thin film 3 had a film thickness of 100 mm.
0 people InJ*, film thickness 1G00 people Ni on electrodes 1 and 2
Electron emission is performed by applying a voltage of about 30 V between electrodes 1 and 2 to energize the thin film 3, and the resulting Joule heat makes the thin film 3 locally in a state of high electrical resistance. A carbon film was formed on the surface of the electron emitting part 5 by arc evaporation to form a carbon film, thereby obtaining an electron emitting device.

印加電圧14V 、真空度、l X to−’Torr
程度の条件下において、炭素被膜の膜厚人に対する放出
電流の安定性の関係を求めたグラフを第5図に示す。
Applied voltage 14V, degree of vacuum, lX to 'Torr
FIG. 5 shows a graph showing the relationship between the stability of the emission current and the thickness of the carbon film under certain conditions.

第5図から明らかなように、炭素被膜を用いた場合、炭
素被膜の膜厚は数人から300人程度が最も好ましいこ
とが認められる。
As is clear from FIG. 5, when a carbon film is used, it is recognized that the thickness of the carbon film is most preferably from several people to about 300 people.

さらに、炭化物の炭素質被膜材料からなる被膜を同様に
実験したところ、Tic、 ZrC,HfC,TaC。
Furthermore, when similar experiments were conducted on coatings made of carbonaceous coating materials of carbide, results were obtained for Tic, ZrC, HfC, and TaC.

VC等の導体の炭素質被膜材料からなる被膜は膜厚数人
から300人程度が最も好ましく、またSiC等の半導
体の炭素質被膜材料からなる被膜は膜厚数人から250
人程度が最も好ましい結果が得られた。
It is most preferable for a film made of a carbonaceous material for a conductor such as VC to have a thickness of several to 300%, and for a film made of a carbonaceous material for a semiconductor such as SiC to have a thickness of several to 250%.
The most favorable results were obtained for the size of about 100 people.

実施例3 絶縁性の基板4に石英ガラスを用い、電極1と電極2に
膜厚1(100人のNLをEB蒸着し、フォトリソグラ
フィー技術により、電子放出部5を幅300μm、間隔
10μmで形成した。
Example 3 Using quartz glass for the insulating substrate 4, electrodes 1 and 2 were EB-deposited with a film thickness of 1 (100 NL), and electron emitting parts 5 were formed with a width of 300 μm and an interval of 10 μm using photolithography technology. did.

次に、電極1.2間へ電子放出材料を、1次粒径80〜
200人の5nOs分散液(SiO2: 1 g、溶剤
:MEK/シクロへキサノン= 3/l 1000cc
、ブチラール:1g)をスピンコードして塗布し、25
0℃で加熱処理して電子放出部5を形成した1次いで、
炭素をアーク蒸着により膜厚100人に成膜して炭素質
被膜6を形成した。
Next, an electron emitting material is placed between the electrodes 1.2 with a primary particle size of 80~
200 people's 5nOs dispersion (SiO2: 1 g, solvent: MEK/cyclohexanone = 3/l 1000cc
, butyral: 1g) was applied by spin-coating, and 25
First, the electron emitting part 5 was formed by heat treatment at 0°C.
A carbonaceous coating 6 was formed by depositing carbon to a thickness of 100 mm by arc evaporation.

この様にして得られた電子放出素子の電子放出特性を測
定した結果、14Vの印加電圧で平均放出電流0.8P
A 、放出電流の安定性±4%程度の安定した電子放出
が得られた。
As a result of measuring the electron emission characteristics of the electron-emitting device obtained in this way, the average emission current was 0.8P at an applied voltage of 14V.
A: Stable electron emission with an emission current stability of about ±4% was obtained.

実施例4 清浄な石英の基板4上にNiを3000人蒸着し、フォ
トリソグラフィーの手法を使って電極パターンを形成し
た。Lはiopm、 Wは250gmとした0次に基板
4を第6図に示した微粒子堆積用の真空装置にセットし
た。
Example 4 Ni was deposited by 3000 people on a clean quartz substrate 4, and an electrode pattern was formed using photolithography. The zero-order substrate 4, in which L was iopm and W was 250 gm, was set in a vacuum apparatus for depositing fine particles as shown in FIG.

第6図に示した装置は、微粒子生成室14と微粒子堆積
室18及びその2室をつなぐノズル20から構成され、
基板4は微粒子堆積室18内にノズル20と向き合わせ
てセットした。排気系9で真空度を5 X 10−’T
orrまで排気した後、^rガスをキャリアガス導入口
17から微粒子生成室14へ60SCCM流した1作成
条件は微粒子生成室14の圧力5×lO°諺Torr、
微粒子堆積室18の圧力I X 10−’Torr、ノ
ズル径5mmφ、ノズルと基板間距離1501Tlra
とした。
The apparatus shown in FIG. 6 is composed of a particle generation chamber 14, a particle deposition chamber 18, and a nozzle 20 that connects the two chambers.
The substrate 4 was set in the particle deposition chamber 18 so as to face the nozzle 20 . The degree of vacuum in the exhaust system 9 is 5 x 10-'T.
After exhausting to orr, the ^r gas was flowed from the carrier gas inlet 17 to the particle generation chamber 14 at a rate of 60 SCCM.1 The production conditions were that the pressure of the particle generation chamber 14 was 5×10° Torr;
Pressure in the particle deposition chamber 18: I x 10-' Torr, nozzle diameter: 5 mmφ, distance between the nozzle and the substrate: 1501 Tlra
And so.

