JPH01308905A - Measurement of shape and apparatus for shape recognition at high speed using semiconductor position detector - Google Patents

Measurement of shape and apparatus for shape recognition at high speed using semiconductor position detector

Info

Publication number
JPH01308905A
JPH01308905A JP9793588A JP9793588A JPH01308905A JP H01308905 A JPH01308905 A JP H01308905A JP 9793588 A JP9793588 A JP 9793588A JP 9793588 A JP9793588 A JP 9793588A JP H01308905 A JPH01308905 A JP H01308905A
Authority
JP
Japan
Prior art keywords
measured
light
measurement
semiconductor device
device detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9793588A
Other languages
Japanese (ja)
Inventor
Masato Ozawa
正人 小沢
Akihiko Nakamura
明彦 中村
Masahiro Isoda
将博 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP9793588A priority Critical patent/JPH01308905A/en
Publication of JPH01308905A publication Critical patent/JPH01308905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To shorten a measuring time and to perform highly accurate measurement by moving a beam spot applied to an object to be measured on the surface of the object to be measured through a luminous flux position altering means to scan the surface of said object. CONSTITUTION:The projected beam from a semiconductor laser 1 is condensed by projection lens groups 2, 3 to be applied to an object (a) to be measured as a small beam spot and the reflected beam f1 from the object (a) to be measured is condensed to one point on the beam receiving surface of a two-dimensional semiconductor position detector (PSD) 7 through a beam receiving lens 6 and a luminous flux position altering means 4 is constituted on the optical axis in the vicinity of the projection lens groups 2, 3. When the object (a) to be measured is displaced to the position a1 shown by a broken line, the angle of the incident beam f2 to the beam receiving lens 6 is changed and, therefore, the condensed beam spot on the PSD 7 is moved in proportion to the displacement (L1-L2) of the object (a) to be measured. As a result, when the position of the condensed beam spot on the PSD 7 is clarified, the distance L up to the object (a) to be measured can be calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は測定対象物の非接触検査技術に係り、半導体装
置検出器による形状高速測定方法と形状高速認識装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-contact inspection technique for a measurement object, and relates to a high-speed shape measurement method using a semiconductor device detector and a high-speed shape recognition device.

[従来の技術] 従来より、鉄鋼プラントにおける高温・高速度走行物体
の形状認識や、機械工業や電気工業での傷つきやすい物
体の寸法或は変位量の計測等、多くの産業分野において
、非接触で、高精度且つ高速応答が可能な距離センサが
要求されている。そこで、この種の非接触式距離センサ
としては、殊に急激な光デバイスの進歩により、光学式
距離センサとしてレーザ光を用いた三角測量方式のレー
ザ距離センサが実用化されており、このレーザ距離セン
サを使った三角測量方式による各種計測装置が開発され
ている。
[Conventional technology] Non-contact technology has traditionally been used in many industrial fields, such as shape recognition of high-temperature, high-speed moving objects in steel plants, and measurement of the dimensions or displacement of fragile objects in the mechanical and electrical industries. Therefore, there is a need for a distance sensor that is highly accurate and capable of high-speed response. Therefore, as this type of non-contact distance sensor, a triangulation type laser distance sensor using laser light has been put into practical use as an optical distance sensor, especially due to the rapid progress of optical devices. Various measurement devices using a triangulation method using sensors have been developed.

上記レーザ距離センサとしては、第7図に示すように、
小型で高出力の半導体レーザ50と、高分解能で高速応
答性を有する半導体装置検出器51 (Po5itio
n 5ensitive Device)を組合わせた
ものが知られており、投光レンズ53によって集光した
半導体レーザ50からの投射光を、測定対象物a上に小
さなスポット光f1として照射し、この測定対象物aか
らの反射光f2を、受光レンズ54により半導体装置検
出器51の受光面上の一点に集光する構造になっている
。こうして半導体装置検出器51上の集光スポットの変
位によって測定対象物aまでの距離を求めることができ
る。
As shown in FIG. 7, the laser distance sensor is as follows:
A small, high-output semiconductor laser 50 and a semiconductor device detector 51 (Po5itio
A device in which the projection light from the semiconductor laser 50, which is focused by the projection lens 53, is irradiated onto the measurement target a as a small spot light f1 is known. The structure is such that the reflected light f2 from a is focused on one point on the light-receiving surface of the semiconductor device detector 51 by the light-receiving lens 54. In this way, the distance to the object to be measured a can be determined by the displacement of the focused spot on the semiconductor device detector 51.

