JPH01306528A - Method of controlling combustion of raw material firing part on pallet of sintering machine - Google Patents

Method of controlling combustion of raw material firing part on pallet of sintering machine

Info

Publication number
JPH01306528A
JPH01306528A JP13557088A JP13557088A JPH01306528A JP H01306528 A JPH01306528 A JP H01306528A JP 13557088 A JP13557088 A JP 13557088A JP 13557088 A JP13557088 A JP 13557088A JP H01306528 A JPH01306528 A JP H01306528A
Authority
JP
Japan
Prior art keywords
raw material
ignition
pallet
temp
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13557088A
Other languages
Japanese (ja)
Inventor
Masaru Nakamura
勝 中村
Hiroyasu Takahashi
高橋 博保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13557088A priority Critical patent/JPH01306528A/en
Publication of JPH01306528A publication Critical patent/JPH01306528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide the stabler quality of sintered ore, the higher yield thereof, etc., by calculating the total quantity of heat in the part of the temp. higher than the firing temp. from the raw material surface layer temp. distribution after ignition and pallet moving speed, comparing the same with a set value and regulating the fuel supply rate of an ignition device. CONSTITUTION:The raw material surface layer temp. in the pallet progressing direction right after firing by the ignition device 3 is continuously measured by a scanning type radiation thermometer 5 on the pallet 2 of the sintering machine and is transmitted to an arithmetic processor 7 by which the raw material surface layer temp. distribution 13 is obtd. The arithmetic processor 7 determines the holding time (t) of about >=900 deg.C which is the firing temp. of carbonaceous material from the pallet moving speed obtd. by a detector 6 and the raw material surface layer temp. distribution 13 and determines the area Qr of about >=900 deg.C. The measured value Qr is sent to a comparator 8 which compares the value with the set value Qs in accordance with the moisture in the raw material, the layer thickness, the pallet speed, the fluctuation of the carbonaceous material on the raw material surface, and the fluctuation in the calory of gaseous fuel. The opening degree of a control valve 10 is regulated via an instruction device 9 for regulation of the gaseous fuel of the ignition device in this way, by which the fuel supply rate of the ignition device 3 is regulated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、焼結機パレット上原料着火部の燃焼制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion control method for a raw material ignition section on a pallet of a sintering machine.

E従来の技術J 一般に連続式焼結機は第3図に示す如く、給鉱ホッパl
からパレット2に炭材を混合した原料を装入し、点火装
置3にて原料の表層中に含まれる炭材に着火すると共に
ブロワ4で下向きに吸引通風することにより、原料中の
炭材を表層から下向きに燃焼を進行させ、焼結機の排鉱
部で焼成完了する形式となっている。
EConventional technology J In general, a continuous sintering machine has a feeding hopper l as shown in
The raw material mixed with carbonaceous materials is charged into a pallet 2, and the igniter 3 ignites the carbonaceous material contained in the surface layer of the raw material, and the blower 4 sucks and ventilates the raw material downward. Combustion progresses downward from the surface layer, and sintering is completed in the ore discharge section of the sintering machine.

このような焼結鉱の製造工程において、点火装置による
表層部の原料中成材への着火状態の良否は、焼結鉱品質
や歩留りに影響を及ぼす、また、焼結鉱の製造コスト低
減を達成するためには、点火装置の過剰な燃料消費を極
力防止する必要がある。以上のことから焼結操業に当っ
ては、着火状況を常時監視し、点火装置の点火条件を操
作することにより、前述の問題を解決するのが普通であ
る。
In the manufacturing process of such sintered ore, the quality of the ignition of the raw materials in the surface layer by the ignition device affects the quality and yield of the sintered ore, and also reduces the manufacturing cost of sintered ore. In order to do so, it is necessary to prevent excessive fuel consumption of the ignition system as much as possible. In view of the above, in sintering operations, the above-mentioned problems are usually solved by constantly monitoring the ignition situation and manipulating the ignition conditions of the ignition device.

そのための方法として、特開昭58−144432のよ
うに原料層厚方向の保熱指数と冷却指数を求め、これら
の分布が一定になるように吸引風通分布や層厚方向分布
を調整する方法や、特開昭63−33527のように、
点火炉内での表面温度をパレット進行方向に沿って測定
し、保熱指数に応じて点火装置へ供給される燃料ガスの
量を制御することが提案されている。
A method for this purpose is to obtain the heat retention index and cooling index in the thickness direction of the raw material layer, and adjust the suction ventilation distribution and the distribution in the layer thickness direction so that these distributions are constant, as in JP-A-58-144432. Or, like JP-A No. 63-33527,
It has been proposed to measure the surface temperature within the ignition furnace along the pallet traveling direction and to control the amount of fuel gas supplied to the ignition device according to the heat retention index.