次にカーボン製るつぼ15の蒸発源よりPdを前述条件
下で蒸発させて、生成したPd微粒子をノズル20より
吹き出させ、シャッタ32の開閉により、所定量を堆積
させる。このとき、Pd微粒子の堆積厚は100人であ
る。微粒子は基板4全面に配置されるが、形成される電
子放出部5以外のPd微粒子は実質的に電圧が印加され
ない為何らの支障もない、 Pd微粒子の径は約50〜
200人で、中心粒径は100 Aであり、Pd微粒子
は基板4上で島状に散在していた。
Next, Pd is evaporated from the evaporation source of the carbon crucible 15 under the aforementioned conditions, and the generated Pd fine particles are blown out from the nozzle 20 and deposited in a predetermined amount by opening and closing the shutter 32. At this time, the deposited thickness of the Pd fine particles was 100. The fine particles are arranged on the entire surface of the substrate 4, but no voltage is applied to the Pd fine particles other than the formed electron emitting part 5, so there is no problem.The diameter of the Pd fine particles is about 50~
200 people, the center particle size was 100 A, and the Pd fine particles were scattered on the substrate 4 in the form of islands.

さらに前記Pd微粒子上にプラズマ重合にて炭化水素膜
を成膜した。成膜条件はCH4(メタン)流量: 1.
6SCCM 、放電形式:AF放電(周波数20k)I
zl 。
Furthermore, a hydrocarbon film was formed on the Pd fine particles by plasma polymerization. The film forming conditions were CH4 (methane) flow rate: 1.
6SCCM, discharge format: AF discharge (frequency 20k) I
zl.

投入量カニ 120 W、 CH,圧カニ 30mTo
rr 、電極間距離: 50mmとした。
Input amount crab 120W, CH, pressure crab 30mTo
rr, distance between electrodes: 50 mm.

こうして1つの基板4上に10個の素子を作製し、これ
を背面基体22とし、第4図に示した様に背面基体22
とスペーサー23.29とフェースプレート30を55
0℃で脱ガス処理した後、真空引きしながら低融点ガラ
ス(コーニング社半田ガラス7570)を用いて封着し
た。その後、真空引きしつつ冷却して、1.1 X 1
0−’Torrで真空排気部31を封止した。また、ダ
ミーとして、プラズマ重合膜を前記処理したものを分析
した結果、プラズマ重合膜は化学分析法によって、C/
11比6.2、膜厚は130人であることがわかった。
In this way, 10 elements were fabricated on one substrate 4, and this was used as the back substrate 22. As shown in FIG.
and spacer 23.29 and face plate 30 55
After degassing at 0° C., sealing was performed using low melting point glass (Solder Glass 7570, Corning Co., Ltd.) while vacuuming. After that, it was cooled while being evacuated to 1.1 x 1
The vacuum exhaust section 31 was sealed at 0-' Torr. In addition, as a dummy, we analyzed a plasma polymerized film treated as described above, and found that the plasma polymerized film was
It was found that the 11 ratio was 6.2 and the film thickness was 130 people.

こうして上記素子を上記低真空条件下で画像表示装置と
して評価した結果を第1表に示す。
Table 1 shows the results of evaluating the above device as an image display device under the above low vacuum conditions.

実施例5 実施例4のプラズマ重合膜の代わりに日本チバガイギー
社の顔料r Irgazin Red BPT Jを(
以下余白) 法(抵抗加熱法)で成膜した以外は実施例9と同様に画
像表示装置を製造した。画像表示装置の内部真空度は1
.OX 10−’Torrで、最終的な蒸着膜のC/H
比は8.7、膜厚は200人であった。この素子を上記
低真空条件下で画像表示装置として評価した結果を第1
表に示す。
Example 5 Instead of the plasma polymerized film of Example 4, the pigment r Irgazin Red BPT J from Ciba Geigy Co., Ltd. (Japan) was used (
An image display device was manufactured in the same manner as in Example 9 except that the film was formed by the method (resistance heating method). The internal vacuum degree of the image display device is 1
.. C/H of the final deposited film at OX 10-' Torr
The ratio was 8.7 and the film thickness was 200 people. The results of evaluating this device as an image display device under the above-mentioned low vacuum conditions are shown in the first section.
Shown in the table.

実施例6 実施例4のプラズマ重合膜に代えて2アクリルアミド樹
脂をスピンコード法で塗布した以外は実施例4と同様に
画像表示装置を製造した。なお、アクリルアミド樹脂は
、アクリルアミド150、スチレン400、アクリル酸
エチル450 、 n−ブタノール1000の重量比で
混合し、クメンハイドロパーオキシドとtert−ドデ
シルメルカプタンのレドックス系でラジカル反応させて
、下式に示す三元共重合物を得た。
Example 6 An image display device was manufactured in the same manner as in Example 4, except that instead of the plasma polymerized film in Example 4, a 2-acrylamide resin was applied by a spin cord method. The acrylamide resin is prepared by mixing 150 parts of acrylamide, 400 parts of styrene, 450 parts of ethyl acrylate, and 1000 parts of n-butanol in a weight ratio, and performing a radical reaction with a redox system of cumene hydroperoxide and tert-dodecyl mercaptan, as shown in the following formula. A terpolymer was obtained.

このコポリマーはブタノール溶液になっており、この溶
液よりスピンコード法で電子放出部5上に塗膜をつくっ
た。塗膜後200 ’Cl hrかけて熱硬化させて樹
脂の塗布を完了した。
This copolymer was in the form of a butanol solution, and from this solution a coating film was formed on the electron emitting part 5 by a spin coding method. After coating, the resin was cured by heat for 200 Cl hr to complete the resin coating.

