JPH01307161A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH01307161A
JPH01307161A JP13436988A JP13436988A JPH01307161A JP H01307161 A JPH01307161 A JP H01307161A JP 13436988 A JP13436988 A JP 13436988A JP 13436988 A JP13436988 A JP 13436988A JP H01307161 A JPH01307161 A JP H01307161A
Authority
JP
Japan
Prior art keywords
alloy powder
zinc
zinc alloy
current collector
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13436988A
Other languages
Japanese (ja)
Inventor
Kiyonobu Nakamura
中村 精伸
Toyohide Uemura
植村 豊秀
Mitsugi Matsumoto
貢 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP13436988A priority Critical patent/JPH01307161A/en
Publication of JPH01307161A publication Critical patent/JPH01307161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Abstract

PURPOSE:To make electrical contact between low amalgamated zinc alloy powder or mercury-free zinc alloy powder and a current collector good by using a negative current collector covered with indium and/or lead and a negative active material obtained by depositing indium and/or lead on the surface of zinc powder in an aqueous solution by replacement reaction. CONSTITUTION:A negative current collector 7 covered with indium and/or lead is used. Zinc alloy powder obtained by depositing indium and/or lead on low amalgamated zinc alloy powder or mercury-free zinc alloy powder in an aqueous solution by replacement reaction is used as an active material of a negative electrode 3. Since the surface of the current collector 7 and that of the zinc alloy powder are covered with the same material, electrical contact is made good. Since lead and indium are elements having high hydrogen overvoltage, they are stable in an alkaline battery, and deterioration in electrical contact between zinc particles and between zinc particle and the current collector 7 caused by zinc oxide which is corrosion product of zinc is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルカリ電池に関し、詳しくは負極活物質とし
て用いられる亜鉛合金粉末が低氷化または無水化におい
ても放電性能を高い水準に維持できるアルカリ電池に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to alkaline batteries, and more specifically, the present invention relates to alkaline batteries, and more specifically, zinc alloy powder used as a negative electrode active material is an alkaline battery that can maintain discharge performance at a high level even in low icing or anhydrous conditions. It is related to batteries.

[従来の技術] 近年、例えば電卓、電子式時計、ラジオ、カメラ等の電
子機器の多様化、高度化に伴い、これら電子機器を駆動
するための電池も用途に応じた性能を発揮することが要
求され、多種多様の製品が出現するに至っている。特に
アルカリ液を電解液とするアルカリ電池は、従来から用
いられているマンガン乾電池に比べ、高密度、高出力の
電池が得られるところから、酸化銀電池、水銀電池、ア
ルカリマンガン電池、空気亜鉛電池等、用途に応じた多
種多様の電池が市販されるに至っている。
[Background Art] In recent years, as electronic devices such as calculators, electronic clocks, radios, and cameras have become more diverse and sophisticated, the batteries used to power these electronic devices have become difficult to demonstrate performance appropriate to their intended use. Demand has led to the emergence of a wide variety of products. In particular, alkaline batteries that use an alkaline solution as an electrolyte can produce batteries with higher density and higher output than conventionally used manganese dry batteries, so they are silver oxide batteries, mercury batteries, alkaline manganese batteries, and zinc-air batteries. A wide variety of batteries have come to be commercially available depending on the purpose.

一般に、これらアルカリ電池は、負極活物質として亜鉛
または亜鉛合金粉末を用いているが、これら亜鉛または
亜鉛合金粉末は、電池内のアルカリ液中で長期保存下に
ガスを発生し、電池の膨れ、漏液、電池破裂等を起す原
因となっていた。そこでそのガス発生を抑えるために、
従来亜鉛または亜鉛合金粉末について3〜10重量%の
水銀汞化をなし水素過電圧を上げることによりガス発生
を防止する対策がとられていた。
Generally, these alkaline batteries use zinc or zinc alloy powder as the negative electrode active material, but these zinc or zinc alloy powders generate gas during long-term storage in the alkaline solution inside the battery, causing the battery to swell. This caused liquid leakage, battery explosion, etc. Therefore, in order to suppress the gas generation,
Conventionally, measures have been taken to prevent gas generation by adding 3 to 10% by weight of mercury to zinc or zinc alloy powder to increase the hydrogen overvoltage.

