JPH01308452A - Gas-impermeable resin composition - Google Patents

Gas-impermeable resin composition

Info

Publication number
JPH01308452A
JPH01308452A JP13891888A JP13891888A JPH01308452A JP H01308452 A JPH01308452 A JP H01308452A JP 13891888 A JP13891888 A JP 13891888A JP 13891888 A JP13891888 A JP 13891888A JP H01308452 A JPH01308452 A JP H01308452A
Authority
JP
Japan
Prior art keywords
nylon
gas
vinyl acetate
rubber
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13891888A
Other languages
Japanese (ja)
Inventor
Ichiro Igarashi
一郎 五十嵐
Hiroaki Ito
弘昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP13891888A priority Critical patent/JPH01308452A/en
Publication of JPH01308452A publication Critical patent/JPH01308452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve the flexibility and gas impermeability of a molding, by mixing nylon 11 and/or nylon 12 with an ethylene/vinyl acetate copolymer saponificate. CONSTITUTION:A mixture of nylon 11 (a) which is a polyamide resin obtained by polycondensing 11-aimnoundecanoic acid and/or nylon 12 (b) (A) which is a polyamide resin obtained by polymerizing omega-laurolactam through ring opening with an ethylene/vinyl acetate copolymer saponificate (B) having an ethylene content <=80mol % and a degree of saponification of vinyl acetate <=90%, in an amount to give a weight ratio (A/B) of 10-95/90-5, is mixed with a rubber (C) such as a halogenated rubber, an ethylene/propylene/diene rubber or an acrylonitrile/butadiene copolymer, in an amount to give a weight ratio [(A+B)/C] of 60-100/40-0, to obtain the title composition. This composition is useful as, e.g., a material for inner tubes of hoses for transportation of refrigerants.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガス不透過性とともに柔軟性が要求される
部材の成形材料として用いられるガス不透過性樹脂組成
物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas-impermeable resin composition used as a molding material for members that require flexibility as well as gas-impermeability.

〔従来の技術〕[Conventional technology]

従来から、ガス不透過性が要求されるような部材にはナ
イロン6等の樹脂が用いられている。しかしながら、上
記ナイロン6のようにガス不透過性に富む樹脂は、通常
剛性が高いため、ガス不透過性とともに柔軟性が要求さ
れるような部材にそのまま利用するには適さない場合が
多い。
Conventionally, resins such as nylon 6 have been used for members that require gas impermeability. However, resins with high gas impermeability, such as the above-mentioned nylon 6, usually have high rigidity, so they are often not suitable for use as they are in members that require flexibility as well as gas impermeability.

例エバ、自動車のカークーラーやエアコン等の配管用に
用いられる冷媒輸送用ホースとして、第6図に示すよう
に、内管ゴム層lと繊維補強層2と外管ゴム1i3の3
層構造になったものが知られているが、このようなゴム
ホースは柔軟性に富み配管作業性等に優れる反面、各ゴ
ム層がガス透過性を有しているため冷媒ガスが徐々にホ
ースから漏れて減少してしまうという欠点を有する。し
たがって一定の冷却能力を保持しようとすれば頻繁にガ
スチャージを行う必要がありメンテナンス上問題が多い
、そこで、内管ゴムJ!ilにおいて、ゴム材料に変え
て、あるいはゴム材料と組み合わせて、ガス不透過性に
優れた樹脂材料を用いることが提案されている。ところ
が、上記樹脂材料として前記ナイロン6を用いた場合、
ナイロン6の剛性が高く、ホースの柔軟性が著しく損な
われるため、問題となっている。
For example, as a refrigerant transport hose used for piping of an automobile's car cooler or air conditioner, etc., as shown in FIG.
Rubber hoses with a layered structure are known, but while these rubber hoses are highly flexible and have excellent piping workability, each rubber layer has gas permeability, so refrigerant gas gradually leaks out of the hose. It has the disadvantage that it leaks and decreases. Therefore, in order to maintain a constant cooling capacity, it is necessary to frequently charge the gas, which causes many maintenance problems.Therefore, the inner tube rubber J! In il, it has been proposed to use a resin material with excellent gas impermeability instead of or in combination with a rubber material. However, when the nylon 6 is used as the resin material,
This is a problem because nylon 6 has high rigidity, which significantly reduces the flexibility of the hose.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来から知られているガス不透過性樹脂は
一般に柔軟性に乏しいため、ガス不透過性とともに柔軟
性が要求されるような部材、例えば冷媒輸送用ホースや
パツキンにそのまま適用するには不充分なものであった
In this way, conventionally known gas-impermeable resins generally have poor flexibility, so they cannot be applied directly to parts that require flexibility as well as gas-impermeability, such as refrigerant transport hoses and packing. was inadequate.