この素子を用いて製造された画像表示装置の内部真空度
は1.2 X 10−’Torrで、最終的な有機化合
物膜の膜厚は約50人、C/ II比は2.1となって
いた。この評価結果を第1表に示す。
The internal vacuum of the image display device manufactured using this device was 1.2 x 10-' Torr, the final organic compound film thickness was approximately 50, and the C/II ratio was 2.1. was. The evaluation results are shown in Table 1.

実施例7 実施例4のpb微粒子に代えて、1次粒径80〜200
人のSn0w分散液(Snow: l g 、溶剤: 
MEK/シクロへキサノン=3/lを1000cc、ブ
チラール:tg)をスピンコード法 処理にてSno!微粒子膜を形成した0次にこの上にポ
リフェニレンスルフィドを高周波スパッタ法で成膜した
。スパッタの方法としては、真空装置内をいったん10
− ’Torrの高真空にし、Arを導入して2 X 
10−”Torrで13.56MHzの高周波を印加し
、ポリフェニレンスルフィドのターゲット側を負極、基
板4側を正極となるように正極バイアスをかけた。高周
波投入電力は300Wである。これ以外は実施例4と同
様に画像表示装置を製造した。
Example 7 Instead of the PB fine particles of Example 4, primary particle size of 80 to 200 was used.
Human Sn0w dispersion (Snow: l g, solvent:
1000cc of MEK/cyclohexanone=3/l and butyral (tg) were processed using the spin code method to produce Sno! Polyphenylene sulfide was formed into a film by high frequency sputtering on the fine particle film formed thereon. The sputtering method is as follows:
- Create a high vacuum of 'Torr, introduce Ar and 2X
A high frequency of 13.56 MHz was applied at 10-" Torr, and a positive bias was applied so that the polyphenylene sulfide target side became the negative electrode and the substrate 4 side became the positive electrode. The high frequency input power was 300 W. Other than this, the example An image display device was manufactured in the same manner as in Example 4.

画像表示装置の内部真空度は0.95X 10−’To
rrとして、最終的なスパッタ膜の膜厚は140人で、
C/H比は5.3であった。この評価結果を第1表に示
す。
The internal vacuum degree of the image display device is 0.95X 10-'To
As rr, the final sputtered film thickness is 140 people,
The C/H ratio was 5.3. The evaluation results are shown in Table 1.

実施例8 実施例7のスパッタ膜に代えて、アクリル酸メチルエス
テルのオリゴマー(分子盟約3000)をトルエンに6
000ppmの割合で溶解してスピンコードして乾燥さ
せた以外は実施例7と同様に画像表示装置を製造した0
画像表示装置の内部真空度は1.8 x 10”’To
rrで、最終的な塗膜は膜厚約30〜40人、C/H比
は2.8となっていた。この評価結果を第1表に示す。
Example 8 Instead of the sputtered film of Example 7, an oligomer of acrylic acid methyl ester (molecular weight: 3000) was added to toluene for 6 hours.
An image display device was manufactured in the same manner as in Example 7, except that 0.000 ppm was dissolved, spin-coded, and dried.
The internal vacuum level of the image display device is 1.8 x 10''To
rr, the final coating film had a thickness of about 30-40 mm and a C/H ratio of 2.8. The evaluation results are shown in Table 1.

比較例1 実施例4に於いて、プラズマ重合膜をっけなかった以外
は実施例4と同様に製造した素子を比較例1として評価
した9画像表示装置の内部真空度は1.2 X 10−
’Torrであった。評価結果を第1表に示す。
Comparative Example 1 In Example 4, an element manufactured in the same manner as in Example 4 except that the plasma polymerized film was not removed was evaluated as Comparative Example 1. The internal vacuum degree of the 9 image display device was 1.2 × 10 −
'It was Torr. The evaluation results are shown in Table 1.

比較例2 実施例7に於いて、ポリフェニレンサルファイドのスパ
ッタ膜をつけなかった以外は実施例7と同様に製造した
試料を比較例2として評価した。
Comparative Example 2 A sample manufactured in the same manner as in Example 7 except that the polyphenylene sulfide sputtered film was not applied was evaluated as Comparative Example 2.

画像表示装置の内部真空度は1.1×10−Torrで
あった。評価結果を第1表に示す。
The internal vacuum degree of the image display device was 1.1×10 −Torr. The evaluation results are shown in Table 1.

比較例3 実施例4に於いて、プラズマ重合膜の厚みを500人に
した以外は実施例4と同様に製造した試料を比較例3と
して評価した。画像表示装置の内部真空度は1.2 X
 10−’Torrであった。評価結果を第1表に示す
Comparative Example 3 A sample manufactured in the same manner as in Example 4 except that the thickness of the plasma polymerized film was changed to 500 was evaluated as Comparative Example 3. The internal vacuum degree of the image display device is 1.2X
It was 10-'Torr. The evaluation results are shown in Table 1.

比較例4 実施例6に於いて、画像表示装置の製造工程で背面基体
22とスペーサー23.29とフェースプレート30を
480℃で脱ガス処理し、真空引きしながら低融点ガラ
ス(コーニング社半田ガラス7570)を用いて封着し
た以外は実施例6と同様に画像表示装置を製造した。こ
のときの画像表示装置の内部真空度は1.OX 10−
’Torrであり、最終的なプラズマ重合膜のC/H比
は1.3、膜厚は180人であった。評価結果を第1表
に示す。
Comparative Example 4 In Example 6, in the manufacturing process of the image display device, the back substrate 22, spacers 23, 29, and face plate 30 were degassed at 480°C, and while vacuuming, low melting point glass (Corning solder glass) was used. An image display device was manufactured in the same manner as in Example 6, except that the image display device was sealed using 7570). The internal vacuum degree of the image display device at this time is 1. OX 10-
The C/H ratio of the final plasma polymerized film was 1.3, and the film thickness was 180 Torr. The evaluation results are shown in Table 1.