[発明が解決しようとする課題] しかし上記従来の技術では、光スポットをできるだけ細
く絞った状態で点検出しな方が高精度に検出することが
できるものであるが、ある程度広い面積をもった平面を
測定するために、該光スポットによって面を走査するに
は光スポットが小さい程、計測に長時間を要する問題を
有していた。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional technology, it is possible to detect points with high accuracy by narrowing the light spot as narrowly as possible, but when detecting a point with a relatively large area, There is a problem in that the smaller the light spot is, the longer it takes to scan a surface with the light spot in order to measure it.

例えば、電気基板上にパターンを描画する場合、あらか
じめ基板の凹凸を測定すると同時にその結果を描画ヘッ
ドにフィードバックして、該描画ヘッドを上下に駆動す
ることにより基板と描画ノズルの距離を一定に保持する
必要があるが、この場合は上記のように光スポット1点
で測定した高さ測定点は測定の都度被測定側の基板を移
動台(X−Yテーブル)により移動させて走査測定しな
くてはならず、5C11四方の基板を100μmの光ス
ポットで隙間なく走査測定すると、約4分もの測定時間
を要していた。
For example, when drawing a pattern on an electrical board, the unevenness of the board is measured in advance, and at the same time the results are fed back to the drawing head, and the distance between the board and the drawing nozzle is maintained constant by driving the drawing head up and down. However, in this case, the height measurement point measured using a single light spot as described above does not have to be scanned by moving the board on the side to be measured using a moving table (X-Y table) each time the measurement is performed. However, when a 5C11 square substrate was scanned and measured with a 100 μm light spot without any gaps, it took about 4 minutes to measure.

本発明は上記間圧に鑑みてなされたものであり、測定対
象物の表面検査に於いて、測定時間を短縮し且つ高精度
の測定を実施することができる半導体装置検出器による
形状高速測定方法を提唱することを目的とすると共に、
その測定方法を実施するための形状高速認識装置を提供
することを目的とするものである。
The present invention has been made in view of the above-mentioned pressure, and provides a high-speed shape measurement method using a semiconductor device detector, which can shorten measurement time and perform highly accurate measurements in surface inspection of objects to be measured. The purpose is to advocate the
It is an object of the present invention to provide a high-speed shape recognition device for carrying out the measurement method.

[課題を解決するための手段] 本発明に係る半導体装置検出器による形状高速測定方法
は、測定対象物に照射した光スポットの反射光を半導体
装置検出器の受光面に集光して、三角測量の演算によっ
て該測定対象物の照射面の高さを計測する方法において
、上記測定対象物に照射する光スポットを光束位置変更
手段を介して、該測定対象物面上において走査移動せし
めると共に、該各走査移動ステップごとに上記半導体装
置検出器からの出力値を読み込み、これに所定の演算を
加えた出力値群を計測値とすることを要旨とするもので
ある。
[Means for Solving the Problems] A method for high-speed shape measurement using a semiconductor device detector according to the present invention focuses the reflected light of a light spot irradiated onto a measurement object on the light receiving surface of the semiconductor device detector to form a triangular shape. In the method of measuring the height of the irradiation surface of the object to be measured by surveying calculations, the light spot irradiating the object to be measured is scanned and moved on the surface of the object to be measured via a beam position changing means; The gist of this method is to read the output values from the semiconductor device detector at each scanning movement step, and to obtain a group of output values obtained by adding a predetermined calculation to the output values as measured values.

また、上記方法を具体化する構造としては、光源と上記
測定対象物間との光束上に、該測定対象物面上に照射す
る光スポットを走査移動する光束位置変更手段を介挿す
ると共に、上記半導体装置検出器の後段に該各走査移動
ステップごとに出力値を読み込み、これに所定の演算を
加える同期演算回路を構成することができる。
Further, as a structure embodying the above method, a light beam position changing means for scanning and moving a light spot irradiated onto the surface of the object to be measured is inserted on the light beam between the light source and the object to be measured, and A synchronous arithmetic circuit can be configured downstream of the semiconductor device detector to read the output value for each scanning movement step and perform a predetermined arithmetic operation on the output value.