この発明は、このような事情に鑑みなされたもので、ガ
ス不透過性に優れ、かつ柔軟な成形品となりうるガス不
透過性樹脂組成物の提供をその目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a gas-impermeable resin composition that has excellent gas impermeability and can be made into a flexible molded product.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明のガス不透過性樹
脂組成物は、ナイロン11およびナイロン12の少なく
とも一方と、エチレン−酢酸ビニル共重合体ケン化物と
の混合物を主成分とするという構成をとる。なお、この
発明において、「主成分とする」とは、全体が主成分の
みで構成されている場合も含む趣旨で用いている。
In order to achieve the above object, the gas-impermeable resin composition of the present invention has a composition in which the main component is a mixture of at least one of nylon 11 and nylon 12 and a saponified ethylene-vinyl acetate copolymer. Take. In addition, in this invention, "consisting of a main component" is used to include the case where the whole is composed of only a main component.

〔作用〕[Effect]

すなわち、本発明者らは、ガス不透過性と柔軟性を同時
に併せ持つ樹脂材料について、各種の樹脂を組み合わせ
て研究を重ねた結果、エチレン−酢酸ビニル共重合体ケ
ン化物と、ナイロン11およびナイロン12の少なくと
も一方とを組み合わせると、従来同時に満足させること
のできなかったガス不透過性と柔軟性の双方を同時に満
足させうるようになることを見いだしこの発明に到達し
た。
That is, as a result of repeated research on resin materials that have gas impermeability and flexibility at the same time by combining various resins, the present inventors found that saponified ethylene-vinyl acetate copolymer, nylon 11 and nylon 12 The present inventors have discovered that by combining at least one of the following, it is possible to simultaneously satisfy both gas impermeability and flexibility, which conventionally have not been possible to achieve at the same time.

つぎに、この発明の詳細な説明する。Next, this invention will be explained in detail.

この発明に用いるエチレン−酢酸ビニル共重合体ケン化
物としては、通常、エチレン含有量が80モル%以下で
、酢酸ビニルのケン化度が90モル%以上のものがあげ
られる。すなわち、エチレン含有量が80モル%を上回
り、かつ酢酸ビニルのケン化度が90モル%未満のエチ
レン−酢酸ビニル共重合体ケン化物では、ガス不透過性
の効果が不充分になる傾向がみられるからである。
The saponified ethylene-vinyl acetate copolymer used in this invention usually has an ethylene content of 80 mol% or less and a saponification degree of vinyl acetate of 90 mol% or more. In other words, saponified ethylene-vinyl acetate copolymers with an ethylene content of more than 80 mol% and a saponification degree of vinyl acetate of less than 90 mol% tend to have insufficient gas impermeability effects. This is because it will be done.

また、上記エチレン−酢酸ビニル共重合体ケン化物とと
もに用いられるナイロン11は、11−アミノウンデカ
ン酸を重縮合して得られるポリアミド樹脂で、柔軟性を
有しており、同じく上記エチレン−酢酸ビニル共重合体
ケン化物と組み合わせることにより、柔軟でかつガス不
透過性に冨む成形品となりうる。
Nylon 11 used together with the saponified ethylene-vinyl acetate copolymer is a polyamide resin obtained by polycondensing 11-aminoundecanoic acid, and has flexibility. By combining it with a saponified polymer, it can become a molded article that is flexible and highly gas impermeable.

さらに、上記ナイロン11とともに、あるいは上記ナイ
ロン11に代えて用いられるナイロン12は、ω−ラウ
ロラクタムを開環重合して得られるポリアミド樹脂で、
ナイロン11と同様柔軟性を有しており、上記エチレン
−酢酸ビニル共重合体ケン化物と組み合わせることによ
り、柔軟でかつガス不透過性に富む成形品となりうる。
Furthermore, nylon 12 used together with the above nylon 11 or in place of the above nylon 11 is a polyamide resin obtained by ring-opening polymerization of ω-laurolactam,
Like nylon 11, it has flexibility, and by combining it with the saponified ethylene-vinyl acetate copolymer, it can become a molded product that is flexible and highly gas-impermeable.

この発明のガス不透過性樹脂組成物は、上記各樹脂原料
を用い、通常の樹脂組成物を得る方法に準じて得ること
ができる。例えばエチレン−酢酸ビニル共重合体ケン化
物のペレットとナイロン11、ナイロン12のペレット
とをトライブレンドしたのち二輪スクリュー押出機によ
って混練することにより得ることができる。このとき、
ナイロン11およびナイロン12の少なくとも一方(N
)とエチレン−酢酸ビニル共重合体ケン化物(E)との
相互の配合割合は、重量基準で、N/E =10/90
〜9515、特に20/80〜90/lOの範囲に設定
することが好適である。90重量%を超えてエチレン−
酢酸ビニル共重合体ケン化物を配合すると、ガス不透過
性は極めて良好になるものの得られる成形品の剛性が高
くなるためこの発明の目的からすれば好ましくない。逆
に5重量%を下回ってエチレン−酢酸ビニル共重合体ケ
ン化物を配合すると、得られる成形品の柔軟性は良好に
なるもののガス不透過性が不充分となり好ましくない。
The gas-impermeable resin composition of the present invention can be obtained using the above-mentioned resin raw materials according to a method for obtaining ordinary resin compositions. For example, it can be obtained by tri-blending pellets of a saponified ethylene-vinyl acetate copolymer with pellets of nylon 11 and nylon 12, and then kneading the resultant mixture using a two-wheel screw extruder. At this time,
At least one of nylon 11 and nylon 12 (N
) and the saponified ethylene-vinyl acetate copolymer (E), on a weight basis, N/E = 10/90.
It is suitable to set it in the range of ~9515, particularly 20/80 ~ 90/lO. More than 90% by weight of ethylene
When a saponified vinyl acetate copolymer is blended, although the gas impermeability becomes extremely good, the rigidity of the resulting molded article becomes high, which is not preferable from the viewpoint of the purpose of the present invention. On the other hand, if less than 5% by weight of the saponified ethylene-vinyl acetate copolymer is blended, the resulting molded product will have good flexibility but will have insufficient gas impermeability, which is not preferable.

なお、この発明のガス不透過性樹脂組成物には、上記の
成分以外に、クロロスルホン化ポリエチレンゴム(C3
M)、塩素化ポリエチレン(CPE)、エピクロルヒド
リンゴム(CHC,CHR)、塩化ブチルゴム(Cm!
−IIR)等のハロゲン化ゴム、エチレン−プロピレン
−ジエンゴム(EPDM)、アクリロニトリル−ブタジ
ェン共重合体(NBR)等のゴムを含有させても差し支
えない。前記エチレン−酢酸ビニル共重合体ケン化物と
ナイロン11およびナイロン12の少なくとも一方の組
成物(X)と、上記ゴム(Y)との混合割合は、重量基
準で、X/Y=60/40〜10010の範囲内に設定
することが好適である。
In addition to the above-mentioned components, the gas-impermeable resin composition of the present invention also contains chlorosulfonated polyethylene rubber (C3
M), chlorinated polyethylene (CPE), epichlorohydrin rubber (CHC, CHR), chlorinated butyl rubber (Cm!
-IIR), ethylene-propylene-diene rubber (EPDM), acrylonitrile-butadiene copolymer (NBR), and other rubbers may be contained. The mixing ratio of the composition (X) of the saponified ethylene-vinyl acetate copolymer and at least one of nylon 11 and nylon 12 and the rubber (Y) is, on a weight basis, X/Y = 60/40 to It is preferable to set it within the range of 10010.