(以下余白) なお、第1表中に3けるデータは、10点の素子の平均
とそのバラツキを示しており、放出電流I。
(Left below) The data marked 3 in Table 1 shows the average of 10 elements and its dispersion, and the emission current I.

に対し安定性とはΔ1./1.で表わされる。また、電
子放出効率は、電子放出部をはさむ電極間電流TrとI
・の比r、/r、の値である。連続電子放出寿命は、電
子放出部5をはさむ電極1.2間に14Vを連続印加し
、電子放出が観測されなくなるまでの時間をさす、この
ときの電子ビーム加速電極の電位をIKV、i!電子放
出部と蛍光体25までの距離を6mmとした。
In contrast, stability is Δ1. /1. It is expressed as In addition, the electron emission efficiency is determined by the interelectrode current Tr and I that sandwich the electron emission part.
・is the value of the ratio r, /r. Continuous electron emission lifetime refers to the time until no electron emission is observed when 14V is continuously applied between the electrodes 1.2 that sandwich the electron emission part 5. The potential of the electron beam accelerating electrode at this time is IKV, i! The distance between the electron emission part and the phosphor 25 was set to 6 mm.

第1表より次のことが読みとれる。まず原材料のC7H
比よりも画像表示装置製造工程を経た有機質炭素はC/
Hの比が大きくなっている。このような有機質炭素を被
覆した素子を画像表示装置に使用すると、素子として1
.を維持しつつバラツキを小さくし、安定性を増し、寿
命、信頼性を向上させている。つまり画像表示装置とし
てみれば、満足すべき輝度を保ち、チラッキを少なくし
、欠陥がない高精細性で高画質な装置が得ることができ
、低真空下でも特性劣化が見られず、10−6〜10−
’Torrの真空下の特性と比較してもそん色ないこと
が読みとれる。
The following can be gleaned from Table 1. First, the raw material C7H
Organic carbon that has gone through the image display device manufacturing process is C/
The ratio of H is large. When an element coated with such organic carbon is used in an image display device, the element becomes 1
.. While maintaining this, we have reduced variation, increased stability, and improved lifespan and reliability. In other words, from the perspective of an image display device, it is possible to obtain a device that maintains satisfactory brightness, reduces flicker, has no defects, has high definition and high image quality, shows no characteristic deterioration even under low vacuum, and has a 10- 6-10-
It can be seen that the characteristics are not similar to those of 'Torr under vacuum.

実施例9 清浄した石英製の基板4上にNiの電極1.2を300
0人厚で形成し、フォトリソグラフィーの手法を用いて
第1図に示した様なパターンを形成した。ただしWは2
終m、 Lは300濤1とした。
Example 9 Ni electrodes 1.2 were placed on a clean quartz substrate 4 at a thickness of 300 μm.
A pattern as shown in FIG. 1 was formed using photolithography. However, W is 2
The final m and L were set at 300 to 1.

次に上記基板4を第3図に示した真空装置内に入れるが
、真空装置は前述の様に空胴共振器lO1微粒子生成室
14、微粒子堆積室18およびそれらをつなぐ縮小拡大
ノズル19.20から構成されている。そして排気系9
で真空度が8 X 10−’Torr以下になるまで排
気した。
Next, the substrate 4 is placed in the vacuum apparatus shown in FIG. 3, which consists of the cavity resonator lO1 particle generation chamber 14, the particle deposition chamber 18, and the contraction/expansion nozzles 19 and 20 connecting them, as described above. It consists of and exhaust system 9
The chamber was evacuated until the degree of vacuum became 8×10-' Torr or less.

その後空胴共振器10内に原料ガスであるC114ガス
を35CCM、キャリアである水素ガスを147sec
M混合後導入した。そして導波管12よりマイクロ波を
150 W投入した。
After that, C114 gas as a raw material gas was introduced into the cavity resonator 10 for 35 CCM, and hydrogen gas as a carrier was introduced for 147 sec.
After mixing M, it was introduced. Then, 150 W of microwave was inputted from the waveguide 12.

また、微粒子生成室14中のカーボンるつぼ15にPd
を入れ、外部電源16により、るつぼ温度を1600℃
に上昇し、Pdを蒸発させた。このときキャリアガスと
してアルゴンガス60SCCMをキャリアガス導入口1
7より導入した。
In addition, Pd is added to the carbon crucible 15 in the particle generation chamber 14.
and set the crucible temperature to 1600℃ using the external power supply 16.
and the Pd was evaporated. At this time, 60SCCM of argon gas is added to the carrier gas inlet 1 as a carrier gas.
It was introduced from 7.