[作用] 本発明の原理は第1図に示すように、半導体レーザ1か
らの投射光を投光レンズ群2.3によって集光して、測
定対象物a上に小さな光スポットf1として照射し、こ
の測定対象物aからの反射光f2を、受光レンズ6によ
り二次元PSD7 (以下PSD7と称する)の受光面
上の一点に集光する構造にすると共に、上記投光レンズ
群2,3の近傍の光軸上に光束位置変更手段4を構成す
るものである。ここで測定対象物aが破線で示すa1位
置に変位すると、受光レンズ6への入射光f2角度が変
化するため、PSDT上の集光スポットは対象物aの変
位(LI  L2)に比例して移動するので、PSD7
上の集光スポットの位置が判れば測定対象物aまでの距
離しを求めることができる。
[Operation] As shown in FIG. 1, the principle of the present invention is that the projection light from the semiconductor laser 1 is focused by the projection lens group 2.3 and irradiated onto the measurement object a as a small light spot f1. The reflected light f2 from the measurement object a is condensed to one point on the light receiving surface of the two-dimensional PSD 7 (hereinafter referred to as PSD 7) by the light receiving lens 6, and the light emitting lens groups 2 and 3 are A beam position changing means 4 is constructed on the nearby optical axis. Here, when the measurement object a is displaced to the a1 position shown by the broken line, the angle f2 of the incident light to the light receiving lens 6 changes, so the focused spot on the PSDT is proportional to the displacement (LI L2) of the object a. Since it is moving, PSD7
If the position of the upper focal spot is known, the distance to the object to be measured a can be determined.

第1図に示すように、距離りは 八 D=投受光部間の距離 F:受光レンズ6とPSD7間の距離 また、第2図は半導体装置検出器(−次元PSD)の断
面説明図であり、両面が均一な抵抗層により形成されて
おり、抵抗層の両端に信号取り出し用の一対の電極A、
Bが設けられて、光電効果により光電流を生成する。画
電極A、Bの距離をj、抵抗を恥とし、電極Aより光の
入射位置までの距離をX、その部分の抵抗をRxとする
As shown in Fig. 1, the distance is 8D = Distance between light emitting and receiving parts F: Distance between light receiving lens 6 and PSD 7. Fig. 2 is a cross-sectional explanatory diagram of a semiconductor device detector (-dimensional PSD). Both sides are formed by a uniform resistance layer, and a pair of electrodes A for signal extraction are provided at both ends of the resistance layer.
B is provided to generate a photocurrent due to the photoelectric effect. Let the distance between the picture electrodes A and B be j, the resistance be the distance, the distance from the electrode A to the light incident position be X, and the resistance of that portion be Rx.

光の入射位置で発生した光生成電流IOは、それぞれの
電極までの抵抗値に逆比例するように分割され、取り出
される電流Ia、Ibは 抵抗層は均一であり、長さと抵抗値が比例するとすれば
、(21式は次のようになる。
The photogenerated current IO generated at the light incident position is divided inversely proportional to the resistance value up to each electrode, and the extracted currents Ia and Ib are calculated as follows: The resistance layer is uniform, and the length and resistance value are proportional to each other. Then, (Equation 21 becomes as follows.

(31式より として求められ、(1)式によってLが求められる。(From type 31 , and L is determined by equation (1).

上記方法及び構造によれば、光束位置変更手段によって
測定対象物に照射する光源からの光スポットを、一方向
に走査変位させると共に、他の方向より移動台を平行移
動させ、さらに一方向に走査変位して、順次このように
照射することができ、この照射面からの反射光によるP
SDの出力を走査と対応して読み込みすることによって
、測定速度を高速化することができる。
According to the above method and structure, the beam position changing means scans and displaces the light spot from the light source irradiating the object to be measured in one direction, moves the movable table in parallel from the other direction, and further scans in one direction. It can be displaced and irradiated sequentially in this way, and the P
By reading the output of the SD in correspondence with scanning, the measurement speed can be increased.

[実施例] 以下、本発明に係る半導体装置検出器による形状高速測
定方法を実施する形状高速認識装置の好ましい実施例を
図面に従って説明する。
[Embodiment] Hereinafter, a preferred embodiment of a high-speed shape recognition apparatus that implements a high-speed shape measurement method using a semiconductor device detector according to the present invention will be described with reference to the drawings.

第1図は、本発明の原理、を示す装置の光学系の第一の
実施例であり、光スポットの光源として例えば半導体レ
ーザ1を測定対象物aとの光学的対向位置に設け、該半
導体レーザ1と測定対象物8間の光軸上に、光束を測定
対象物aに対して照射制御するための二組の投光レンズ
群2.3を設けてなると共に、該両しンズ群2.3間に
光軸ど直交する光束位置変更手段4を介挿してなるもの
で、該光束位置変更手段4は、電子駆動制御手段5から
の制御信号によって、測定対象物aに照射する点状に絞
った光束f1を該測定対象物8面上で走査する構造にな
る。符号6は、測定対象物aに照射した光束f1の反射
光束f2を受光する受光レンズであり、該受光レンズ6
の後方焦点位置に位置検出デバイスとしてPSD7を固
設してなる上記構成の光学系は第3図(a)に示すよう
に、半導体レーザ1から投射した光束を光束位置変更手
段4によって電気的に測定対象物a面をY方向に走査移
動するスポット光束f s  (CHl 、 CH2・
・・CHn )に変更すると共に(第一の走査位置b)
、測定対象物を載置した移動台Aを−X方向に移動し、
前記第一の走査位置すに第二の走査位置Cをセット(第
3図(b) ) 、次にY方向に走査移動して、その後
同様の走査を行うことにより第3図(e)に示すように
走査される。また、第3図(c)において、Wラインか
ら下方を測定する必要あるときは上記と同様の方法を繰
り返せばよい。
FIG. 1 shows a first embodiment of an optical system of an apparatus showing the principle of the present invention. On the optical axis between the laser 1 and the object to be measured 8, two sets of projection lens groups 2.3 are provided for controlling the irradiation of the light beam onto the object to be measured a. A beam position changing means 4 which is orthogonal to the optical axis is inserted between . The structure is such that the light beam f1 focused on the object 8 is scanned over the surface of the object to be measured. Reference numeral 6 denotes a light-receiving lens that receives a reflected light flux f2 of the light flux f1 irradiated onto the measurement object a;
As shown in FIG. 3(a), the optical system having the above structure in which the PSD 7 is fixed as a position detection device at the rear focal position of the semiconductor laser 1 electrically converts the beam projected from the semiconductor laser 1 by the beam position changing means A spot light flux f s (CHl, CH2・
...CHn) and (first scanning position b)
, move the moving table A on which the measurement target is placed in the -X direction,
Set the second scanning position C to the first scanning position (Fig. 3(b)), then scan in the Y direction, and then perform the same scanning to obtain the position shown in Fig. 3(e). Scanned as shown. In addition, in FIG. 3(c), if it is necessary to measure downward from the W line, the same method as above may be repeated.

このようにしてスポット光束f・1の反射光束f2は受
光レンズ6を介してPSD7で位置検出され、後述する
方法によって演算処理し、測定対象物a面の高さ位置を
測定することができる。
In this way, the position of the reflected light beam f2 of the spot light beam f.1 is detected by the PSD 7 via the light receiving lens 6, and the height position of the surface a of the object to be measured can be measured by arithmetic processing using the method described later.

ここで、第3図に示した光束変更手段4による走査方法
の他に、X方向に走査移動するスポット光束f1に変更
すると共に、移動台Aを−Y力方向移動し、同様に順次
照射してもよい。
Here, in addition to the scanning method using the luminous flux changing means 4 shown in FIG. 3, the scanning method is changed to a spot luminous flux f1 that scans in the X direction, and the movable table A is moved in the -Y force direction to sequentially irradiate in the same manner. You can.

第4図(a)、(b)は上記光学系の光束位置変更手段
4として、マトリックス状に並列した多数の液晶シャッ
タ一部9を、電子駆動制御回路5によって順次走査開口
するように構成した液晶シャツタ−8を設けた実施例を
示すものであり、(a>図は部分斜視図、(b)は(a
)図の断面説明図である。
FIGS. 4(a) and 4(b) show a configuration in which a large number of liquid crystal shutter portions 9 arranged in matrix are sequentially scanned and opened by an electronic drive control circuit 5, as the light beam position changing means 4 of the optical system. It shows an embodiment in which a liquid crystal shutter shutter 8 is provided, (a> figure is a partial perspective view, (b) is a partial perspective view).
) is a cross-sectional explanatory diagram of the figure.

第5図は、本発明の第一の実施例を示すものであり、前
記半導体レーザ1は、中央制御装置CPUに構成した発
光信号の出力ボート11に半導体レーザ駆動回路12を
介して接続され、所定のタイミングでレーザ光を照射す
る。また液晶シャッター8は液晶制御回路(液晶シャッ
ターコントローラ)13を介して中央制御装置CPUの
出力ボート14に接続しである。前記PSD7は、例え
ば出力電流Ia、Ibをプリアンプ15.16を介して
アナログイッチ17によって切り替え出力すると共に、
サンプルホールド回路18及びアナクロ/デジタル変換
回路1つを介して中央制御袋’II CP Uの入力ボ
ート20に接続してなる。
FIG. 5 shows a first embodiment of the present invention, in which the semiconductor laser 1 is connected to a light emission signal output port 11 configured in a central control unit CPU via a semiconductor laser drive circuit 12, Laser light is irradiated at predetermined timing. Further, the liquid crystal shutter 8 is connected to an output port 14 of a central control unit CPU via a liquid crystal control circuit (liquid crystal shutter controller) 13. The PSD 7 outputs, for example, output currents Ia and Ib by switching them with an analog switch 17 via a preamplifier 15.16, and
It is connected to the input port 20 of the central control unit 'II CPU through a sample and hold circuit 18 and one analog/digital conversion circuit.

符号21は中央制御装置1fcPUの入出力ボート22
に接続したモード設定又はステータス表示等を入出力す
ると共に、測定値を表示するための出力表示部である。
Reference numeral 21 is an input/output port 22 of the central control unit 1fcPU.
This is an output display unit for inputting/outputting mode settings or status display connected to the unit, as well as displaying measured values.

上記構成の形状高速認識装置では、液晶シャッター8の
シャッタ一部9を、第4図(b)に示すように光束f1
の一部が透過するように走査移動して測定対象物aに対
する光束f、の照射位置を変更する構造になるため、各
照射位置におけるPSD7からの出力データを予め入力
しておいた数値データ<D、F)を用いて処理演算して
それぞれの位置測定値を得ることができる。
In the high-speed shape recognition device having the above configuration, the shutter part 9 of the liquid crystal shutter 8 is connected to the light beam f1 as shown in FIG. 4(b).
Since the structure is such that the irradiation position of the light beam f on the measurement target a is changed by scanning so that a part of the light beam f passes through, the numerical data < D, F) can be used for processing calculations to obtain respective position measurements.

即ち、上記走査速度は液晶シャッター8の応答速度によ
って決定されるようになるものであるが、機械的駆動機
構をもたないため、光束測定を可能にすることができる
ものである。
That is, the scanning speed is determined by the response speed of the liquid crystal shutter 8, but since it does not have a mechanical drive mechanism, it is possible to measure the luminous flux.

また上記の処理回路は、PSD7からの出力がアナログ
スイッチの切り替えによって同一のアナログ回路を経由
せしめる構造になるため、信号値のバラつきを防ぐこと
ができる。出力信号は、アナログ部からA/D変換され
てデジタル部の中央制御袋zcpuによって、三角測量
方式に従って演算され、距離情報を得ることができるも
のである。
Furthermore, since the processing circuit described above has a structure in which the output from the PSD 7 is routed through the same analog circuit by switching the analog switch, variations in signal values can be prevented. The output signal is A/D converted from the analog section and calculated by the central control unit ZCPU of the digital section according to the triangulation method, so that distance information can be obtained.

なお、二次元PSDにおいて、XI、X2の他にyt 
、Y2に対して、同種のプリアンプ15゜16、アナロ
グスイッチ17.サンプルホールド回路18.アナログ
/デジタル変換回路19を介して中央制御装置CPUの
入力ボート20に接続する回路構成は省略しである。
In addition, in the two-dimensional PSD, in addition to XI and X2, yt
, Y2, the same type of preamplifier 15°16, analog switch 17. Sample hold circuit 18. The circuit configuration connected to the input port 20 of the central control unit CPU via the analog/digital conversion circuit 19 is omitted.