原料層表面の着火状況は第4図、第5図に示すように外
乱、例えば原料層厚、パレット移動速度、原料中水分含
有率等により刻々変化している。第4図は原料層厚とパ
レット速度との比に対する点火熱量原単位を示したもの
であり、第5図は原料中の水分含有率と原料層表火部温
度との関係を示したものである。これらの外乱としては
、例えば、パレット移動速度のように、速度を」二げれ
ば点火用燃料を増やし、速度を下げれば燃料を少なくす
るなどして、常に点火熱量を同じくするという、原料の
単位重量当りの所要点火熱量に影響を及ぼさないものが
あり、また一方原料層表面の水分含有率や炭材含有率の
ように、所要点火熱量に変化を与えるものがある。にも
拘らず従来、これらに応じた制御がなされていない。
As shown in FIGS. 4 and 5, the ignition condition on the surface of the raw material layer is constantly changing due to disturbances such as the thickness of the raw material layer, the pallet moving speed, and the moisture content in the raw material. Figure 4 shows the ignition heat consumption rate versus the ratio of the raw material layer thickness and pallet speed, and Figure 5 shows the relationship between the moisture content in the raw material and the surface temperature of the raw material layer. be. These disturbances include, for example, the pallet moving speed, which increases the amount of ignition fuel by increasing the speed and decreases the amount of fuel by decreasing the speed, so that the amount of ignition heat is always the same. There are some factors that do not affect the required amount of ignition heat per unit weight, while others, such as the moisture content and carbon material content on the surface of the raw material layer, change the required amount of ignition heat. In spite of this, conventional controls have not been implemented accordingly.

従って、点火熱量を基準値に保持しても前述の外乱によ
り着火不良や過剰着火を発生することがある。
Therefore, even if the ignition heat amount is maintained at the reference value, ignition failure or excessive ignition may occur due to the above-mentioned disturbance.

以上のように、従来の方法では所要点火熱量に影響を及
ぼさない外乱に対する制御は可能であるが、影響を及ぼ
す外乱には不十分で、このことがパレット上の原料着火
部を制御する上で障害となっていた。
As described above, although conventional methods can control disturbances that do not affect the required amount of ignition heat, they are insufficient for disturbances that do affect the required amount of ignition heat, and this makes it difficult to control the material ignition section on the pallet. It was a hindrance.

〔発明が解決しようとする課題] 本発明は連続式焼結機の原料層表面着火部の望ましい燃
焼制御ができない従来技術の欠点を克服し、着火状態を
安定化することにより焼結鉱品質の安定および歩留りの
向上、点火熱量原単位の低減を達成することを目的とし
ている。
[Problems to be Solved by the Invention] The present invention overcomes the drawbacks of the prior art in which desirable combustion control of the ignition part on the surface of the raw material layer of a continuous sintering machine cannot be performed, and improves the quality of sintered ore by stabilizing the ignition state. The aim is to improve stability and yield, and reduce the ignition heat consumption unit.

〔課題を解決するための手段1 前述したような着火に及ぼす外乱因子の影響を皆無にす
るためには、着火後原料表層温度を測定し、これをベー
スにして、点火装置の燃料供v3量を調整することが必
要不可欠である。このことを基本的知見として、次の技
術手段からなる制御システムを開発した。
[Means for solving the problem 1] In order to completely eliminate the influence of disturbance factors on ignition as described above, the surface layer temperature of the raw material after ignition is measured, and based on this, the amount of fuel supplied to the ignition device is adjusted. It is essential to adjust the Based on this basic knowledge, we developed a control system consisting of the following technical means.

(1)着火後原料表層面の温度を連続的に測定する。(1) Continuously measure the temperature of the surface layer of the raw material after ignition.

(2)パレット進行方向にスキャニングできる放射温度
計で測定し、測定範囲は点火装置の火焔と原料が衝突す
る点を中心に前後、各々250 m mの範囲とする。
(2) Measurement is performed using a radiation thermometer that can scan in the direction of pallet movement, and the measurement range is 250 mm in front and back of the point where the flame of the ignition device collides with the raw material.