こうして生成した炭素質微粒子6とPdである非炭素質
電子放出材料微粒子7をそれぞれノズル19、20から
基板4へ、圧力差を利用して吹きつけた。この時の空胴
共振器1G、微粒子生成室14、微粒子生成室工8の圧
力はそれぞれ4 X 10””、5X1、0− ”、2
.6 X 10−’Torrであった。またノズル径は
両者とも3mmφ、ノズル基板間距離は200mmとし
た。更にノズル19.20はビームの中心方向が各々基
板4の中心を向くように調整した。勿論ビームの広がり
により、目的以外の場所にもビームが飛来するが、不必
要部には、電圧印加が起こらないので素子自体には何ら
影響はなかった。
The thus generated carbonaceous fine particles 6 and non-carbonaceous electron-emitting material fine particles 7 made of Pd were sprayed onto the substrate 4 from nozzles 19 and 20, respectively, using a pressure difference. At this time, the pressures in the cavity resonator 1G, the particle generation chamber 14, and the particle generation chamber 8 are 4 x 10'', 5 x 1, 0-'', and 2, respectively.
.. It was 6 x 10-'Torr. Further, the nozzle diameter was 3 mmφ in both cases, and the distance between the nozzle substrates was 200 mm. Further, the nozzles 19 and 20 were adjusted so that the center directions of the beams were each directed toward the center of the substrate 4. Of course, due to the spread of the beam, the beam also flew to places other than the target, but since no voltage was applied to unnecessary parts, there was no effect on the element itself.

この堆積物を高分解能FE−3E旧こより観察したとこ
ろ、粒径120〜180人の微粒子と粒径40人程度以
下の粒径の微粒子の存在が確認された。また同様の条件
によりサンプルを作成し、TEMにより観察したところ
、粒径の大きいものがPdであることがわかった0以上
より目的とする複合微粒子を含む素子であることを確認
した。
When this deposit was observed using a high-resolution FE-3E, the presence of fine particles with a grain size of 120 to 180 grains and fine particles with a grain size of about 40 grains or less were confirmed. In addition, a sample was prepared under the same conditions and observed by TEM, and it was confirmed that the larger particle size was Pd.

次にこの素子を真空度5 X 10−’Torr以下で
、放出電子の引き出し用の電極を基板面に対し垂直方向
に51811上方に配置し、1.5kVの電圧をかけ、
電極1.2間に14Vの電圧を印加して電子放出特性を
評価した。
Next, this element was placed in a vacuum of 5 x 10-' Torr or less, an electrode for extracting emitted electrons was placed above 51811 in a direction perpendicular to the substrate surface, and a voltage of 1.5 kV was applied.
Electron emission characteristics were evaluated by applying a voltage of 14 V between electrodes 1 and 2.

この結果、平均放出電流0.71&A 、放出電流の安
定性±5%程度の安定した電子放出が得られた。
As a result, stable electron emission was obtained with an average emission current of 0.71 &A and an emission current stability of about ±5%.

またこの実験を複数回行ない、おおむね良好な再現性を
得た。
Moreover, this experiment was conducted multiple times and generally good reproducibility was obtained.

実施例10 空胴共振器10に投入するマイクロ波パワーを120W
とした以外は実施例9と同様の実験を行なった。この堆
積物を実施例9と同様に高分解能FE−5EMにより観
察した結果、粒径120〜180人の微粒子と粒径70
人程度の微粒子の存在が確認された。
Example 10 Microwave power input to cavity resonator 10 is 120W
The same experiment as in Example 9 was conducted except that. As a result of observing this deposit using high-resolution FE-5EM in the same manner as in Example 9, it was found that fine particles with a particle size of 120 to 180 and particles with a particle size of 70
The presence of human-sized particles was confirmed.

この素子に関しても同様に電子放出特性を評価した結果
、平均放出電流0.6μA、放出電流の安定性±7%程
度の安定した電子放出が得られた。
As a result of similarly evaluating the electron emission characteristics of this device, stable electron emission was obtained with an average emission current of 0.6 μA and an emission current stability of about ±7%.

実施例11 Pd微粒子のキャリアであるArガス流量を303CC
Mとした以外は実施例9と同様の実験を行なった。
Example 11 The flow rate of Ar gas, which is a carrier for Pd fine particles, was set to 303 CC.
The same experiment as in Example 9 was conducted except that M was used.

この堆積物を実施例9と同様に高分解能FE−3EMに
より観察した結果、粒径が70〜100人の微粒子と粒
径40人程度以下の微粒子の存在が確認された。
As a result of observing this deposit using a high-resolution FE-3EM in the same manner as in Example 9, the presence of fine particles with a grain size of 70 to 100 grains and fine particles with a grain size of about 40 grains or less were confirmed.

この素子に関しても同様に電子放出特性を評価した結果
、平均放出電流0.6.A 、放出電流の安定性±lO
%程度の電子放出が得られた。
As a result of similarly evaluating the electron emission characteristics of this device, the average emission current was 0.6. A, stability of emission current ±lO
% electron emission was obtained.

実施例12 蒸発源としてPdの代わりにAu、るつぼ温度を108
0℃とした以外は実施例9と同様の実験を行なった。こ
の堆積物を実施例9と同様に高分解能FE−SEMによ
り観察した結果、粒径が110〜160人の微粒子と粒
径40Å以下程度の微粒子の存在が認められた。また実
施例9と同様に、TEM用のサンプルを作成し、粒径の
大きいものがAuであることを確認し、実施例9と同様
に目的とする複合微粒子素子が得られていることがわか
った。
Example 12 Au instead of Pd as the evaporation source, crucible temperature 108
An experiment similar to Example 9 was conducted except that the temperature was 0°C. As a result of observing this deposit using high-resolution FE-SEM in the same manner as in Example 9, the presence of fine particles with a grain size of 110 to 160 Å and fine particles with a grain size of about 40 Å or less was observed. In addition, in the same manner as in Example 9, a sample for TEM was prepared, and it was confirmed that the particles with large particle sizes were Au, and it was found that the desired composite fine particle element was obtained in the same manner as in Example 9. Ta.

この素子に関しても同様に電子放出特性を評価した結果
、平均放出電流0.8gA 、放出電流安定性±8%程
度の安定した電子放出が得られた。
As a result of similarly evaluating the electron emission characteristics of this device, stable electron emission was obtained with an average emission current of 0.8 gA and an emission current stability of about ±8%.