この発明のガス不透過性樹脂組成物は、例えば第1図に
示すような冷媒輸送用ホースの内管形成用材料として用
いることができる。図において、11はナイロン11お
よびナイロン12の少なくとも一方とエチレン−酢酸ビ
ニル共重合体ケン化物を主成分とする樹脂組成物によっ
て形成される樹脂層、12は外側ゴム層、13は繊維補
強層、14は外管ゴム層、15は眉間に滞留するガスを
外部に逃がすためのスパイキング孔で外管ゴム層14か
ら繊維補強層13まで延びている。なお、冷媒輸送用ホ
ースには第1図のように内管が2N構造になったものに
限らず、第2図〜第4図に示すような構造にしてもよい
。すなわち、第2図のものは、内管をナイロンIfおよ
びナイロン12の少なくとも一方とエチレン−酢酸ビニ
ル共重合体ケン化物を主成分とする樹脂組成物によって
形成される樹脂層11のみで構成したものである。
The gas-impermeable resin composition of the present invention can be used, for example, as a material for forming the inner tube of a refrigerant transport hose as shown in FIG. In the figure, 11 is a resin layer formed of a resin composition whose main components are at least one of nylon 11 and nylon 12 and a saponified ethylene-vinyl acetate copolymer, 12 is an outer rubber layer, 13 is a fiber reinforced layer, Reference numeral 14 denotes an outer tube rubber layer, and 15 indicates a spiking hole for releasing gas remaining between the eyebrows to the outside, which extends from the outer tube rubber layer 14 to the fiber reinforced layer 13. Note that the refrigerant transport hose is not limited to the one in which the inner tube has a 2N structure as shown in FIG. 1, but may have a structure as shown in FIGS. 2 to 4. That is, in the case shown in FIG. 2, the inner tube is composed only of a resin layer 11 formed of a resin composition whose main components are at least one of nylon If and nylon 12 and a saponified ethylene-vinyl acetate copolymer. It is.

第3図のものは、内管を3N構造とし最内層を内側ゴム
層10とし、その外側にナイロン11およびナイロン1
2の少なくとも一方とエチレン−酢酸ビニル共重合体ケ
ン化物を主成分とする樹脂組成物によって形成される樹
脂層11を形成し、その樹脂層11の外側にゴム層12
を配置したものである。さらに、第4図のものは、第1
図に示す場合とは逆に、最内層をゴム層10としその外
側に樹脂層11を配置したものである。
The one in Figure 3 has an inner tube with a 3N structure, an inner rubber layer 10 as the innermost layer, and nylon 11 and nylon 1 on the outside.
A resin layer 11 is formed of a resin composition containing at least one of the above and a saponified ethylene-vinyl acetate copolymer as a main component, and a rubber layer 12 is formed on the outside of the resin layer 11.
is arranged. Furthermore, the one in Figure 4 is
Contrary to the case shown in the figure, the rubber layer 10 is the innermost layer, and the resin layer 11 is arranged on the outside thereof.

上記冷媒輸送用ホースは、内管ゴム層の樹脂層11が、
この発明の特殊な樹脂組成物によって形成されているた
め、樹脂組成物自体の有する柔軟性およびガス不透過性
により、優れた柔軟性およびガス不透過性を備えている
In the above-mentioned refrigerant transport hose, the resin layer 11 of the inner tube rubber layer is
Since it is formed from the special resin composition of this invention, it has excellent flexibility and gas impermeability due to the flexibility and gas impermeability of the resin composition itself.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明のガス不透過性樹脂組成物は、
柔軟性に富みしかもガス不透過性に富む成形品となりう
るため、長期間にわたってシール性とガス不透過性とが
要求されるカークーラーやエアコン用の冷媒輸送用ホー
ス、あるいはパツキン等の成形材料、並びに食品や薬品
等の容器、包装材あるいはラッピングフィルム等の材料
として最適な特性を備えている。
As described above, the gas-impermeable resin composition of the present invention is
It can be made into molded products that are highly flexible and highly gas-impermeable, so it can be used for molded materials such as hoses for transporting refrigerant for car coolers and air conditioners, or packing materials that require long-term sealing and gas-impermeability. It also has properties that make it ideal for use as a material for food and drug containers, packaging materials, wrapping films, etc.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

〔実施例1〜8、比較例1〜3〕 下記の第1表に示す原料を下記の割合に従って配合し、
前記の製法に従って目的とするガス不透過性樹脂組成物
を得た。
[Examples 1 to 8, Comparative Examples 1 to 3] The raw materials shown in Table 1 below were blended according to the proportions below,
A target gas-impermeable resin composition was obtained according to the above manufacturing method.

(以下余白) このようにして得られた各樹脂組成物a % fを用い
、第1図に示すような構造のホースを、下記の手順で試
作した。なお、内管が3N構造の場合は、最初にゴム製
マンドレル上に内側ゴム層形成用の未加硫ゴム組成物を
押出成形機から押し出して管状体を得た。あとは、下記
の製法に従って作製した。
(Hereinafter, blank space) Using each of the resin compositions a%f thus obtained, a hose having the structure shown in FIG. 1 was experimentally manufactured according to the following procedure. When the inner tube had a 3N structure, a tubular body was first obtained by extruding an unvulcanized rubber composition for forming an inner rubber layer onto a rubber mandrel from an extrusion molding machine. The rest was manufactured according to the following manufacturing method.

(1)ゴム製マンドレル上に上記樹脂組成物を加熱溶融
した溶融樹脂を樹脂押出機から押し出して樹脂層11を
形成し冷却する。
(1) A molten resin obtained by heating and melting the above resin composition on a rubber mandrel is extruded from a resin extruder to form a resin layer 11, and then cooled.

(2)上記樹脂層11の外周面に、接着剤を塗布したの
ち、その上に外側ゴム1512形成用の未加硫ゴム組成
物を押出成形機から押し出して3N構造の内管を得る。
(2) After applying an adhesive to the outer peripheral surface of the resin layer 11, an unvulcanized rubber composition for forming the outer rubber 1512 is extruded from an extrusion molding machine to obtain an inner tube with a 3N structure.

(3)上記内管の外周面に接着剤を塗布したのち、繊維
補強N13用の糸をブレード編み等して繊維補強N13
を形成する。
(3) After applying adhesive to the outer peripheral surface of the inner tube, braid the yarn for fiber reinforcement N13 to make fiber reinforcement N13.
form.

(4)上記繊維補強層13の外周面に接着剤を塗布した
のち、その上に外管ゴム層14形成用の未加硫ゴム組成
物を押出成形機で押し出す。
(4) After applying an adhesive to the outer circumferential surface of the fiber reinforced layer 13, an unvulcanized rubber composition for forming the outer tube rubber layer 14 is extruded thereon using an extrusion molding machine.

(5)上記積層管を加硫接着させて一体化させたのちマ
ンドレルを抜き取る。ただし、加硫条件は、通常温度1
45〜170°C9時間30〜90分に設定する。
(5) After the laminated tubes are vulcanized and bonded to integrate them, the mandrel is removed. However, the vulcanization conditions are usually temperature 1
Set at 45-170°C for 9 hours and 30-90 minutes.

なお、各層の材質、厚み等は、下記の第2表に従った。The material, thickness, etc. of each layer were in accordance with Table 2 below.

また、上記と同様にして、内管をNBR単層で構成した
もの、樹脂層11がエチレン−酢酸ビニル共重合体ケン
化物またはナイロン11で形成された3種類のホースを
つくり、比較例とした。
In addition, in the same manner as above, three types of hoses were made, one in which the inner tube was made of a single layer of NBR, and the other in which the resin layer 11 was made of saponified ethylene-vinyl acetate copolymer or nylon 11, and used as comparative examples. .

そして、このようにして得られた各ホースについて、ホ
ースの柔軟性とガス不透過性を評価した。その結果を下
記の第2表に併せて示す。
The flexibility and gas impermeability of each hose thus obtained were evaluated. The results are also shown in Table 2 below.

なお、各評価はつぎのようにして行った。In addition, each evaluation was performed as follows.

〈柔軟性〉 ホースを300mmまたは400口に切断し、−端を平
板上に固定し、他端を曲げてその平板に到達させるたと
に要する曲げ応力を測定して評価した。値の小さい方が
柔軟性の高いことを示している。
<Flexibility> The hose was cut into 300 mm or 400 lengths, one end was fixed on a flat plate, and the other end was bent to reach the flat plate.The bending stress required to reach the flat plate was measured and evaluated. A smaller value indicates greater flexibility.

〈ガス不透過性〉 ホースを500mmに切断して40gのフロン12を封
入して両端を密封し、これを100°C雰囲気中で72
時間放置したのち、全体の重量を測定し初期重量と対比
してフロンの透過グラム数を求め評価した。値の小さい
方がガス不透過性に優れていることを示している。
<Gas impermeability> Cut the hose into 500 mm lengths, fill with 40 g of Freon 12, seal both ends, and heat the hose to 72 mm in an atmosphere of 100°C.
After standing for a period of time, the entire weight was measured and compared with the initial weight to determine the number of grams of Freon permeated and evaluated. The smaller the value, the better the gas impermeability.

(以下余白) 上記の結果から、実施例品は柔軟性およびガス不透過性
の双方に優れていることがわかる。これに対し、内管を
NBR単層で構成した比較例1品はガスが大量に透過し
ており実用的でない、また、エチレン−酢酸ビニル共重
合体ケン化物のみで樹脂層を形成した比較例2品はガス
不透過型は非常に優れている力や柔軟製が悪く、ナイロ
ン11のみで中間樹脂層を形成した比較例3品は逆に柔
軟性は良好であるがガス不透過性が悪いことがわかる。
(The following is a blank space) From the above results, it can be seen that the example products are excellent in both flexibility and gas impermeability. On the other hand, Comparative Example 1, in which the inner tube was composed of a single layer of NBR, was impractical because a large amount of gas permeated through it, and a Comparative Example in which the resin layer was formed only from saponified ethylene-vinyl acetate copolymer. The two products are gas-impermeable, but have poor strength and flexibility, while the third comparative product, in which the intermediate resin layer is made of only nylon 11, has good flexibility but poor gas impermeability. I understand that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一応用例の縦断面図、第2図、第3
図および第4図はそれぞれこの発明の他の応用例の縦断
面図、第5図は従来の冷媒輸送用ホースの縦断面図であ
る。 11・・・樹脂層 特許出願人 東海ゴム工業株式会社 代理人  弁理士 西 胚 征 彦 第1図 第2図 第3図
Figure 1 is a vertical sectional view of one application example of this invention, Figures 2 and 3 are
4 and 4 are longitudinal cross-sectional views of other application examples of the present invention, and FIG. 5 is a longitudinal cross-sectional view of a conventional refrigerant transport hose. 11...Resin layer patent applicant Tokai Rubber Industries Co., Ltd. Agent Patent attorney Yukihiko Nishi Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)ナイロン11およびナイロン12の少なくとも一
方と、エチレン−酢酸ビニル共重合体ケン化物とを主成
分とすることを特徴とするガス不透過性樹脂組成物。
(1) A gas-impermeable resin composition comprising as main components at least one of nylon 11 and nylon 12 and a saponified ethylene-vinyl acetate copolymer.
JP13891888A 1988-06-06 1988-06-06 Gas-impermeable resin composition Pending JPH01308452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13891888A JPH01308452A (en) 1988-06-06 1988-06-06 Gas-impermeable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13891888A JPH01308452A (en) 1988-06-06 1988-06-06 Gas-impermeable resin composition