(3)原料表層温度分布を測定し、測定結果を比較演算
装置に人力し、設定値と比較することによって、その差
異分を点火装置の燃料供給量制御装置を介して調整する
(3) Measure the surface temperature distribution of the raw material, input the measurement result to the comparison calculation device, compare it with the set value, and adjust the difference via the fuel supply amount control device of the ignition device.

第1図は本発明方法の燃焼制御に用いる装置の構成を示
す。この装置は点火装置3のフードに、原料着火部のパ
レット進行方向に対する原料表層温度分布13を測定で
きる走査型放射温度計5を設置し、これに加えてパレッ
ト移動速度検出器6と、これらの情報の演算処理装置7
、設定値と実績値の比較装置8および点火装置の燃料供
給量調整指示装置9と点火装置の燃料供給量を実際に調
整する調節弁10から構成されている。
FIG. 1 shows the configuration of an apparatus used for combustion control in the method of the present invention. This device is equipped with a scanning radiation thermometer 5 that can measure the raw material surface temperature distribution 13 in the pallet traveling direction of the raw material ignition section in the hood of the ignition device 3, and in addition, a pallet movement speed detector 6 and these Information arithmetic processing device 7
, a comparison device 8 for comparing set values and actual values, an ignition device fuel supply amount adjustment instructing device 9, and a control valve 10 for actually adjusting the fuel supply amount for the ignition device.

走査型放射温度計5はパレット2の進行方向に沿って1
点火フード3に50度近傍の角度で設置されており、走
査角度は25度である。
The scanning radiation thermometer 5 is located along the traveling direction of the pallet 2.
It is installed in the ignition hood 3 at an angle of about 50 degrees, and the scanning angle is 25 degrees.

また、原料表層温度の測定範囲は、点火装置の火焔11
と原IEI l 2の衝突する地点を中心として、前後
各々250mmの範囲としている。従って、上記範囲を
放射温度計5が走査し、点火後の原料表層温度分布13
が得られる。
In addition, the measurement range of the raw material surface temperature is the flame 11 of the ignition device.
The area is 250 mm in front and rear of the collision point between the original IEI l 2 and the original IEI l 2. Therefore, the radiation thermometer 5 scans the above range, and the raw material surface temperature distribution 13 after ignition.
is obtained.

放射温度計5から得られた測定信号は30秒毎に演算処
理装置7に送信され、原料表層温度分布13が得られる
The measurement signal obtained from the radiation thermometer 5 is transmitted to the arithmetic processing unit 7 every 30 seconds, and the raw material surface layer temperature distribution 13 is obtained.

さらに演算処理装置7で得られた原料表層温度分布13
とパレット移動速度検出器6で得られるパレット移動速
度から、炭材の着火温度である900℃以上の保持時間
tを求め、第2図に示すようにこれらをベースにして9
00℃以上の面積(Qv)を求める。
Furthermore, the raw material surface temperature distribution 13 obtained by the arithmetic processing device 7
From the pallet movement speed obtained from the pallet movement speed detector 6, the retention time t at 900°C or higher, which is the ignition temperature of the carbonaceous material, is determined, and based on these, 9 is calculated as shown in Fig. 2.
Find the area (Qv) above 00°C.

QTは通常E℃・5eclで表わされる。QT is usually expressed in E°C.5ecl.

演算処理装置で得られた測定値QTは、比較装置8に送
られ、原料中の水分、層厚、パレット速度、原料表層の
炭材変動、燃料ガスのカロリー変動に基づいて、予め設
定しである設定値Qsと比較される。
The measured value QT obtained by the arithmetic processing device is sent to the comparison device 8, and is preset based on the moisture in the raw material, the layer thickness, the pallet speed, the fluctuation of the carbon material in the surface layer of the raw material, and the calorie fluctuation of the fuel gas. It is compared with a certain set value Qs.

設定値Qsに対して測定値QTが下回っている時、およ
び設定値Qsに対し5%以上、上回っていれば、点火装
置燃料ガス調整指示装置9を介して、調節弁lOの開度
を調整し、点火装置3の燃料供給量の増減を行う。これ
ら一連の動作は、自動調整で行うシステムとなっている
When the measured value QT is lower than the set value Qs, and when it is higher than the set value Qs by 5% or more, the opening degree of the control valve IO is adjusted via the ignition device fuel gas adjustment instruction device 9. Then, the amount of fuel supplied to the ignition device 3 is increased or decreased. This series of operations is a system that automatically adjusts.

[作用1 本発明により、従来の方法で障害となっていた外乱があ
っても、・常に安定着火が可能となり、歩留り向上およ
び点火熱量原単位の削減を実現することができた。
[Effect 1] According to the present invention, stable ignition is always possible even when there are disturbances that were an obstacle in the conventional method, and it is possible to improve the yield and reduce the ignition heat consumption unit.

[実施例] 第1図に示すフローシートを参照して本発明の詳細な説
明する。
[Example] The present invention will be described in detail with reference to the flow sheet shown in FIG.

先ず給鉱ホッパlから切出装置14で原料12が切出さ
れ、パレット2上に装入される。
First, the raw material 12 is cut out from the ore feed hopper 1 by the cutting device 14 and charged onto the pallet 2.

この原料12の水分含有率は極カ一定となるように調整
しているが、それでもかなりのばらつきがある。
Although the moisture content of this raw material 12 is adjusted to be extremely constant, there is still considerable variation.

また、原料12の通気調整で原料水分を変更することも
ある。また、パレット2上に装入された原料12の厚さ
やパレット2の移動速度は焼結層内の通気調整の関係で
、順次調整される。
Further, the moisture content of the raw material may be changed by adjusting the ventilation of the raw material 12. Further, the thickness of the raw material 12 charged onto the pallet 2 and the moving speed of the pallet 2 are sequentially adjusted in relation to the ventilation adjustment in the sintered layer.

このような条件下でパレット2上に装入された原料12
は移動し、点火装置3で点火される。
The raw material 12 charged onto the pallet 2 under such conditions
moves and is ignited by the ignition device 3.

点火後の原料12は点火装置3上に設置された走査型放
射温度計5をパレット2の進行方向に沿って走査するこ
とにより、原料表層温度を測定する。
The surface temperature of the raw material 12 after ignition is measured by scanning the scanning radiation thermometer 5 installed on the ignition device 3 along the traveling direction of the pallet 2.

原料表層温度の測定範囲は点火装置の火焔11と原料1
2の衝突する地点を中心として、前後各々250mmの
範囲である。
The measurement range of raw material surface temperature is flame 11 of the igniter and raw material 1.
The area is 250mm in front and rear of the collision point of No.2.

放射温度計5から得られた測定信号は30秒毎に演算処
理装置7に送信され、原料表層温度分布13が得られる
The measurement signal obtained from the radiation thermometer 5 is transmitted to the arithmetic processing unit 7 every 30 seconds, and the raw material surface layer temperature distribution 13 is obtained.

さらに演算処理装置7で得られた原料表層温度分布13
とパレット移動速度検出器6で得られるパレット移動速
度から炭材の着火温度である900℃以上の保持時間t
を求め、これらをベースにして900℃以上の部分の総
熱量すなわち面積(QT)を求める(第2図)。
Furthermore, the raw material surface temperature distribution 13 obtained by the arithmetic processing device 7
From the pallet movement speed obtained by the pallet movement speed detector 6, the retention time t of 900°C or higher, which is the ignition temperature of the carbon material, is determined.
Based on these, the total heat amount or area (QT) of the portion above 900°C is determined (Figure 2).

演算処理装置で得られた測定値Qsは比較装置8に送ら
れ、予め設定しである設定値Qsと比較される。設定値
Qsは実験で、原料層厚・パレット速度・原料中水骨、
原料表層の炭材量、燃料ガスのカロリーを変化させ安定
着火が得られた値を設定している。
The measured value Qs obtained by the arithmetic processing device is sent to the comparator 8 and compared with a preset value Qs. The set value Qs was experimentally determined based on the material layer thickness, pallet speed, water bone in the material,
The amount of carbon material on the surface layer of the raw material and the calorie of the fuel gas are varied to set values that provide stable ignition.

すなわち、第4図に示すように設定値Qsを管理基準値
とし、これより下回っていれば、未着火であることを示
し、歩留り向上・点火熱量原単位に悪影響を及ぼす。
That is, as shown in FIG. 4, the set value Qs is set as a control reference value, and if it is lower than this value, it indicates that ignition has not occurred, which has a negative effect on yield improvement and ignition heat consumption unit.

また、設定値Qsよりも上回っていれば安定着火域を示
し、Q B + 5%の範囲内では調整しな(でもよい
条件としている。
Further, if it exceeds the set value Qs, it indicates a stable ignition range, and within the range of Q B + 5%, no adjustment is required.

つまり設定値Qsに対して、測定値QTが下回っている
時および設定値Qsに対し5%以上、上回っていれば、
点火装置の燃料調整指示装置9を介して、調節弁10の
開度を調整し、点火装置3への燃料供給量の増減を行う
In other words, when the measured value QT is lower than the set value Qs, and when it exceeds the set value Qs by 5% or more,
The opening degree of the control valve 10 is adjusted via the fuel adjustment instruction device 9 of the ignition device, and the amount of fuel supplied to the ignition device 3 is increased or decreased.

従って、前述したような原料層厚、水分、パレット速度
、上層部の炭材量変動あるいは燃料ガスカロリー変動な
どの外乱があっても、着火温度以上の総熱量QTが設定
値Qsになるように常時点火装置3の燃料供給量を調整
するので、安定着火を得ることができ、歩留り向上、点
火熱量原単位削減に大きな効果を示した。
Therefore, even if there are disturbances such as the thickness of the raw material layer, moisture content, pallet speed, variation in the amount of carbon material in the upper layer, or variation in fuel gas calorie as described above, the total amount of heat QT above the ignition temperature will be the set value Qs. Since the amount of fuel supplied to the constant ignition device 3 is adjusted, stable ignition can be obtained, which is highly effective in improving the yield and reducing the ignition heat consumption unit.

第6図に(a)従来法と(b)本発明法の差異を示した
が、本発明法の採用により、QTのばらつきが従来法に
比較して激減した。
FIG. 6 shows the difference between (a) the conventional method and (b) the method of the present invention. By adopting the method of the present invention, the variation in QT was drastically reduced compared to the conventional method.

これにより、点火熱量不足または点火熱量過剰の発生現
象が少なくなり、常に一定着火状態に維持できるように
なった結果、第1表に示すように歩留り0.5%の向上
、点火熱量原単位400k c a l / t sの
削減が可能となった。
As a result, the phenomenon of insufficient ignition heat or excess ignition heat is reduced, and a constant ignition state can be maintained at all times. As a result, as shown in Table 1, the yield improves by 0.5% and the ignition heat per unit of production reaches 400k. It has become possible to reduce cal/ts.

[発明の効果1 本発明の制御方法を適用することにより、原料水分の変
動および焼結通気性の変化により刻々変化する層厚・パ
レット移動速度の変化に対して、迅速に対応することが
可能になった。
[Effect of the invention 1] By applying the control method of the present invention, it is possible to quickly respond to changes in layer thickness and pallet movement speed that change from moment to moment due to changes in raw material moisture and changes in sintering air permeability. Became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は着火
温度以上の総熱量QTの説明図、第3図は焼結機の概略
を示す模式図、第4図は着火状況に及ぼす層厚・パレッ
ト速度の影響を示すグラフ、第5図は着火状況に及ぼす
原料水分の影響を示すグラフ、第6図は本発明法の効果
を示すグラフである。 l・・・給鉱ホッパ 2・・・パレット 3・・・点火装置 4・・・ブロワ 5・・・放射温度計 6・・・パレット移動速度検出器 7・・・演算処理装置 8・・・比較装置 9・・・燃料供給量調整指示装置 lO・・−調節弁 11・・・火焔 12・・・原料 13・・・原料表層温度分布 14・・・切出装置
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is an explanatory diagram of the total amount of heat QT above the ignition temperature, Figure 3 is a schematic diagram showing the outline of the sintering machine, and Figure 4 is the effect on the ignition situation. FIG. 5 is a graph showing the influence of layer thickness and pallet speed, FIG. 5 is a graph showing the influence of raw material moisture on the ignition situation, and FIG. 6 is a graph showing the effect of the method of the present invention. l...Feeding hopper 2...Pallet 3...Ignition device 4...Blower 5...Radiation thermometer 6...Pallet movement speed detector 7...Arithmetic processing unit 8... Comparison device 9...Fuel supply amount adjustment instruction device lO...-Adjusting valve 11...Flame 12...Raw material 13...Raw material surface layer temperature distribution 14...Cutting device

Claims (1)

【特許請求の範囲】[Claims] 1 連続式焼結機の着火表面の温度を検出して、点火装
置への供給燃料を制御する着火部燃焼制御方法において
、点火装置により着火した直後のパレット進行方向の原
料表層温度を連続的に測定し、得られた温度分布から炭
材の着火温度以上の部分の総熱量を算出し、原料中の水
分、層厚、パレット速度、原料表層の炭材変動、燃料ガ
スカロリー変動に基づいて予め設定された設定値と比較
し、その比較結果から点火装置の燃料供給量を調整する
ことを特徴とする焼結機パレット上着火部の燃焼制御方
法。
1 In an ignition section combustion control method that detects the temperature of the ignition surface of a continuous sintering machine and controls the fuel supplied to the ignition device, the temperature of the surface layer of the raw material in the direction of pallet movement immediately after being ignited by the ignition device is continuously measured. The total amount of heat in the area above the ignition temperature of the carbon material is calculated from the obtained temperature distribution, and calculated in advance based on the moisture in the raw material, layer thickness, pallet speed, fluctuations in the carbon material in the surface layer of the raw material, and fuel gas calorie fluctuations. A combustion control method for an ignition unit on a pallet of a sintering machine, characterized by comparing it with a set value and adjusting the amount of fuel supplied to an ignition device based on the comparison result.
JP13557088A 1988-06-03 1988-06-03 Method of controlling combustion of raw material firing part on pallet of sintering machine Pending JPH01306528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13557088A JPH01306528A (en) 1988-06-03 1988-06-03 Method of controlling combustion of raw material firing part on pallet of sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13557088A JPH01306528A (en) 1988-06-03 1988-06-03 Method of controlling combustion of raw material firing part on pallet of sintering machine

Publications (1)

Publication Number Publication Date
JPH01306528A true JPH01306528A (en) 1989-12-11

Family

ID=15154903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13557088A Pending JPH01306528A (en) 1988-06-03 1988-06-03 Method of controlling combustion of raw material firing part on pallet of sintering machine

Country Status (1)

Country Link
JP (1) JPH01306528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194456A (en) * 2005-01-11 2006-07-27 Jfe Steel Kk Sintered ore manufacturing device and its manufacturing method
CN109556407A (en) * 2017-09-26 2019-04-02 宝山钢铁股份有限公司 A method of reducing agglomeration for iron mine ignition energy consumption

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333527A (en) * 1986-07-25 1988-02-13 Kawasaki Steel Corp Method for controlling surface ignition of sintering ore raw material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333527A (en) * 1986-07-25 1988-02-13 Kawasaki Steel Corp Method for controlling surface ignition of sintering ore raw material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194456A (en) * 2005-01-11 2006-07-27 Jfe Steel Kk Sintered ore manufacturing device and its manufacturing method
JP4677785B2 (en) * 2005-01-11 2011-04-27 Jfeスチール株式会社 Sinter ore manufacturing apparatus and method
CN109556407A (en) * 2017-09-26 2019-04-02 宝山钢铁股份有限公司 A method of reducing agglomeration for iron mine ignition energy consumption

Similar Documents

Publication Publication Date Title
US4606529A (en) Furnace controls
JPH01306528A (en) Method of controlling combustion of raw material firing part on pallet of sintering machine
JP2008038210A (en) Method for producing sintered ore
JPH0339424A (en) Method for controlling air permeability of sintered raw material bed
JPH055589A (en) Operating method for sintering machine
JPH04193915A (en) Method for operating sintering machine
JPH0247223A (en) Method for controlling burner flame shape in ignition furnace of sintering machine
JPH0658676A (en) Sintering raw material charging method
SU887905A1 (en) Method of automatic control of heat condition in slot-type furnace
JPH06287647A (en) Operation of sintering machine
SU1736925A1 (en) Method of automatically controlling activation of granulated carbon-containing materials in rotary furnace
JPS6220834A (en) Method for controlling sintering with continuous sintering machine
SU964404A2 (en) Method of automatic control of raw mixture calcining process
RU2035679C1 (en) Method of control of clinker kilning process
JPH0250007A (en) Supplying method of fluid medium for fluidized bed furnace
SU1167411A1 (en) Method of controlling roasting process in rotary furnace
JP2003525418A (en) Continuous combustion system for substances such as waste
SU395465A1 (en) METHOD OF MANAGING THE PROCESS PROCESS
SU775157A1 (en) Method of control of pellet annealing process
JPS61223425A (en) Pulverized coal mill control device
JPH02194128A (en) Method for operating sintering machine
SU1096478A1 (en) Automated set for burning swelling materials in rotary furnace
JPS59179721A (en) Controlling method of sintering with continuous sintering machine
SU546379A1 (en) Method for automatic control of thermal processing of refractory materials
SU992923A1 (en) System for automatic control of fuel feed