実施例13 素子作製は実施例9と全く同様にして行ない、電子放出
特性の評価の際の真空度を4 X I(1−’Torr
とした以外は実施例9と全く同様に電子放出特性を評価
した。その結果、平均放出電流0.6gA 、放出電流
の安定性±6%程度の安定した電子放出が得られた。
Example 13 Device fabrication was carried out in exactly the same manner as in Example 9, and the degree of vacuum during evaluation of electron emission characteristics was set to 4 X I (1-'Torr).
The electron emission characteristics were evaluated in exactly the same manner as in Example 9, except that. As a result, stable electron emission was obtained with an average emission current of 0.6 gA and an emission current stability of about ±6%.

[発明の効果J 以上説明した通り、本発明によれば、特性のバラツキが
小さ(、低真空でも安定で寿命の長い表面伝導形放出素
子及び高精細で高画質の画像表示装置をつくることがで
き、極めて信頼度の高い製品提供に寄与することが期待
できる。
[Effect of the Invention J] As explained above, according to the present invention, it is possible to produce a surface conduction type emission device with small variations in characteristics (and a long lifespan that is stable even in low vacuum) and an image display device with high definition and high image quality. This can be expected to contribute to the provision of extremely reliable products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は請求項第1項の発明の説明図で、(alは平面
図、fbl は電子放出特性近の拡大断面図、第2図は
請求項第4項の発明の説明図で、(a)は平面図、(b
)は断面図、第3図は請求項第3項の発明に係る表面伝
導形放出素子の製造方法の説明図、第4図は請求項第5
項の発明の一実施例を示す分解状態の斜視図、第5図は
実施例2で得られた炭素被膜の厚さと放出電流の安定性
の関係を示すグラフ、第6図は実施例4における素子の
製造方法の説明図、第7図は従来技術の説明図である。 1.2:ii極、  3:薄膜、 4:基板、5:電子
放出部、 6:炭素質材料微粒子、7:非炭素質電子放
出材料微粒子、 6°:炭素質被膜、  7°:M1子放出材料微粒子。
FIG. 1 is an explanatory diagram of the invention of claim 1, (al is a plan view, fbl is an enlarged sectional view near the electron emission characteristics, and FIG. 2 is an explanatory diagram of the invention of claim 4, ( a) is a plan view, (b)
) is a sectional view, FIG. 3 is an explanatory diagram of the method for manufacturing a surface conduction type emission device according to the invention of claim 3, and FIG. 4 is a sectional view of claim 5.
FIG. 5 is a graph showing the relationship between the thickness of the carbon film obtained in Example 2 and the stability of the emission current, and FIG. FIG. 7 is an explanatory diagram of a method of manufacturing an element, and FIG. 7 is an explanatory diagram of a conventional technique. 1.2: II pole, 3: Thin film, 4: Substrate, 5: Electron emitting part, 6: Carbonaceous material fine particles, 7: Non-carbonaceous electron emitting material fine particles, 6°: Carbonaceous film, 7°: M1 child Release material particulates.

Claims (5)

【特許請求の範囲】[Claims] (1)電子放出部に炭素質被膜が形成されていることを
特徴とする表面伝導形放出素子。
(1) A surface conduction type emission device characterized in that a carbonaceous film is formed on an electron emission part.
(2)炭素質被膜が厚さ300Å以下の炭素又は金属炭
化物又は有機質炭素被膜であることを特徴とする請求項
第1項の表面伝導形放出素子。
(2) The surface conduction type emission device according to claim 1, wherein the carbonaceous film is a carbon, metal carbide, or organic carbon film having a thickness of 300 Å or less.
(3)炭素質の微粒子と他の電子放出材料の微粒子の複
合微粒子によって電子放出部が形成されていることを特
徴とする表面伝導形放出素子。
(3) A surface conduction type electron-emitting device characterized in that an electron-emitting region is formed by composite fine particles of carbonaceous fine particles and fine particles of another electron-emitting material.
(4)炭素質が(炭素)/(水素)の比が2以上の有機
質炭素であることを特徴とする請求項第1項又は第3項
の表面伝導形放出素子。
(4) The surface conduction type emission device according to claim 1 or 3, wherein the carbonaceous material is organic carbon having a (carbon)/(hydrogen) ratio of 2 or more.
(5)請求項第1項ないし第3項のいずれかの表面伝導
形放出素子を、一又は二以上、電子源として有すること
を特徴とする画像表示装置。
(5) An image display device comprising one or more surface conduction type emission devices according to any one of claims 1 to 3 as an electron source.
JP604289A 1988-01-18 1989-01-17 Electron emitting device, method of manufacturing the same, and image display device using the electron emitting device Expired - Fee Related JP2715312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP604289A JP2715312B2 (en) 1988-01-18 1989-01-17 Electron emitting device, method of manufacturing the same, and image display device using the electron emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP697788 1988-01-18
JP63-6977 1988-01-18
JP604289A JP2715312B2 (en) 1988-01-18 1989-01-17 Electron emitting device, method of manufacturing the same, and image display device using the electron emitting device

Publications (2)

Publication Number Publication Date
JPH01309242A true JPH01309242A (en) 1989-12-13
JP2715312B2 JP2715312B2 (en) 1998-02-18

Family

ID=26340111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP604289A Expired - Fee Related JP2715312B2 (en) 1988-01-18 1989-01-17 Electron emitting device, method of manufacturing the same, and image display device using the electron emitting device

Country Status (1)