しかるに、近年、公害防止の観点からこのアルカリ電池
中に含まれる水銀が間居視され、このため、電池に含ま
れる水銀量の低減もしくは無水化を求める社会的要求が
高まってきている。
However, in recent years, the mercury contained in alkaline batteries has been overlooked from the perspective of pollution prevention, and as a result, there has been an increasing social demand for reducing the amount of mercury contained in batteries or for making them anhydrous.

そこで対策として、特開昭58−225565号公報に
記載されているように、亜鉛粉末の合金化で水銀量の低
減もしくは無氷化をはかる試みが数多くなされ、一部そ
の実用化が進められている。
As a countermeasure, many attempts have been made to reduce the amount of mercury or make it ice-free by alloying zinc powder, as described in JP-A No. 58-225565, and some of these efforts have been put into practical use. There is.

[発明が解決しようとする課題] ところが、これに伴い新たな問題を生じるに至った。即
ち、アルカリ電池では負極側の集電体として、従来より
黄銅棒や銅メツキしたスチール缶等が用いられていたが
、これらの集電体と氷化亜鉛合金粉末との組合せでは、
電池作成時に多量に存在する氷化亜鉛合金粉末中の水銀
の一部が黄銅棒や銅メツキ缶を氷化し、これが亜鉛合金
粉末と集電体との電気的接触を良好に保つ役割を果たし
ていた。
[Problems to be Solved by the Invention] However, this has led to new problems. That is, in alkaline batteries, brass rods, copper-plated steel cans, etc. have traditionally been used as current collectors on the negative electrode side, but when these current collectors are combined with frozen zinc alloy powder,
Some of the mercury in the frozen zinc alloy powder, which is present in large quantities during battery creation, freezes the brass rods and copper-plated cans, and this plays the role of maintaining good electrical contact between the zinc alloy powder and the current collector. .

しかし、近年の低木化、無氷化によれば、亜鉛合金粉末
中の余剰水銀が存在しなくなり、従来のような形での黄
銅棒や銅メツキ缶の氷化はできなくなる。
However, in recent years, with the reduction of shrubs and ice-free conditions, there is no longer any surplus mercury in the zinc alloy powder, making it impossible to freeze brass rods and copper-plated cans as in the past.

従って亜鉛合金粉末と集電体との良好な電気的接触が保
てず、従来の氷化亜鉛合金粉末を使用していた時に比較
して、大幅に電池性能が劣化するという課題があった。
Therefore, there was a problem that good electrical contact between the zinc alloy powder and the current collector could not be maintained, and the battery performance deteriorated significantly compared to when conventional frozen zinc alloy powder was used.

本発明は、以上の点に鑑み、低汞化亜鉛合金粉末、特に
無氷化亜鉛合金粉末を用いても、集電体と亜鉛合金粉末
との電気的接触を良好に保ち、電池特性に優れたアルカ
リ電池を提供することを目的とする。
In view of the above points, the present invention provides excellent battery characteristics by maintaining good electrical contact between the current collector and the zinc alloy powder even when using a low-fragility zinc alloy powder, especially an ice-free zinc alloy powder. The purpose of this research is to provide alkaline batteries with improved performance.

[問題点を解決するための手段] 本発明者らは、この目的に沿って鋭意研究の結果、イン
ジウムおよび/または鉛を被覆した負極集電体と亜鉛粉
末の表面にインジウムおよび/または鉛を水溶液中で置
換析出させた負極活物質を用いたアルカリ電池は、従来
のものと比較して、アルカリ電池の放電性能が著しく改
善されることを見出し、本発明に到達した。
[Means for Solving the Problem] As a result of intensive research in line with this purpose, the present inventors have discovered that indium and/or lead is coated on the surface of the negative electrode current collector and zinc powder coated with indium and/or lead. The inventors have discovered that an alkaline battery using a negative electrode active material precipitated by displacement in an aqueous solution has significantly improved discharge performance compared to conventional batteries, and has thus arrived at the present invention.

すなわち本発明は、インジウムおよび/または鉛を被覆
した負極集電体と亜鉛粉末の表面にインジウムおよび/
または鉛を水溶液中で置換析出させた負極活物質とを用
いることを特徴とするアルカリ電池にある。
That is, in the present invention, indium and/or lead is coated on the surface of the negative electrode current collector and zinc powder coated with indium and/or lead.
Alternatively, there is an alkaline battery characterized by using a negative electrode active material in which lead is substituted and precipitated in an aqueous solution.

本発明においては、上述のようにインジウムおよび/ま
たは鉛を被覆した負極集電体を用いるものであるが、負
極集電体としては、黄銅棒や銅メツキ缶が用いられる。
In the present invention, a negative electrode current collector coated with indium and/or lead is used as described above, and a brass rod or a copper-plated can is used as the negative electrode current collector.

このインジウムおよび/または鉛の被覆方法は特に制限
されず、例えば金属または合金溶湯に集電体を浸漬する
方法や電気メツキ法、金属または合金合金箔の圧着法、
あるいは金属または合金の溶射法等が挙げられる。
The method of coating indium and/or lead is not particularly limited, and examples include a method of immersing the current collector in molten metal or alloy, an electroplating method, a method of crimping metal or alloy foil,
Alternatively, a metal or alloy thermal spraying method may be used.

また、本発明においては、亜鉛粉末にインジウムおよび
/または鉛を水溶液中で置換析出した亜鉛合金粉末が負
極活物質として用いられる。この亜鉛合金粉末中のイン
ジウムおよび/または鉛の含有量は、0.1〜3.0重
量%が好ましい。
Further, in the present invention, a zinc alloy powder obtained by substituting and depositing indium and/or lead on zinc powder in an aqueous solution is used as the negative electrode active material. The content of indium and/or lead in this zinc alloy powder is preferably 0.1 to 3.0% by weight.

さらに、これらの亜鉛合金粉末を所望の量の水銀で乾式
または湿式氷化して得られる氷化亜鉛合金粉末を用いて
もよく、氷化亜鉛合金粉末中の水銀含有率は0.5重量
%以下と低木化が望ましい。
Furthermore, a frozen zinc alloy powder obtained by dry or wet freezing these zinc alloy powders with a desired amount of mercury may be used, and the mercury content in the frozen zinc alloy powder is 0.5% by weight or less. and shrubs are desirable.

なお、アルカリ電池には電池内の内圧増大抑制を目的と
して、有機インヒビター、無機インヒビターが種々検討
されているが、本発明のアルカリ電池においてもこれら
との組合せにおいても良好な結果が期待できる。
In alkaline batteries, various organic and inorganic inhibitors have been studied for the purpose of suppressing the increase in internal pressure within the battery, and good results can be expected in the alkaline battery of the present invention in combination with these inhibitors.

[作用] 本発明の作用効果は十分に解明されていないが、推定す
るに負極活物質として低汞化並合金粉末あるいは無氷化
亜鉛合金粉末を用いた場合、従来においてはこれら亜鉛
合金粉末と集電体とは材質が異なり、従って電気的抵抗
が大となるのに対し、本発明では集電体の表面と亜鉛合
金粉末の表面に同一の金属を被覆しているため亜鉛合金
粉末と集電体間の電気的接触が良好になるためと考えら
れる。
[Function] Although the effects of the present invention have not been fully elucidated, it is presumed that when a low-grade average alloy powder or an ice-free zinc alloy powder is used as a negative electrode active material, conventionally, these zinc alloy powders and The current collector is made of a different material and therefore has a large electrical resistance. However, in the present invention, the surface of the current collector and the surface of the zinc alloy powder are coated with the same metal, so the material is different from the zinc alloy powder. This is thought to be due to better electrical contact between the electric bodies.

また、鉛、インジウムは水素過電圧が高い元素であるた
め、アルカリ電池中で安定であり、亜鉛の腐食生成物で
ある酸化亜鉛等により、亜鉛粒子間および亜鉛粒子−集
電体間の電気的接触が劣化するのを回避することができ
る。
In addition, lead and indium are elements with high hydrogen overvoltage, so they are stable in alkaline batteries, and zinc oxide, which is a corrosion product of zinc, creates electrical contact between zinc particles and between zinc particles and the current collector. deterioration can be avoided.

[実施例] 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1〜3 純度99.99%以上の鉛、インジウムを約400℃で
溶融して、それぞれ金属または合金溶湯とした。
Examples 1 to 3 Lead and indium with a purity of 99.99% or higher were melted at about 400°C to form metals or molten alloys, respectively.

次に、黄銅からなる集電体を上記金属または合金溶湯に
浸漬することによって、集電体の負極活物質との接触部
分を金属または合金で被覆した。
Next, a current collector made of brass was immersed in the molten metal or alloy to coat the contact portion of the current collector with the negative electrode active material with the metal or alloy.

一方、第1表に示す負極活物質として用いられる亜鉛合
金粉末は以下のようにして作製した。
On the other hand, the zinc alloy powder used as the negative electrode active material shown in Table 1 was produced as follows.

即ち純度99.997%以上の亜鉛地金を約500℃で
溶融して、これを高圧アルゴンガス(噴出圧5Kg/c
rj)を使って粉体化した。次に篩い分けにより、亜鉛
合金粉末の粒度を48〜150flleshにそろえた
That is, zinc ingot with a purity of 99.997% or higher is melted at approximately 500°C, and then heated with high-pressure argon gas (ejection pressure 5 kg/c).
rj). Next, the particle size of the zinc alloy powder was made uniform to 48 to 150 flesh by sieving.

一方、lO%HC1水溶液IJ中に水酸化インジウム(
1n203  ・xH20)を6.5g (実施例1)
、四三酸化鉛(Pb30.s )を2.78g (実施
例2)、水酸化インジウムを3.25gと四三酸化鉛を
2.78g (実施例3)を溶解させて、これに上記で
得た亜鉛粉末を500g投入し、20分間撹拌した後、
水洗、乾燥することにより、表面に各金属を置換析出さ
せた第1表の組成の亜鉛合金粉末を得た。
On the other hand, indium hydroxide (
6.5 g of 1n203 xH20) (Example 1)
, 2.78 g of trilead tetroxide (Pb30.s) (Example 2), 3.25 g of indium hydroxide, and 2.78 g of trilead tetroxide (Example 3) were dissolved, and the above solution was dissolved therein. After adding 500g of the obtained zinc powder and stirring for 20 minutes,
By washing with water and drying, zinc alloy powder having the composition shown in Table 1 on which each metal was precipitated by substitution was obtained.

こうして得られた負極集電体および負極活物質を用い、
第1図に示すアルカリマンガン電池によって電池性能を
評価した。第1図のアルカリマンガン電池は、正極缶1
、正極2、負極3、セパレーター4、封口体5、負極底
板6、負極集電体7、キャップ8、熱収縮性樹脂チュー
ブ9、絶縁リング10.11 、外装缶12で構成され
ている。このアルカリマンガン電池を用いて放電負荷4
Ω、20℃の放電条件により終止電圧0.9■までの放
電持続時間を1(III定し、従来の黄銅のみからなる
集電体を用い、高氷化率の亜鉛合金粉末を用いた後述す
る比較例4の放電持続時間を100とした指数で結果を
第1表に示した。
Using the thus obtained negative electrode current collector and negative electrode active material,
Battery performance was evaluated using the alkaline manganese battery shown in FIG. In the alkaline manganese battery shown in Figure 1, the positive electrode can 1
, a positive electrode 2, a negative electrode 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6, a negative electrode current collector 7, a cap 8, a heat-shrinkable resin tube 9, an insulating ring 10, 11, and an outer can 12. Discharge load 4 using this alkaline manganese battery
The discharge duration up to the final voltage of 0.9 Ω was set at 1 (III) under the discharge conditions of Ω and 20°C, and a conventional current collector made only of brass was used, and a zinc alloy powder with a high freezing rate was used. The results are shown in Table 1 as an index with the discharge duration of Comparative Example 4 as 100.

比較例1〜3 負極集電体は金属被覆をしない黄銅のみからなるものを
用い、負極活物質として用いられる亜鉛合金粉末は以下
の方法で作製したものを用いた。
Comparative Examples 1 to 3 The negative electrode current collector was made of only brass without metal coating, and the zinc alloy powder used as the negative electrode active material was prepared by the following method.

即ち、純度99.997%の亜鉛地金を約500℃で溶
融して、これに第1表の比較例1〜3の組成にびるよう
にインジウム、鉛を添加して亜鉛合金を作製し、これを
高圧アルゴンガス(噴出圧5Kg/cIi)を使って粉
体化した。次に篩い分けにより、亜鉛合金粉末の粒度を
48〜150meshにそろえた。
That is, a zinc alloy having a purity of 99.997% is melted at approximately 500°C, and indium and lead are added to the composition as in Comparative Examples 1 to 3 in Table 1 to produce a zinc alloy. This was pulverized using high pressure argon gas (ejection pressure 5 kg/cIi). Next, the particle size of the zinc alloy powder was made uniform to 48 to 150 mesh by sieving.

この通常の合金法によって得られた亜鉛合金粉末を用い
て実施例1〜3と同様の方法で電池を作成し、放電試験
を行ない、後述する比較例4の放電持続時間を100と
した指数で結果を第1表に示した。
Batteries were prepared using the zinc alloy powder obtained by this ordinary alloying method in the same manner as in Examples 1 to 3, and a discharge test was performed. The results are shown in Table 1.