Publications (1)

Publication Number Publication Date
JPH01308452A true JPH01308452A (en) 1989-12-13

Family

ID=15233186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13891888A Pending JPH01308452A (en) 1988-06-06 1988-06-06 Gas-impermeable resin composition

Country Status (1)

Country Link
JP (1) JPH01308452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091467A (en) * 1991-03-29 1992-02-25 The Goodyear Tire & Rubber Company Controlled morphology barrier elastomers made from blends of syndiotactic 1,2-polybutadiene and ethylene-vinyl acetate-vinyl alcohol terpolymers
US5153262A (en) * 1991-03-29 1992-10-06 The Goodyear Tire & Rubber Company Controlled morphology barrier elastomers made from blends of syndiotactic 1,2-polybutadiene and ethylene-vinyl acetate-vinyl alcohol terpolymers
JP2010184406A (en) * 2009-02-12 2010-08-26 Bridgestone Corp Hose for transporting refrigerant
CN103589147A (en) * 2013-10-29 2014-02-19 安徽安缆模具有限公司 Impact-resistance nylon PA12 material for automobile connectors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091467A (en) * 1991-03-29 1992-02-25 The Goodyear Tire & Rubber Company Controlled morphology barrier elastomers made from blends of syndiotactic 1,2-polybutadiene and ethylene-vinyl acetate-vinyl alcohol terpolymers
US5153262A (en) * 1991-03-29 1992-10-06 The Goodyear Tire & Rubber Company Controlled morphology barrier elastomers made from blends of syndiotactic 1,2-polybutadiene and ethylene-vinyl acetate-vinyl alcohol terpolymers
JP2010184406A (en) * 2009-02-12 2010-08-26 Bridgestone Corp Hose for transporting refrigerant
CN103589147A (en) * 2013-10-29 2014-02-19 安徽安缆模具有限公司 Impact-resistance nylon PA12 material for automobile connectors

Similar Documents

Publication Publication Date Title
US4984604A (en) Rubber hose
US5016675A (en) Refrigerant transporting hose
CN100354121C (en) Frigrant hose
US5941286A (en) Composite fuel and vapor barrier tube and process for making same
US6062269A (en) Refrigerant conveying hose
JPH01306239A (en) Refrigerant transporting hose
JPH06238827A (en) Composite pipe of vulcanized elastomer and thermoplastic elastomer containing polyamide block, especially pipe for gasoline, and its production
JP2002525513A (en) Refrigerant hose
JPH034090A (en) Hose for transporting refrigerant
US5223571A (en) Gas-impermeable resinous composition
JPH01271229A (en) Manufacture of low-permeability hose
WO1996000657A1 (en) Composite fuel and vapor barrier tube and process for making same
JPH01308452A (en) Gas-impermeable resin composition
WO1994019638A1 (en) Hose for refrigerating systems
JPH0235291A (en) Low transmission hose
JP2589238B2 (en) Hose for transporting refrigerant and its joint structure
JPH01308453A (en) Gas-impermeable resin composition
JPH0222050A (en) Refrigerant transport hose
JPH01301244A (en) Hose for transporting refrigerant
JPH0464506B2 (en)
JPH01308454A (en) Gas-impermeable resin composition
JPH03255288A (en) Coolant hose
JPH01308455A (en) Gas-impermeable resin composition
JPH06246887A (en) Hose for automotive fuel piping
JPH0552781B2 (en)