Country Link
JP (1) JP2715312B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660357A1 (en) * 1993-12-27 1995-06-28 Canon Kabushiki Kaisha Electron-emitting device, method of manufacturing the same and image-forming apparatus
EP0704875A1 (en) * 1994-09-29 1996-04-03 Canon Kabushiki Kaisha Manufacture methods of electron-emitting device, electron source, and image-forming apparatus
AU724811B2 (en) * 1993-12-27 2000-09-28 Canon Kabushiki Kaisha Electron-emitting device
US6179678B1 (en) 1994-08-29 2001-01-30 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device electron source and image-forming apparatus
US6348761B1 (en) 1993-12-28 2002-02-19 Canon Kabushiki Kaisha Electron beam apparatus and image-forming apparatus
AU747308B2 (en) * 1993-12-27 2002-05-16 Canon Kabushiki Kaisha Method of manufacturing an electron-emitting device
AU747313B2 (en) * 1993-12-27 2002-05-16 Canon Kabushiki Kaisha Electron source and image-forming apparatus
US6554946B1 (en) 1995-12-12 2003-04-29 Canon Kabushiki Kaisha Method of manufacturing image-forming apparatus
US6802752B1 (en) 1993-12-27 2004-10-12 Canon Kabushiki Kaisha Method of manufacturing electron emitting device
US6843696B2 (en) 2001-09-10 2005-01-18 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
US6853126B2 (en) 2000-09-22 2005-02-08 Canon Kabushiki Kaisha Electron-emitting device, electron source, image forming apparatus, and electron-emitting apparatus
US6858990B2 (en) 2001-09-07 2005-02-22 Canon Kabushiki Kaisha Electron-emitting device, electron source, image forming apparatus, and method of manufacturing electron-emitting device and electron source
US6900581B2 (en) 1999-02-22 2005-05-31 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus, and manufacturing methods thereof
US6948995B2 (en) 2001-09-10 2005-09-27 Canon Kabushiki Kaisha Manufacture method for electron-emitting device, electron source, light-emitting apparatus, and image forming apparatus
US6992428B2 (en) 2001-12-25 2006-01-31 Canon Kabushiki Kaisha Electron emitting device, electron source and image display device and methods of manufacturing these devices
US7012362B2 (en) 2000-09-01 2006-03-14 Canon Kabushiki Kaisha Electron-emitting devices, electron sources, and image-forming apparatus
US7034444B2 (en) 2000-09-01 2006-04-25 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus, and method for manufacturing electron emitting device
US7074105B2 (en) 2001-03-27 2006-07-11 Canon Kabushiki Kaisha Catalyst used to form carbon fiber, method of making the same and electron emitting device, electron source, image forming apparatus, secondary battery and body for storing hydrogen
USRE39633E1 (en) 1987-07-15 2007-05-15 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE40062E1 (en) 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE40566E1 (en) 1987-07-15 2008-11-11 Canon Kabushiki Kaisha Flat panel display including electron emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524163A (en) * 1976-03-08 1977-01-13 Hitachi Ltd Electric field radiation cathode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678757B2 (en) 1988-01-18 1997-11-17 キヤノン株式会社 Electron emitting device and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524163A (en) * 1976-03-08 1977-01-13 Hitachi Ltd Electric field radiation cathode

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40566E1 (en) 1987-07-15 2008-11-11 Canon Kabushiki Kaisha Flat panel display including electron emitting device
USRE40062E1 (en) 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE39633E1 (en) 1987-07-15 2007-05-15 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
EP1124248A3 (en) * 1993-12-27 2003-06-04 Canon Kabushiki Kaisha Electron source and image forming apparatus
US6169356B1 (en) 1993-12-27 2001-01-02 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus
AU724811B2 (en) * 1993-12-27 2000-09-28 Canon Kabushiki Kaisha Electron-emitting device
US6802752B1 (en) 1993-12-27 2004-10-12 Canon Kabushiki Kaisha Method of manufacturing electron emitting device
US7348719B2 (en) 1993-12-27 2008-03-25 Canon Kabushiki Kaisha Electron-emitting devices provided with a deposit between electroconductive films made of a material different from that of the electroconductive films
EP0942449A2 (en) * 1993-12-27 1999-09-15 Canon Kabushiki Kaisha Electron-emitting device and method of manufacturing the same as well as electron source and image-forming apparatus
EP1124248A2 (en) * 1993-12-27 2001-08-16 Canon Kabushiki Kaisha Electron source and image forming apparatus
US6344711B1 (en) 1993-12-27 2002-02-05 Canon Kabushiki Kaisha Electron-emitting device
EP1892743A3 (en) * 1993-12-27 2009-09-16 Canon Kabushiki Kaisha Electron source and image-forming apparatus
US6384541B1 (en) 1993-12-27 2002-05-07 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image-forming apparatus
AU747308B2 (en) * 1993-12-27 2002-05-16 Canon Kabushiki Kaisha Method of manufacturing an electron-emitting device
AU747313B2 (en) * 1993-12-27 2002-05-16 Canon Kabushiki Kaisha Electron source and image-forming apparatus
US6908356B2 (en) 1993-12-27 2005-06-21 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image-forming apparatus
US6890231B2 (en) 1993-12-27 2005-05-10 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image forming apparatus
US7705527B2 (en) 1993-12-27 2010-04-27 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image-forming apparatus
EP1892743A2 (en) * 1993-12-27 2008-02-27 Canon Kabushiki Kaisha Electron source and image-forming apparatus
EP0660357A1 (en) * 1993-12-27 1995-06-28 Canon Kabushiki Kaisha Electron-emitting device, method of manufacturing the same and image-forming apparatus
EP0942449A3 (en) * 1993-12-27 1999-11-03 Canon Kabushiki Kaisha Electron-emitting device and method of manufacturing the same as well as electron source and image-forming apparatus
US6459207B1 (en) 1993-12-28 2002-10-01 Canon Kabushiki Kaisha Electron beam apparatus and image-forming apparatus
US6348761B1 (en) 1993-12-28 2002-02-19 Canon Kabushiki Kaisha Electron beam apparatus and image-forming apparatus
US6555957B1 (en) 1993-12-28 2003-04-29 Canon Kabushiki Kaisha Electron beam apparatus and image-forming apparatus
US6246168B1 (en) * 1994-08-29 2001-06-12 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
US7758762B2 (en) 1994-08-29 2010-07-20 Canon Kabushiki Kaisha Method for manufacturing an electron-emitting device with first and second carbon films
US6608437B1 (en) 1994-08-29 2003-08-19 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
US6179678B1 (en) 1994-08-29 2001-01-30 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device electron source and image-forming apparatus
US7234985B2 (en) 1994-08-29 2007-06-26 Canon Kabushiki Kaisha Method for manufacturing an electric emitting device with first and second carbon films
US7057336B2 (en) 1994-08-29 2006-06-06 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
US5861227A (en) * 1994-09-29 1999-01-19 Canon Kabushiki Kaisha Methods and manufacturing electron-emitting device, electron source, and image-forming apparatus
EP0704875A1 (en) * 1994-09-29 1996-04-03 Canon Kabushiki Kaisha Manufacture methods of electron-emitting device, electron source, and image-forming apparatus
US7431878B2 (en) 1995-12-12 2008-10-07 Canon Kabushiki Kaisha Process of making an electron-emitting device
US6554946B1 (en) 1995-12-12 2003-04-29 Canon Kabushiki Kaisha Method of manufacturing image-forming apparatus
US7067336B1 (en) 1999-02-22 2006-06-27 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus, and manufacturing methods thereof
US6900581B2 (en) 1999-02-22 2005-05-31 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus, and manufacturing methods thereof
US7034444B2 (en) 2000-09-01 2006-04-25 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus, and method for manufacturing electron emitting device
US7012362B2 (en) 2000-09-01 2006-03-14 Canon Kabushiki Kaisha Electron-emitting devices, electron sources, and image-forming apparatus
US6853126B2 (en) 2000-09-22 2005-02-08 Canon Kabushiki Kaisha Electron-emitting device, electron source, image forming apparatus, and electron-emitting apparatus
US7074105B2 (en) 2001-03-27 2006-07-11 Canon Kabushiki Kaisha Catalyst used to form carbon fiber, method of making the same and electron emitting device, electron source, image forming apparatus, secondary battery and body for storing hydrogen
US6858990B2 (en) 2001-09-07 2005-02-22 Canon Kabushiki Kaisha Electron-emitting device, electron source, image forming apparatus, and method of manufacturing electron-emitting device and electron source
US7131886B2 (en) 2001-09-10 2006-11-07 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
US6948995B2 (en) 2001-09-10 2005-09-27 Canon Kabushiki Kaisha Manufacture method for electron-emitting device, electron source, light-emitting apparatus, and image forming apparatus
US6843696B2 (en) 2001-09-10 2005-01-18 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
US6992428B2 (en) 2001-12-25 2006-01-31 Canon Kabushiki Kaisha Electron emitting device, electron source and image display device and methods of manufacturing these devices

Also Published As

Publication number Publication date
JP2715312B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JPH01309242A (en) Surface conductive type emission element and image display device using the same
US6379211B2 (en) Method for manufacturing electron emission element, electron source, and image forming apparatus
US5525861A (en) Display apparatus having first and second internal spaces
US5530314A (en) Electron-emitting device and electron beam-generating apparatus and image-forming apparatus employing the device
US20080122336A1 (en) Electron-Emitting Device, Electron Source Using the Same, Image Display Apparatus, and Information Displaying and Reproducing Apparatus
JP2003160321A (en) Method of producing fiber, and methods for producing electron-emitting device, electron source and image display device each using the fiber
US5505647A (en) Method of manufacturing image-forming apparatus
JP2946140B2 (en) Electron emitting element, electron source, and method of manufacturing image forming apparatus
JP3420520B2 (en) Non-evaporable getter manufacturing method and image forming apparatus
JP2946153B2 (en) Method for manufacturing electron-emitting film and electron-emitting device
JP3062983B2 (en) Method of manufacturing image forming apparatus
JP2715318B2 (en) Method of manufacturing flat display
JPH02247939A (en) Surface conductive electron emission element, image formation apparatus using it and manufacture of element
JP2933855B2 (en) Electron emitting element, electron beam generator using the same, and method of manufacturing image forming apparatus
JP3320393B2 (en) Method of manufacturing image forming apparatus
JPH02299121A (en) Surface conductive type electron emitting element and image forming device using element thereof
JP2961511B2 (en) Electron emitting device and image forming apparatus
KR100493696B1 (en) the manufacturing method for FED by CNTs
JP3174480B2 (en) Method of manufacturing electron source and image forming apparatus
JP2002343232A (en) Electron emission element, electron source, imaging device and their manufacturing methods
JPH103852A (en) Electron emitting element, electron source, image forming device, and manufacture thereof
JPH07140902A (en) Picture display device and its production
JPH09330650A (en) Electron emitting element, electron source using it, image forming device, and manufacture of them
JPH04363834A (en) Electron emission device
JPH09330652A (en) Manufacture of electron emitting element, electron emitting element, and image forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees