JPH01307605A - Plane mirror interference optical system - Google Patents
Plane mirror interference optical systemInfo
- Publication number
- JPH01307605A JPH01307605A JP63139165A JP13916588A JPH01307605A JP H01307605 A JPH01307605 A JP H01307605A JP 63139165 A JP63139165 A JP 63139165A JP 13916588 A JP13916588 A JP 13916588A JP H01307605 A JPH01307605 A JP H01307605A
- Authority
- JP
- Japan
- Prior art keywords
- beam splitter
- light
- plane mirror
- corner cube
- polarizing beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 61
- 230000010287 polarization Effects 0.000 abstract description 13
- 235000010627 Phaseolus vulgaris Nutrition 0.000 abstract 1
- 244000046052 Phaseolus vulgaris Species 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、プレーンミラー干渉光学系に係り、特にレー
ザ干渉計に用いられるプレーンミラー干渉光学系に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plane mirror interference optical system, and particularly to a plane mirror interference optical system used in a laser interferometer.
従来のプレーンミラー干渉光学系を第5図に示す。この
干渉光学系は偏光ビームスプリッタ10、コーナーキユ
ーブ12、コーナーキューブ14(参照面)、1/4波
長板16、移動平面鏡(測定面) 18、偏光子20か
ら構成されている。A conventional plane mirror interference optical system is shown in FIG. This interference optical system is composed of a polarizing beam splitter 10, a corner cube 12, a corner cube 14 (reference surface), a quarter wavelength plate 16, a movable plane mirror (measurement surface) 18, and a polarizer 20.
P偏光とS偏光を有するレーザ光は偏光ビームスプリッ
タ10に入射すると、偏光膜22を通過したP偏光測定
光は実線で示すように偏光ビームスプリッタlOを通過
した後、1/4波長板16を通過し、更に移動平面鏡1
8で反射された後、気波長板l6を通過して偏光面が9
0°回転されてS偏光となって再びビームスプリッタ1
0に入射する。偏光ビームスプリッタ10に入射したS
偏光は、偏光膜22で反射され、コーナーキユーブ12
に入射したのち、再び偏光ビームスプリッタ10に入射
する。偏光ビームスプリッタ10に入射した光はS偏光
の為偏光膜22で反射され、χ波長板16を通過したの
ち、移動平面鏡18で反射され再びX2I12長板を通
過してP偏光に偏光されてビームスプリッタ10の偏光
膜22を通過し、偏光子20を通過し図示しないレシー
バ−に到着する。When the laser beam having P-polarized light and S-polarized light enters the polarizing beam splitter 10, the P-polarized measuring light that has passed through the polarizing film 22 passes through the polarizing beam splitter lO as shown by the solid line, and then passes through the quarter-wave plate 16. Passing and further moving plane mirror 1
After being reflected by 8, it passes through optical wave plate l6 and the plane of polarization becomes 9.
It is rotated by 0° and becomes S-polarized light, which is sent to beam splitter 1 again.
0. S incident on the polarizing beam splitter 10
The polarized light is reflected by the polarizing film 22 and passes through the corner cube 12.
After that, the light beam enters the polarizing beam splitter 10 again. Since the light incident on the polarizing beam splitter 10 is S-polarized, it is reflected by the polarizing film 22, passes through the χ wavelength plate 16, is reflected by the movable plane mirror 18, and passes through the X2I12 long plate again, where it is polarized into P-polarized light and becomes a beam. The light passes through the polarizing film 22 of the splitter 10, passes through the polarizer 20, and reaches a receiver (not shown).
一方、偏光ビームスプリッタ10に入射したレーザ光の
S偏光参照光は点線で示すように偏光膜22で反射され
、コーナーヰ二−プ14に入射する。コーナキューブ1
4を出射したのち再び偏光膜22で反射されビームスプ
リッタ10から出射し、偏光子20を通過しレシーバ−
に到着し、ここで参照先は前記測定光と干渉して干渉縞
を発生する。On the other hand, the S-polarized reference beam of the laser beam incident on the polarizing beam splitter 10 is reflected by the polarizing film 22 as shown by the dotted line, and is incident on the corner winding 14. corner cube 1
4 is emitted, it is reflected again by the polarizing film 22, emitted from the beam splitter 10, passes through the polarizer 20, and is transmitted to the receiver.
, where the reference target interferes with the measurement light to generate interference fringes.
しかしながら、前記従来のブレーンミラー干渉光学系は
、移動平面鏡18の傾きに対しては誤差の発生は少ない
ものの、第5図の実線と点線で示すように、測定光路(
実線)と参照光路(点線)との光路長が大きく異なって
いるため、プツトバスが非常に大きく、外乱の影響を受
けやすいという欠点がある。また、測定光路と参照光路
とが第5図に示すように共通光路が少なく、異なる光学
素子の光路を通るため、各光学素子が熱膨張した場合に
大きな誤差を発生するという欠点があった。However, in the conventional brane mirror interference optical system, although the error occurs little with respect to the inclination of the movable plane mirror 18, as shown by the solid line and dotted line in FIG.
Since the optical path lengths of the optical path (solid line) and the reference optical path (dotted line) are significantly different, there is a drawback that the put-bus is very large and is easily affected by disturbances. Further, as shown in FIG. 5, the measurement optical path and the reference optical path have few common optical paths and pass through the optical paths of different optical elements, which has the disadvantage that large errors occur when each optical element thermally expands.
本発明は、このような事情に鑑みて成されたもので、プ
ツトバスが少なく光学素子の熱膨張に対して大きな誤差
を発生しないブレーンミラー干渉光学系を提案すること
を目的としている。The present invention has been made in view of the above circumstances, and it is an object of the present invention to propose a brain-mirror interference optical system that has few putbuses and does not generate large errors due to thermal expansion of optical elements.
本発明は前記目的を達成するために、P偏光とS偏光と
を有するレーザ光が入射し、レーザ光入射方向に対して
傾斜して配置された偏、光膜を有する偏光ビームスプリ
ッタと、偏光ビームスブリフタに入射するレーザ光と直
交する方向のうちの偏光ビームスブリフタの一面側に配
置された第1のコーナキューブと、偏光ビームスブリフ
タと第1のコーナキューブとの間に配置された第1の1
/4波長板と、偏光ビームスプリッタに入射するレーザ
光と直交する方向で、第1のコーナキューブとは偏光ビ
ームスプリッタの反対側に配設された第2のコーナキュ
ーブと、偏光ビームスプリッタを挟んでレーザ光の入射
側と反対側に配設される第2の1/4波長板、参照平面
鏡、移動平面鏡と、第2のコーナキューブと第2の2波
長板とで挟まれる偏光ビームスブリフタの角部に、偏光
膜と平行に形成された反射面と、から成ることを特徴と
している。In order to achieve the above object, the present invention provides a polarizing beam splitter into which laser light having P-polarized light and S-polarized light is incident, and which has a polarized light film arranged obliquely with respect to the laser light incident direction; a first corner cube disposed on one side of the polarizing beam subrifter in a direction orthogonal to the laser beam incident on the beam subrifter; and a first corner cube disposed between the polarizing beam subrifter and the first corner cube. 1st 1
/4 wavelength plate and a second corner cube disposed on the opposite side of the polarizing beam splitter from the first corner cube in a direction orthogonal to the laser light incident on the polarizing beam splitter, and a second corner cube disposed on the opposite side of the polarizing beam splitter from the first corner cube. a polarizing beam subrifter sandwiched between a second quarter-wave plate, a reference plane mirror, a movable plane mirror disposed on the side opposite to the laser beam incidence side, a second corner cube, and a second two-wavelength plate; It is characterized by consisting of a reflective surface formed parallel to the polarizing film at the corner of the polarizing film.