比較例4 負極集電体は金属被覆をしない黄銅のみからなるものを
用い、負極活物質として用いられる亜鉛合金粉末は以下
の方法で作製した。       1□ゎ、5□9゜、
9゜71よ。□つ□ゎ500’C’T m @ L、 
T・:tL@75)f、7)L、−f>lf7. (8
10B)f 5 。
Comparative Example 4 A negative electrode current collector made only of brass without metal coating was used, and a zinc alloy powder used as a negative electrode active material was produced by the following method. 1□ゎ, 5□9゜,
9°71. □Tsu□ゎ500'C'T m @L,
T.:tL@75)f, 7)L, -f>lf7. (8
10B) f5.

Kfj / ci )を使って粉体化した。次に篩い分
けによ 1す、亜鉛合金粉末の粒度を48〜150me
shにそろえた。                 
      1これを10%のKOH溶液中で撹拌しな
からHgと反応させた後、水洗、乾燥を行なって、Zn
−6,0重量%Hgの氷化亜鉛合金粉末を得た。
Kfj/ci). Next, the particle size of the zinc alloy powder is 48~150me by sieving.
Aligned with sh.
1 This was stirred in a 10% KOH solution and reacted with Hg, then washed with water and dried to form Zn.
A frozen zinc alloy powder of -6.0% by weight Hg was obtained.

これを用いて、実施例1〜3と同様の方法で放電試験を
行ない、得られた放電時間を100として第1表に示し
た。
Using this, a discharge test was conducted in the same manner as in Examples 1 to 3, and the resulting discharge times are shown in Table 1 with the discharge time set as 100.

第1表 砿 第1表に示されるごとく、本発明に係わる実施例1〜3
は、従来の亜鉛被覆をしていない集電体を用い、かつ同
一組成の負極活物質を用いた比較例1〜3と比較して、
著しく電池性能が優れていることがわかる。
Table 1 As shown in Table 1, Examples 1 to 3 according to the present invention
In comparison with Comparative Examples 1 to 3, which used a conventional current collector that was not coated with zinc and used negative electrode active materials of the same composition,
It can be seen that the battery performance is significantly superior.

また従来の高木化率亜鉛合金粉末を負極活物質を用いた
比較例4と比較しても、負極活物質として低木化率ある
いは無汞化の亜鉛合金粉末を用いることによるデメリッ
トを十分克服していることがわかる。
Furthermore, even when compared with Comparative Example 4 in which a conventional zinc alloy powder with a high wood ratio was used as a negative electrode active material, the disadvantages of using a zinc alloy powder with a low wood ratio or no grain size as a negative electrode active material were sufficiently overcome. I know that there is.

[発明の効果] 以上説明のごとく、本発明のアルカリ電池は優れた放電
性能を示すことから、負極活物質として低水化亜鉛合金
粉末あるいは無汞化亜鉛合金粉末を用いた場合のアルカ
リ電池として好適である。
[Effects of the Invention] As explained above, since the alkaline battery of the present invention exhibits excellent discharge performance, it can be used as an alkaline battery when low hydration zinc alloy powder or non-hydration zinc alloy powder is used as the negative electrode active material. suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池の側断面
図を示す。 1・・・正極缶、  2・・・正極、  3・・・負極
、4・・・セパレーター、  5・・・封口体、6・・
・負極底板、 7・・・負極集電体、8・・・キャップ
、 9・・・熱収縮性樹脂チューブ、10.11・・・
絶縁リング、  1291.外装缶。 特許出願人  三井金属鉱業株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention. DESCRIPTION OF SYMBOLS 1... Positive electrode can, 2... Positive electrode, 3... Negative electrode, 4... Separator, 5... Sealing body, 6...
- Negative electrode bottom plate, 7... Negative electrode current collector, 8... Cap, 9... Heat-shrinkable resin tube, 10.11...
Insulating ring, 1291. Exterior can. Patent applicant: Mitsui Mining & Mining Co., Ltd. Agent: Tatsuo Ito, patent attorney: Patent attorney: Tetsuya Ito

Claims (1)

【特許請求の範囲】[Claims] 1、インジウムおよび/または鉛を被覆した負極集電体
と亜鉛粉末の表面にインジウムおよび/または鉛を水溶
液中で置換析出させた負極活物質とを用いることを特徴
とするアルカリ電池。
1. An alkaline battery characterized by using a negative electrode current collector coated with indium and/or lead and a negative electrode active material in which indium and/or lead is substituted and precipitated in an aqueous solution on the surface of zinc powder.
JP13436988A 1988-06-02 1988-06-02 Alkaline battery Pending JPH01307161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13436988A JPH01307161A (en) 1988-06-02 1988-06-02 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13436988A JPH01307161A (en) 1988-06-02 1988-06-02 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH01307161A true JPH01307161A (en) 1989-12-12

Family

ID=15126769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13436988A Pending JPH01307161A (en) 1988-06-02 1988-06-02 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH01307161A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188869A (en) * 1990-08-14 1993-02-23 Eveready Battery Company, Inc. Process for burnishing anode current collectors
US5279905A (en) * 1992-03-09 1994-01-18 Eveready Battery Company, Inc. Miniature zinc-air cell having an indium plated anode cupe
JPH076759A (en) * 1992-08-04 1995-01-10 Seiko Instr Inc Alkaline battery, manufacture thereof, and appliance using alkaline battery
EP0708991A4 (en) * 1993-06-02 1996-03-04 Duracell Inc Method of preparing current collectors for electrochemical cells
JP2003521100A (en) * 2000-01-25 2003-07-08 ザ ジレット カンパニー Zinc / air battery
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
CN100444460C (en) * 2001-04-10 2008-12-17 吉莱特公司 Zinc/air cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995155A (en) * 1973-01-16 1974-09-10
JPS5313139A (en) * 1976-07-23 1978-02-06 Sanyo Electric Co Method of manufacturing zinc negative electrode
JPS61109256A (en) * 1984-10-31 1986-05-27 Sanyo Electric Co Ltd Zinc anode of alkaline call

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995155A (en) * 1973-01-16 1974-09-10
JPS5313139A (en) * 1976-07-23 1978-02-06 Sanyo Electric Co Method of manufacturing zinc negative electrode
JPS61109256A (en) * 1984-10-31 1986-05-27 Sanyo Electric Co Ltd Zinc anode of alkaline call

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188869A (en) * 1990-08-14 1993-02-23 Eveready Battery Company, Inc. Process for burnishing anode current collectors
US5279905A (en) * 1992-03-09 1994-01-18 Eveready Battery Company, Inc. Miniature zinc-air cell having an indium plated anode cupe
JPH076759A (en) * 1992-08-04 1995-01-10 Seiko Instr Inc Alkaline battery, manufacture thereof, and appliance using alkaline battery
EP0708991A4 (en) * 1993-06-02 1996-03-04 Duracell Inc Method of preparing current collectors for electrochemical cells
EP0708991A1 (en) * 1993-06-02 1996-05-01 Duracell Inc. Method of preparing current collectors for electrochemical cells
JP2003521100A (en) * 2000-01-25 2003-07-08 ザ ジレット カンパニー Zinc / air battery
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
CN100444460C (en) * 2001-04-10 2008-12-17 吉莱特公司 Zinc/air cell

Similar Documents

Publication Publication Date Title
EP0172255B1 (en) Zinc alkaline battery
KR20030038749A (en) Electrode for lithium secondary cell and lithium secondary cell
JP3215448B2 (en) Zinc alkaline battery
JPS60175368A (en) Zinc-alkaline primary cell
JPH04284357A (en) Zinc alkaline battery
JPH01307161A (en) Alkaline battery
JPH04284358A (en) Zinc alkaline battery
US3617384A (en) Zinc alkaline secondary cell
JPS6196665A (en) Zinc alkaline primary battery
JPH01307160A (en) Alkaline battery
JPH0317181B2 (en)
KR20150041696A (en) Zinc air cell, anode for zinc air cell and method of preparing the same
KR890004989B1 (en) Zinc-alkaline battery
JPS60177553A (en) Zinc alkaline primary battery
JPH09161781A (en) Negative electrode active material for alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
Muniyandi Corrosion in Batteries
JPS60175365A (en) Zinc-alkaline primary cell
JPS60175369A (en) Zinc-alkaline primary cell
JP2001093481A (en) Lithium secondary battery
JPH0290466A (en) Alkaline battery and its negative electrode active material
JPH01302663A (en) Manufacture of amalgamated zinc alloy powder
JPS60175364A (en) Zinc-alkaline primary cell
JPH0421986B2 (en)
JPH0773881A (en) Zinc oxide alloy powder for alkaline zinc storage battery and manufacture thereof