次に、第6図は上記光学系の光束位置変更手段4の第二
の実施例を示すものである。
Next, FIG. 6 shows a second embodiment of the beam position changing means 4 of the optical system.

前記液晶シャッター8に替えて、振動部に光束f1の反
射鏡23を持つボイスコイル25を配置したものであり
、ボイスコイル25は、中央制御装置CPUの出力ボー
ト27に対して接続したボイスコイル駆動回路29を介
して接続してあり、反射鏡23によって反射した光束f
1の光スポットが測定対象物8面上で、走査するように
駆動してなる。さらに、ボイスコイル25のコイル電流
を位置検出器31、入力ボート30を経て中央制御装置
&cPUに出力すると同時にその結果をボイスコイル2
5にフィードバックして高精度の光束測定を可能として
いる。この他にリニヤスケールを用いて動いた量と検出
して所定の移動量にコントロールすることもできる。そ
の他の構成については第1の実施例と同様である。なお
、上記第一および第二実施例において、PSD7の出力
端Xr  X2 、Y+−Y2の後段のプリアンプ、ア
ナログスイッチ、サンプルホールド回路、アナログ/デ
ジタル変換回路入力ボート、中央制御装置CPU等のよ
うなもので同期演算回路を形成している。
In place of the liquid crystal shutter 8, a voice coil 25 having a reflecting mirror 23 for the light flux f1 is arranged in the vibrating section, and the voice coil 25 is a voice coil drive connected to the output port 27 of the central control unit CPU. The light flux f connected through the circuit 29 and reflected by the reflecting mirror 23
One light spot is driven to scan the surface of the object to be measured. Furthermore, the coil current of the voice coil 25 is output to the central controller & cPU via the position detector 31 and the input boat 30, and at the same time, the result is sent to the voice coil 25.
5 to enable highly accurate luminous flux measurement. In addition, it is also possible to use a linear scale to detect the amount of movement and control it to a predetermined amount of movement. The other configurations are the same as those of the first embodiment. In the first and second embodiments, the output terminal Xr X2 of the PSD 7, the preamplifier after Y+-Y2, the analog switch, the sample hold circuit, the analog/digital conversion circuit input port, the central control unit CPU, etc. These components form a synchronous arithmetic circuit.

また、上述したように、本発明を実施する光束位置変更
手段4は、液晶シャッター8又は反射鏡をボイスコイル
25の振動部に配設した構造のものだけでなく、スポッ
ト状の光束を発する多数の半導体レーザを並列したもの
、発光部から導出する多数の光フアイバーケーブルの光
照射端を並設する等の構造によって走査構造としたもの
、回転ポリゴンミラー等の装置により光束角度を振って
変位せしめる構造にすることもできる。
Furthermore, as described above, the light beam position changing means 4 for carrying out the present invention is not limited to one having a structure in which the liquid crystal shutter 8 or a reflecting mirror is disposed in the vibrating part of the voice coil 25, but also a plurality of light beams emitting spot-like light beams. A scanning structure is created by arranging multiple semiconductor lasers in parallel, a scanning structure is created by arranging the light emitting ends of many optical fiber cables led out from a light emitting part, and a device such as a rotating polygon mirror is used to change the angle of the light beam and displace it. It can also be a structure.

尚、前記実施例ではPSD7を照射する光スポットを得
るための光源として半導体レーザ1を使用するものにつ
いて説明したが、本発明では半導体レーザに替えてLE
D等の発光素子を使用することもできる。さらに、本発
明の距離センサーを使って、軸を中心に回転する測定対
象物の軸方向にセンサを動かして距離を測定することで
測定対象物の形状を高速認識することもできる。
In the above embodiment, the semiconductor laser 1 is used as a light source to obtain a light spot for irradiating the PSD 7, but in the present invention, an LE is used instead of the semiconductor laser.
A light emitting element such as D can also be used. Furthermore, by using the distance sensor of the present invention, the shape of the object to be measured can be recognized at high speed by moving the sensor in the axial direction of the object to be measured, which rotates around the axis, and measuring the distance.

[発明の効果] 以上述べたように、本発明に係る半導体装置検出器によ
る形状高速測定方法と形状高速認識装置によれば、光束
位置変更手段により測定対象物に照射する光スポットを
走査せしめるようになるため、従来のように該測定対象
物を測定の都度移動させて走査測定させることなく、該
形状の高さ位置情報を正確に得ることが可能となり、計
測速度を大幅に向上させる特徴を有するものであり、プ
リント基板の高さの検出、形状の認識等において殊に有
用であり、本発明実施後の実用的効果は極めて大きい。
[Effects of the Invention] As described above, according to the high-speed shape measurement method and high-speed shape recognition device using a semiconductor device detector according to the present invention, the light beam position changing means scans the light spot irradiated onto the measurement target. This makes it possible to accurately obtain the height position information of the shape without having to move and scan the measurement object each time it is measured, which is a feature that greatly improves the measurement speed. It is particularly useful in detecting the height of printed circuit boards, recognizing shapes, etc., and the practical effects after implementation of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体装置検出器による形状高速
測定方法の原理を示す光学系の説明図、第2図は半導体
装置検出器の原理を示す断面説明図、第3図(a)、 
(b)、 (c)は光束位置変更手段による走査方法を
示す説明図、第4図(a)、(b)は同光学系の光束位
1変更手段を示す液晶シャッターの斜視図と断面説明図
、第5図は本発明装置の第一の実施例を示す光学系の配
置と制御系のブロック線図、第6図は第二の実施例の光
束位置変更手段を示す光学系の配置図と制御系のブロッ
ク線図、第7図は従来の三角測量方式による光学系の配
置図である。 1・・・半導体レーザ 2.3・・・投光レンズ群 4・・・光束位置変更手段(液晶シャッター8゜反射鏡
23.ボイスコイル25) 5・・・電子駆動制御手段(液晶制御回路13゜ボイス
コイル駆動回路29) 6・・・受光レンズ 7・・・PSD 12・・・半導体レーザ駆動回路 17・・・アナグロスイッチ 18・・・サンプルホールド回路 19・・・アナクロ/デジタル変換回路21・・・出力
表示部 CPU・・・中央制御装置 a・・・測定対象物 出願人の名称  東京重機工業株式会社第1図 第2図
Fig. 1 is an explanatory diagram of an optical system showing the principle of a high-speed shape measurement method using a semiconductor device detector according to the present invention, Fig. 2 is a cross-sectional explanatory diagram showing the principle of a semiconductor device detector, Fig. 3(a),
(b) and (c) are explanatory diagrams showing the scanning method using the beam position changing means, and FIGS. 4 (a) and (b) are perspective views and cross-sectional explanations of the liquid crystal shutter showing the beam position 1 changing means of the same optical system. 5 is a block diagram of the arrangement of the optical system and the control system showing the first embodiment of the device of the present invention, and FIG. 6 is the arrangement diagram of the optical system showing the beam position changing means of the second embodiment. and a block diagram of the control system, and FIG. 7 is a layout diagram of the optical system using the conventional triangulation method. 1... Semiconductor laser 2. 3... Projection lens group 4... Luminous flux position changing means (liquid crystal shutter 8° reflector 23. voice coil 25) 5... Electronic drive control means (liquid crystal control circuit 13)゜Voice coil drive circuit 29) 6... Light receiving lens 7... PSD 12... Semiconductor laser drive circuit 17... Analog switch 18... Sample hold circuit 19... Analog/digital conversion circuit 21. ...Output display unit CPU...Central control unit a...Measurement object Name of applicant Tokyo Heavy Equipment Industry Co., Ltd. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)検出対象物に照射した光スポットの反射光を半導
体装置検出器の受光面に集光して、該受光位置変位によ
る三角測量方式によって該測定対象物の上記光スポット
照射面の相対高さを計測する方法において、上記測定対
象物に照射する光スポットを光束位置変更手段を介して
、該測定対象物面上において走査移動せしめると共に、
該各走査移動ステップごとに上記半導体装置検出器から
の出力値を読み込み、これに所定の演算を加えた出力値
群を計測値とする半導体装置検出器による形状高速測定
方法。
(1) The reflected light of the light spot irradiated on the object to be detected is focused on the light receiving surface of the semiconductor device detector, and the relative height of the light spot irradiated surface of the object to be measured is determined by the triangulation method based on the displacement of the light receiving position. In the method of measuring the surface of the object, the light spot irradiated onto the object to be measured is scanned and moved on the surface of the object to be measured via a beam position changing means;
A high-speed shape measurement method using a semiconductor device detector, in which output values from the semiconductor device detector are read at each scanning movement step, and a group of output values obtained by adding a predetermined calculation to the output values is used as a measurement value.
(2)測定対象物に照射した光スポットの反射光を半導
体装置検出器の受光面に集光して、該受光位置変位によ
る三角測量方式によって該測定対象物の上記光スポット
照射面の相対高さを計測する装置において、光源と上記
測定対象物間の光軸上に、該測定対象物面上に照射する
光スポットを走査移動する光束位置変更手段を介挿する
と共に、上記半導体装置検出器の後段に該各走査移動ス
テップごとに出力値を読み込み、これに所定の演算を加
える同期演算回路を構成してなる半導体装置検出器によ
る形状高速認識装置。
(2) The reflected light of the light spot irradiated on the measurement target is focused on the light receiving surface of the semiconductor device detector, and the relative height of the light spot irradiation surface of the measurement target is determined by triangulation based on the displacement of the light receiving position. In the device for measuring the surface area, a light flux position changing means for scanning and moving a light spot irradiated onto the surface of the measurement object is inserted on the optical axis between the light source and the measurement object, and the semiconductor device detector A high-speed shape recognition device using a semiconductor device detector comprising a synchronous arithmetic circuit that reads an output value at each scanning movement step and adds a predetermined arithmetic operation to the output value at a subsequent stage.
JP9793588A 1988-03-31 1988-04-20 Measurement of shape and apparatus for shape recognition at high speed using semiconductor position detector Pending JPH01308905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9793588A JPH01308905A (en) 1988-03-31 1988-04-20 Measurement of shape and apparatus for shape recognition at high speed using semiconductor position detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-79608 1988-03-31
JP7960888 1988-03-31
JP9793588A JPH01308905A (en) 1988-03-31 1988-04-20 Measurement of shape and apparatus for shape recognition at high speed using semiconductor position detector

Publications (1)

Publication Number Publication Date
JPH01308905A true JPH01308905A (en) 1989-12-13

Family

ID=26420627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9793588A Pending JPH01308905A (en) 1988-03-31 1988-04-20 Measurement of shape and apparatus for shape recognition at high speed using semiconductor position detector

Country Status (1)

Country Link
JP (1) JPH01308905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373362A (en) * 1992-04-03 1994-12-13 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Light source device for measuring shape
CN107036533A (en) * 2017-05-03 2017-08-11 重庆重科智能装备研究院有限公司 Gun barrel rifling bullet hall measuring machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373362A (en) * 1992-04-03 1994-12-13 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Light source device for measuring shape
CN107036533A (en) * 2017-05-03 2017-08-11 重庆重科智能装备研究院有限公司 Gun barrel rifling bullet hall measuring machine

Similar Documents

Publication Publication Date Title
JPH01308905A (en) Measurement of shape and apparatus for shape recognition at high speed using semiconductor position detector
CN111380471A (en) Thickness measuring device
JPH11173821A (en) Optical inspecting device
JP2987540B2 (en) 3D scanner
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JPH0255907A (en) Shape recognition device
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JPH06258040A (en) Laser displacement meter
JP2003097924A (en) Shape measuring system and method using the same
JPS6042606A (en) Optical size measuring device
JP2005098703A (en) Electron beam measuring apparatus
JPH03111707A (en) Detecting method of shape of object
KR100467745B1 (en) System of measuring position of rotor of Galvano meter
JPH02276908A (en) Three-dimensional position recognizing device
JPH08219733A (en) Three-dimensional scanner
JPH032512A (en) Three-dimensional position recognition device
JPS61191908A (en) Measurement of shape
JPH03296607A (en) Three-dimensional shape measuring apparatus
JP2866566B2 (en) 3D shape input device
JP3271221B2 (en) Method of detecting light emission position of light emitter and method of assembling optical parts using the same
JP2009097986A (en) Light source apparatus and optical measuring apparatus
KR101490457B1 (en) Apparatus for inspecting
JPS59203908A (en) Optical measuring device
JPH10281732A (en) Dimension measuring equipment
JP2008256464A (en) Measurement apparatus