本発明では、第2のコーナーキユーブと第2の1/4波
長板とで挟まれる偏光ビームスプリッタの角部に、偏光
膜と平行に反射面を形成したので、測定光と参照光とが
同一の光学素子を同じ回数通過し、プツトバスが小さく
なり、また光学素子の熱膨張の影響を小さく出来る。In the present invention, a reflective surface is formed parallel to the polarizing film at the corner of the polarizing beam splitter sandwiched between the second corner cube and the second quarter-wave plate, so that the measurement light and the reference light are By passing through the same optical element the same number of times, the put-bus is small, and the influence of thermal expansion of the optical element can be reduced.
また、本発明では参照光と測定光とが同一経路を通って
いるので空気のゆらぎによる影響は同一の影響を受け、
誤差が少なくなる。In addition, in the present invention, since the reference light and the measurement light pass through the same path, they are affected by air fluctuations in the same way.
Errors are reduced.
以下添付図面に従って本発明に係るプレーンミラー干渉
光学系の好ましい実施例を詳説する。Preferred embodiments of the plane mirror interference optical system according to the present invention will be described in detail below with reference to the accompanying drawings.
第1図では本発明に係るプレーンミラー干渉光学系の測
定光の光路を示す光学系が示され、第2図では本発明に
係る干渉光系の参照光の光路が示され、測定光と参照先
の光路は同一の光学系で形成されるが、便宜的に測定光
と参照光の光路とを分けて説明する。第1図に於いて、
偏光ビームスプリッタ30の下方には1/4波長板32
を介して下方コーナーキューブ34が配置され、また、
偏光ビームスプリッタ30の上方には上方コーナーキュ
ーブ36が配置されている。コーナキューブ30.36
はレーザの入射方向に対して直交する方向に配置される
。偏光膜38はレーザ光の入射方向に対して傾斜して配
置され、更に第3図に示すように偏光膜38と平行に反
射面が形成されている。この反射面40はAI、Cr等
の金属蒸着面で反射面40が形成されている。FIG. 1 shows an optical system showing the optical path of the measurement light of the plane mirror interference optical system according to the present invention, and FIG. 2 shows the optical path of the reference light of the interference optical system according to the invention. Although the above optical paths are formed by the same optical system, for convenience, the optical paths of the measurement light and the reference light will be explained separately. In Figure 1,
A quarter wavelength plate 32 is located below the polarizing beam splitter 30.
A lower corner cube 34 is disposed through the
An upper corner cube 36 is arranged above the polarizing beam splitter 30. corner cube 30.36
is arranged in a direction perpendicular to the direction of incidence of the laser. The polarizing film 38 is arranged obliquely with respect to the direction of incidence of the laser beam, and furthermore, as shown in FIG. 3, a reflective surface is formed parallel to the polarizing film 38. The reflective surface 40 is formed of a metal vapor-deposited surface such as AI or Cr.
偏光ビームスブリフタ30の第1図上で右側方には1/
4波長板42が配置され、更にその側方に参照平面鏡4
4、移動平面鏡46が配置されている。On the right side of the polarizing beam subrifter 30 in FIG.
A 4-wavelength plate 42 is arranged, and a reference plane mirror 4 is further placed on the side thereof.
4. A movable plane mirror 46 is arranged.
参照平面鏡44は、移動平面鏡46より小さく形成され
、測定光が参照平面鏡によって遮光されないようになっ
ている。The reference plane mirror 44 is formed smaller than the movable plane mirror 46 so that the measurement light is not blocked by the reference plane mirror.
前記の如く構成された本発明に係る実施例の作用は次の
とおりである。先ず、本発明の干渉光学系の測定光の光
路を第1図に従って説明する。P偏光とS偏光とを存す
るレーザ光は偏光ビームスプリッタ30に入射すると偏
光ビームスプリッタ30の偏光膜38をP偏光は通過す
るがS偏光は反射される。偏光ビームスプリッタ30を
通過したP偏光はス波長板42を通過し、移動平面鏡4
6で反射されたのち、再びス彼長板42を通ると偏光面
が90°回転し、S偏光となる。、このため、偏光膜3
8で反射され90°向きが変わる。このS偏光は反射面
40で反射されたのち再び偏光膜38で反射され、コー
ナーキューブ36に入射する。コーナーキューブ36で
向きを180°変えられ、コーナーキューブ36から出
射した光は反射面40で反射され、ス波長板42を通過
し移動平面鏡46で反射される。移動平面鏡46で反射
された光はス波長板42を通り、この時偏光面が90°
回転し、S偏光はP偏光となる。その後反射面40で反
射され、コーナーキューブ36から出射すると、この光
はP偏光であるので偏光膜38を通過し、偏光ビームス
プリッタ30を出射する。偏光ビームスプリッタ30を
出射した後、1/4波長板32を通り、下方コーナーキ
ューブ34を経て再びス波長板32を通ってS偏光とな
り、S偏光の為偏光膜38で反射され、図示しないレシ
ーバ−に到達する。The operation of the embodiment according to the present invention constructed as described above is as follows. First, the optical path of the measurement light of the interference optical system of the present invention will be explained with reference to FIG. When the laser light including P-polarized light and S-polarized light enters the polarizing beam splitter 30, the P-polarized light passes through the polarizing film 38 of the polarized beam splitter 30, but the S-polarized light is reflected. The P-polarized light that has passed through the polarization beam splitter 30 passes through a wavelength plate 42 and is then moved to a movable plane mirror 4.
After being reflected by the light beam 6, when it passes through the mirror plate 42 again, the plane of polarization is rotated by 90 degrees and becomes S-polarized light. , Therefore, the polarizing film 3
It is reflected at 8 and changes direction by 90°. This S-polarized light is reflected by the reflective surface 40, then reflected again by the polarizing film 38, and enters the corner cube 36. The direction of the light is changed by 180 degrees by the corner cube 36, and the light emitted from the corner cube 36 is reflected by a reflecting surface 40, passes through a wavelength plate 42, and is reflected by a movable plane mirror 46. The light reflected by the movable plane mirror 46 passes through the wavelength plate 42, and at this time, the plane of polarization is 90°.
The S-polarized light becomes P-polarized light. Thereafter, the light is reflected by the reflective surface 40 and exits from the corner cube 36. Since this light is P-polarized, it passes through the polarizing film 38 and exits the polarizing beam splitter 30. After being emitted from the polarizing beam splitter 30, it passes through a quarter-wave plate 32, passes through a lower corner cube 34, and passes through the wavelength plate 32 again to become S-polarized light.Since it is S-polarized light, it is reflected by a polarizing film 38, and sent to a receiver (not shown). − is reached.
次に本発明の干渉光学系の参照先の光路について第2図
に従って説明する。先ず偏光ビームスプリッタ30に入
射したレーザ光のS偏光は偏光膜38で反射され、ス波
長板32を通過して下方コーナーキューブ34に入射す
る。下方コーナーキユーブ34を出射したS偏光の光は
V4彼長板を通過して偏光面が90°回転し、P偏光と
なり再び偏光ビームスプリッタ30に入射する。この光
はP偏光であるため偏光膜38を通過し、偏光ビームス
プリッタ30を出射してコーナーキユーブ36に入射す
る。コーナーキューブ36に入射した光は180°方向
を変えられて出射し、反射面40で反射され、これによ
り1/4波長板42を通過し、参照平面鏡44に到達す
る。参照平面鏡44で反射された光は1/4波長板42
を通過し、この時P偏光の光は偏光面が90°回転して
S偏光に変えられ、反射面40で90°方向を変えられ
たのち再びコーナーキューブ36に入射する。コーナー
キューブ36に入射した光は再び偏光ビームスブリ ′
ツタ30に入射するが、S偏光のため偏光膜38で90
°反射され、反射面40に向けて反射され、この反射面
40で90’向きを変えられ偏光膜38に向けて反射さ
れる。偏光膜38ではS偏光のため反射され、偏光ビー
ムスプリッタ30を出射し、気液長板42を通過し、参
照平面鏡44で反射されたのち、再びス波長板を通過し
P偏光となり偏光ビームスプリッタ30に入射する。偏
光ビームスプリッタ30に入射した光はP偏光であるた
め偏光膜38を通過し図示しないレシーバ−に到達する
。ここで前記測定光と参照光とが干渉し干渉縞を形成す
ることに・なる。Next, the reference optical path of the interference optical system of the present invention will be explained with reference to FIG. First, the S-polarized light of the laser light incident on the polarizing beam splitter 30 is reflected by the polarizing film 38, passes through the wavelength plate 32, and enters the lower corner cube 34. The S-polarized light emitted from the lower corner cube 34 passes through the V4 long plate, the plane of polarization is rotated by 90 degrees, becomes P-polarized light, and enters the polarizing beam splitter 30 again. Since this light is P-polarized light, it passes through the polarizing film 38, exits the polarizing beam splitter 30, and enters the corner cube 36. The light incident on the corner cube 36 is output with its direction changed by 180 degrees, reflected by the reflective surface 40, passes through the quarter wavelength plate 42, and reaches the reference plane mirror 44. The light reflected by the reference plane mirror 44 passes through the 1/4 wavelength plate 42
At this time, the polarization plane of the P-polarized light is rotated by 90 degrees, and the light is changed into S-polarized light.The direction of the P-polarized light is changed by 90 degrees by the reflecting surface 40, and then the light enters the corner cube 36 again. The light incident on the corner cube 36 becomes a polarized beam again.
The light enters the ivy 30, but because it is S-polarized, the polarizing film 38
The light is reflected by the reflection surface 40, the direction of which is changed by 90', and the light is reflected toward the polarizing film 38. It is reflected by the polarizing film 38 as S-polarized light, exits the polarizing beam splitter 30, passes through the gas-liquid long plate 42, is reflected by the reference plane mirror 44, and then passes through the wavelength plate again to become P-polarized light, which is then sent to the polarizing beam splitter. 30. Since the light incident on the polarizing beam splitter 30 is P-polarized light, it passes through the polarizing film 38 and reaches a receiver (not shown). Here, the measurement light and the reference light interfere to form interference fringes.
前記実施例によれば、第1図並びに第2図に示すように
測定光の光路と参照光との光路とが極めて近い光路をと
り、同一の光学素子を同じ回数通るた緬、光学素子の熱
膨張の影響を受けない。According to the embodiment, as shown in FIGS. 1 and 2, the optical path of the measurement light and the reference light are very close, and the optical path of the measurement light and the reference light are very close to each other, and the optical path of the measurement light and the reference light are very close to each other. Not affected by thermal expansion.
また、測定光と参照光とはほぼ同一光路を空間伝送する
ため空気のゆらぎをうけに(り、移動平面鏡46と参照
平面鏡44が可能な限り近づけられるのでデッドバスが
最小になるように配置することができる。In addition, since the measurement light and the reference light are spatially transmitted along almost the same optical path, they should be arranged so that the movable plane mirror 46 and the reference plane mirror 44 are brought as close as possible to minimize the dead bus. I can do it.
また、第4図では移動平面鏡46が傾いた場合の測定光
の光路を示したものであるが、平面鏡46の傾きθの為
に傾いた光に対してレーザ光は平行に戻ってくるので、
入射光に対して出射光は移動平面鏡46の傾きの影響が
小さい。第4図では測定光の光路について説明したので
あるが、参照先の光路も全く同様に参照平面鏡44の傾
きの影響は少ない。Furthermore, although FIG. 4 shows the optical path of the measurement light when the movable plane mirror 46 is tilted, the laser beam returns parallel to the tilted light due to the tilt θ of the plane mirror 46.
The outgoing light is less affected by the tilt of the movable plane mirror 46 than the incident light. Although the optical path of the measurement light has been described in FIG. 4, the optical path of the reference destination is similarly less affected by the inclination of the reference plane mirror 44.
以上説明したように本発明に係るブレーンミラー干渉光
学系によれば、ビームスプリッタの角部に偏光膜と平行
に反射膜を形成することにより測定光光路と参照光光路
とが同一の光学素子を同じ回数通過することになり、光
学素子の熱膨張の影響を小さくできる。また平面鏡の傾
きの影響も少ない。As explained above, according to the brain-mirror interference optical system according to the present invention, by forming a reflective film in parallel to the polarizing film at the corner of the beam splitter, the measurement light optical path and the reference light optical path are connected to the same optical element. Since the optical element passes through the same number of times, the influence of thermal expansion of the optical element can be reduced. Also, the influence of the tilt of the plane mirror is small.
また、本発明では、測定面と参照面とを従来に比較して
極めて近づけて配電できるので、デッドバスが小さくな
り、外乱の影響を小さくできる。Furthermore, in the present invention, power can be distributed much closer to the measurement surface and the reference surface than in the past, so the dead bus can be reduced and the influence of disturbances can be reduced.
更に本発明では、参照光と測定光とが同一経路を通って
いるので空気のゆらぎによる影響は同一の影響を受け、
誤差が少なくなる。Furthermore, in the present invention, since the reference light and the measurement light pass through the same path, they are affected by air fluctuations in the same way.
Errors are reduced.
第1図は本発明に係る干渉光学系の測定光光路を示す説
明図、第2図は本発明に係る干渉光学系の参照先の光路
を示す説明図、第3図は偏光ビームスプリッタの概略形
状を示す斜視図、第4図は平面鏡が傾いた場合の本発明
に係る干渉光学系の測定光光路を示す説明図、第5図は
従来の干渉光学系の光路を示す説明図である。
30・・・偏光ビームスプリッタ、 32・・・ス波
長板、 34.36・・・コーナーキユーブ、 3
8・・・偏光膜、 40・・・反射面、 42・・・ス
波長板、44・・・参照平面鏡、 46・・・移動平面
鏡。FIG. 1 is an explanatory diagram showing the measurement light optical path of the interference optical system according to the present invention, FIG. 2 is an explanatory diagram showing the reference optical path of the interference optical system according to the present invention, and FIG. 3 is a schematic diagram of the polarizing beam splitter. FIG. 4 is an explanatory diagram showing the measurement light optical path of the interference optical system according to the present invention when the plane mirror is tilted; FIG. 5 is an explanatory diagram showing the optical path of the conventional interference optical system. 30...Polarizing beam splitter, 32...Switching wave plate, 34.36...Corner cube, 3
8... Polarizing film, 40... Reflecting surface, 42... Wave plate, 44... Reference plane mirror, 46... Moving plane mirror.
Claims (1)
入射方向に対して傾斜して配置された偏光膜を有する偏
光ビームスプリッタと、 偏光ビームスプリッタに入射するレーザ光と直交する方
向のうちの偏光ビームスプリッタの一面側に配置された
第1のコーナキューブと、 偏光ビームスプリッタと第1のコーナキューブとの間に
配置された第1の1/4波長板と、偏光ビームスプリッ
タに入射するレーザ光と直交する方向で、第1のコーナ
キューブとは偏光ビームスプリッタの反対側に配設され
た第2のコーナキューブと、 偏光ビームスプリッタを挟んでレーザ光の入射側と反対
側に配設される第2の1/4波長板、参照平面鏡、移動
平面鏡と、 第2のコーナキューブと第2の1/4波長板とで挟まれ
る偏光ビームスプリッタの角部に、偏光膜と平行に形成
された反射面と、 から成るプレーンミラー干渉光学系。[Scope of Claims] A polarizing beam splitter into which a laser beam having P-polarized light and S-polarized light is incident and which has a polarizing film arranged obliquely with respect to the laser beam incident direction; and a laser beam incident on the polarizing beam splitter. a first corner cube disposed on one side of the polarizing beam splitter in a direction orthogonal to the polarizing beam splitter; a first quarter-wave plate disposed between the polarizing beam splitter and the first corner cube; A second corner cube is disposed on the opposite side of the polarizing beam splitter from the first corner cube in a direction perpendicular to the laser beam incident on the polarizing beam splitter, and a second corner cube is arranged on the opposite side of the polarizing beam splitter to the laser beam incident side with the polarizing beam splitter in between. At the corner of the polarizing beam splitter sandwiched between the second quarter-wave plate, reference plane mirror, and movable plane mirror disposed on the opposite side, the second corner cube, and the second quarter-wave plate, A plane mirror interference optical system consisting of a reflective surface formed parallel to a polarizing film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139165A JP2501871B2 (en) | 1988-06-06 | 1988-06-06 | Plane mirror interference optics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139165A JP2501871B2 (en) | 1988-06-06 | 1988-06-06 | Plane mirror interference optics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01307605A true JPH01307605A (en) | 1989-12-12 |
JP2501871B2 JP2501871B2 (en) | 1996-05-29 |
Family
ID=15239095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63139165A Expired - Fee Related JP2501871B2 (en) | 1988-06-06 | 1988-06-06 | Plane mirror interference optics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2501871B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444532A (en) * | 1992-02-25 | 1995-08-22 | Nikon Corporation | Interferometer apparatus for detecting relative movement between reflecting members |
-
1988
- 1988-06-06 JP JP63139165A patent/JP2501871B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444532A (en) * | 1992-02-25 | 1995-08-22 | Nikon Corporation | Interferometer apparatus for detecting relative movement between reflecting members |
Also Published As
Publication number | Publication date |
---|---|
JP2501871B2 (en) | 1996-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4028427B2 (en) | Interferometer that eliminates beam walk-off using beam retrace | |
US4502783A (en) | Alignment stabilization prism | |
US5048030A (en) | Light amplifying device | |
US7355719B2 (en) | Interferometer for measuring perpendicular translations | |
JPH0593884A (en) | Beam combination/split cube prism for chromatic polarization | |
JPH07139906A (en) | Polarization rotating apparatus with frequency-shift phase conjugate mirror and simplified interferometer-output coupler | |
CN215296151U (en) | Double-frequency laser interferometer | |
JPH03126910A (en) | Polarization light source device and polarization beam splitter | |
US7362447B2 (en) | Low walk-off interferometer | |
JP2007147618A (en) | Monolithic displacement measuring interferometer | |
JP2786484B2 (en) | Magneto-optical reproducing device | |
US20060039005A1 (en) | Differential interferometers creating desired beam patterns | |
JPH0547060A (en) | Optical system for magneto-optical disk | |
US5420683A (en) | Multioscillator ring laser gyro beam combining optics | |
JPH01307605A (en) | Plane mirror interference optical system | |
JP2630345B2 (en) | Straightness interferometer system and optical components | |
CN113740946A (en) | Polarization maintaining reflector group | |
JPH01307606A (en) | Plane mirror interference optical system | |
JP3367209B2 (en) | Interferometer | |
US20240146013A1 (en) | Method and arrangement for increasing the beam quality and stability of an optical resonator | |
JPS59136604A (en) | Multiple optical path laser interferometer | |
JP2007017178A (en) | Thickness measuring apparatus | |
JPH07168011A (en) | Optical system including total reflection prism | |
JPH0781824B2 (en) | Alignment device | |
JPH11233857A (en) | Polarization-preserved self-compensating reflector, laser resonator and laser amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |