JPH01305112A - Valves system device for internal combustion engine - Google Patents

Valves system device for internal combustion engine

Info

Publication number
JPH01305112A
JPH01305112A JP63134500A JP13450088A JPH01305112A JP H01305112 A JPH01305112 A JP H01305112A JP 63134500 A JP63134500 A JP 63134500A JP 13450088 A JP13450088 A JP 13450088A JP H01305112 A JPH01305112 A JP H01305112A
Authority
JP
Japan
Prior art keywords
pressure
valve
opening
hydraulic oil
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63134500A
Other languages
Japanese (ja)
Other versions
JP2625895B2 (en
Inventor
Kenichiro Shindo
進藤 健一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63134500A priority Critical patent/JP2625895B2/en
Publication of JPH01305112A publication Critical patent/JPH01305112A/en
Application granted granted Critical
Publication of JP2625895B2 publication Critical patent/JP2625895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To secure adequate valve switching operation all the time by installing a pressure control valve for controlling charge/discharge of oil pressure to an actuator between a pressure source and a hydraulic actuator which makes switching drive of an intake/exhaust valve, and making switching operation of this valve adjustable according to the characteristic state of oil. CONSTITUTION:The switching valves 11, 21 of an intake/exhaust valve, etc., are so arranged as to be opened/closed by actuators 12, 22 driven by means of oil pressure supplied from a pressure source 116 and pressure source 116 and the actuators 12, 22. Supply of oil pressure to the actuators 12, 22 from the pressure control valves 111, 112 and release of oil pressure from the actuator 12, 22 are controlled by these pressure control valves 111, 112. Still in this case, a viscosity detecting means A for detecting, for instance, viscosity, among properties of work oil supplied from the pressure source 116 is installed and its output signals are outputted to a switching operation adjusting means B. Then, the pressure control valves 111, 112 are controlled according to the viscosity of the work oil so as to have the switching operation of switching valves 12, 21 requlated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の吸排気弁等の開閉弁を油圧により
開閉駆動する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for hydraulically driving open/close valves such as intake and exhaust valves of an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、吸排気弁を油圧アクチュエータによって開閉駆動
し、アクチュエータへの油圧の供給タイミングおよび供
給時間を制御して吸排気弁の任意の開閉動作を得ようと
するものが知られている。
2. Description of the Related Art Conventionally, a system is known in which intake and exhaust valves are driven to open and close by a hydraulic actuator, and the timing and duration of supply of hydraulic pressure to the actuator are controlled to obtain arbitrary opening and closing operations of the intake and exhaust valves.

特開昭58−82010号公報は機関の運転状態に応じ
てアクチュエータを構成するサーボ弁の開度を制御する
構成を、また特開昭58−152140号公報は燃料性
状等の運転条件の変化に応じてアクチュエータを制御し
、排気弁の開弁時期を制御する構成を示している。
JP-A-58-82010 discloses a configuration for controlling the opening of a servo valve that constitutes an actuator according to the operating state of the engine, and JP-A-58-152140 discloses a configuration that controls the opening degree of a servo valve that constitutes an actuator according to the operating state of the engine. A configuration is shown in which the actuator is controlled accordingly and the opening timing of the exhaust valve is controlled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記構成を有する従来の弁駆動装置は、吸排
気弁を開閉駆動するための作動油の性状が機関の温度変
化等により変化した場合について考慮されておらず、こ
のため吸排気弁の開閉動作の精度が低下するおそれがあ
る。すなわち、例えば作動油の粘性が変化して流量特性
が変動すると、アクチュエータの作動が変化して吸排気
弁が所期の開閉動作を高精度に行わなくなり、エンジン
性能が低下するとともに吸排気弁の異常挙動を誘起して
騒音が発生するおそれが生じる。また作動油中に含まれ
る気泡の割合がエンジンの運転状態によって変化すると
、作動油の体積弾性率が変化し、これにより作動油の圧
力上昇特性が変わってアクチュエータの作動が変化し、
同様な問題が生じる。
However, the conventional valve drive device having the above configuration does not take into consideration the case where the properties of the hydraulic oil for driving the opening and closing of the intake and exhaust valves change due to engine temperature changes, etc. There is a risk that the accuracy of operation will decrease. In other words, for example, if the viscosity of the hydraulic oil changes and the flow characteristics change, the operation of the actuator will change and the intake and exhaust valves will no longer perform the intended opening and closing operations with high precision, resulting in a decrease in engine performance and damage to the intake and exhaust valves. There is a risk that abnormal behavior will be induced and noise will be generated. In addition, when the proportion of air bubbles contained in the hydraulic oil changes depending on the operating condition of the engine, the bulk modulus of the hydraulic oil changes, which changes the pressure increase characteristics of the hydraulic oil and changes the operation of the actuator.
A similar problem arises.

本発明は、作動油の性状が変化しても、開閉弁が常に所
期の開閉動作を行うことを可能ならしめる弁駆動装置を
得ることを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a valve driving device that allows an on-off valve to always perform a desired opening/closing operation even if the properties of hydraulic oil change.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る弁駆動装置は、第1図の発明の構成図に示
すように、圧力源116と、開閉弁を開閉駆動するアク
チュエータ12.22と、上記圧力源とアクチュエータ
の間に設けられ、上記圧力源の油圧のアクチュエータへ
の供給、およびこの油圧のアクチュエータからの解放を
制御する圧力制御弁111.112と、上記圧力源から
供給される作動油の性状を検出する手段Aとに応じて、
上記圧力制御弁の開閉動作を制御し、上記開閉弁の開閉
動作を調整する手段Bとを備えることを特徴としている
As shown in the configuration diagram of the invention in FIG. 1, the valve drive device according to the present invention is provided with a pressure source 116, an actuator 12.22 that drives the on-off valve to open and close, and between the pressure source and the actuator, according to pressure control valves 111, 112 for controlling the supply of hydraulic pressure from the pressure source to the actuator and the release of this hydraulic pressure from the actuator, and means A for detecting the properties of the hydraulic oil supplied from the pressure source. ,
It is characterized by comprising means B for controlling the opening/closing operation of the pressure control valve and adjusting the opening/closing operation of the opening/closing valve.

〔作 用〕[For production]

作動油の性状が変化してアクチュエータへ供給される作
動油の流量特性あるいは圧力変化特性が変化すると、圧
力制御弁の開閉動作が制御されてアクチュエータに対す
る作動油の供給状態が、調整され、開閉弁の所期の開閉
動作が得られる。
When the properties of the hydraulic oil change and the flow rate characteristics or pressure change characteristics of the hydraulic oil supplied to the actuator change, the opening/closing operation of the pressure control valve is controlled to adjust the supply state of the hydraulic oil to the actuator. The desired opening/closing operation can be obtained.

〔実施例〕〔Example〕

以下図示実施例に基いて本発明を説明する。 The present invention will be explained below based on illustrated embodiments.

第2図は本発明の一実施例を示す。この図において、吸
気弁11.21およびこれらを支持する周囲の部材の構
造は従来公知の構成を有し、簡略化されて示されている
。本実施例において、シリンダヘッドはアルミ合金から
、また吸気弁11.21は鋼から形成される。
FIG. 2 shows an embodiment of the invention. In this figure, the structures of the intake valves 11, 21 and surrounding members supporting them have conventionally known configurations and are shown in a simplified manner. In this example, the cylinder head is made from an aluminum alloy and the intake valves 11.21 from steel.

吸気弁11.21は油圧アクチュエータ12.22によ
って駆動され、それぞればね15.25により常時開弁
方向に付勢される。油圧アクチーエータ12・22はプ
ランジャ13.23と油圧室14.24とを備える。
The intake valves 11.21 are driven by hydraulic actuators 12.22 and are each biased in the open direction by springs 15.25. The hydraulic actuator 12, 22 comprises a plunger 13.23 and a hydraulic chamber 14.24.

油圧室14.24は配管101,102を介して油圧導
入用圧力制御弁111に接続されると共に配管101・
103を介して油圧排出用圧力制御弁112に接続され
る。圧電素子積層体としての電気式アクチュエータ11
3は油圧導入用圧力制御弁111の開閉作動を行い、圧
電素子積層体としての電気式アクチュエータ114は油
圧排出用圧力制御弁112の開閉作動をおこなう。高圧
アキュムレータ115は配管104を介して油圧ポンプ
116に接続される。117は調圧弁であり、油圧アク
チュエータ14.24への制御油圧を制御する。低圧ア
キュムレータ118は配管105を介して油タンク10
6に接続される。
The hydraulic chambers 14.24 are connected to the hydraulic pressure control valve 111 via piping 101, 102, and the piping 101.
It is connected via 103 to a pressure control valve 112 for hydraulic discharge. Electric actuator 11 as piezoelectric element laminate
3 opens and closes a pressure control valve 111 for introducing hydraulic pressure, and an electric actuator 114 as a piezoelectric element stack opens and closes a pressure control valve 112 for discharging hydraulic pressure. High pressure accumulator 115 is connected to hydraulic pump 116 via piping 104. A pressure regulating valve 117 controls the control hydraulic pressure to the hydraulic actuator 14.24. The low pressure accumulator 118 is connected to the oil tank 10 via the piping 105.
Connected to 6.

107はストレーナである。107 is a strainer.

制御回路130は圧電アクチュエータ113,114を
制御することにより、吸気弁11.21の作動を制御す
るものであり、例えば、マイクロコンピュータシステム
として構成される。制御回路130は、マイクロプロセ
シングユニット (MPU) 131 ト、メモリ13
2と、人力ポート133と、出力ボート134と、これ
らを相互に接続するバス135とを基本的構成要素とす
る。
The control circuit 130 controls the operation of the intake valves 11, 21 by controlling the piezoelectric actuators 113, 114, and is configured as, for example, a microcomputer system. The control circuit 130 includes a microprocessing unit (MPU) 131 and a memory 13.
2, a human power port 133, an output boat 134, and a bus 135 that interconnects these components.

入力ポート133には種々のセンサが接続され、エンジ
ン運転条件信号が入力される。クランク角センサ141
は720°CA毎(即ちエンジン−サイクル毎)にパル
ス信号を発生し、基準信号となる。
Various sensors are connected to the input port 133, and engine operating condition signals are input thereto. Crank angle sensor 141
generates a pulse signal every 720° CA (ie, every engine cycle) and serves as a reference signal.

クランク角センサ142は30°CA毎にパルス信号を
発生し、エンジン回転数を知ることができる。
The crank angle sensor 142 generates a pulse signal every 30° CA, so that the engine speed can be determined.

スロットルセンサ143は内燃機関のスロットル弁開度
(又はアクセルペダル開度)を検出する。作動油温セン
サ144は配管101に設けられ作動油の温度を検出す
る。作動油粘性センサ145、および気泡割合センサ1
47は例えば配管101に取付けられ、後述するように
それぞれ作動油の粘性、作動油中の気泡の割合を検出す
る。冷却水温センサ146は機関本体のウォータジャケ
ットに設けられて冷却水温を検出する。スロットルセン
サ143、作動油温センサ144、作動油粘性センサ1
45、冷却水温センサ146、および気泡割合センサ1
47の検出信号はAD変換器148に入力されてAD変
換される。
The throttle sensor 143 detects the throttle valve opening (or accelerator pedal opening) of the internal combustion engine. The hydraulic oil temperature sensor 144 is provided in the pipe 101 and detects the temperature of the hydraulic oil. Hydraulic oil viscosity sensor 145 and air bubble ratio sensor 1
47 is attached to the pipe 101, for example, and detects the viscosity of the hydraulic oil and the proportion of air bubbles in the hydraulic oil, respectively, as will be described later. The cooling water temperature sensor 146 is provided in the water jacket of the engine body and detects the cooling water temperature. Throttle sensor 143, hydraulic oil temperature sensor 144, hydraulic oil viscosity sensor 1
45, cooling water temperature sensor 146, and bubble ratio sensor 1
The detection signal No. 47 is input to an AD converter 148 and subjected to AD conversion.

作動油粘性センサ145としては、例えば、磁気ひずみ
式振動粘度計、電磁式振動粘度計、回転粘度計、細管粘
度計を用いることが可能である。磁気ひずみ式振動粘度
計は、磁気ひずみ材料でできた振動片に固有振動数より
長い周期の電気パルスを印加し、その後の振幅の減衰の
様子から粘性を検出するものである。電磁式振動粘度計
は、電気ひずみ素子の作動油中と空気中における振動時
の振幅を比較することにより粘性を検出するものである
。回転粘度計は作動油中の回転子の受ける粘性トルクか
ら粘性を検出し、細管粘度計は配管101に連結したバ
イパス管内の出入口の差圧を測って粘性を検出する。一
方、気泡割合センサ147は、配管の一部を石英等の透
光性材料で形成し、発光素子から発光された光を透光配
管部を通過させて受光素子で受光し、その時の受光量に
よって気泡割合を検出する。
As the hydraulic oil viscosity sensor 145, for example, a magnetostrictive vibrational viscometer, an electromagnetic vibrational viscometer, a rotational viscometer, or a capillary viscometer can be used. A magnetostrictive vibratory viscometer applies an electric pulse with a period longer than the natural frequency to a vibrating piece made of a magnetostrictive material, and detects viscosity from the subsequent attenuation of the amplitude. An electromagnetic vibration viscometer detects viscosity by comparing the amplitude of vibration of an electrostrictive element in hydraulic oil and in air. The rotational viscometer detects viscosity from the viscous torque applied to the rotor in the hydraulic oil, and the capillary viscometer detects the viscosity by measuring the differential pressure at the entrance and exit of the bypass pipe connected to piping 101. On the other hand, in the air bubble ratio sensor 147, a part of the piping is formed of a transparent material such as quartz, and the light emitted from the light emitting element is passed through the transparent piping part and received by the light receiving element, and the amount of light received at that time is Detect the bubble ratio by

出力ボート131は、駆動回路136 、137を介し
て油圧導入制御用、油圧排出制御用の圧電アクチユエー
タ113・114に接続される。メモリ 132には、
以下に説明する制御回路130の作動を達成するための
プログラムが格納されている。
The output boat 131 is connected via drive circuits 136 and 137 to piezoelectric actuators 113 and 114 for hydraulic pressure introduction control and hydraulic discharge control. In the memory 132,
A program for achieving the operation of the control circuit 130 described below is stored.

第3図は吸気弁IL21の開閉タイミングを制御するル
ーチンの第1実施例を示す。この制御ルーチンは所定の
クランク角毎に割込み処理される。
FIG. 3 shows a first embodiment of a routine for controlling the opening/closing timing of the intake valve IL21. This control routine is interrupted at every predetermined crank angle.

ステップ201では、エンジンの運転状態に応じて吸気
弁の開閉時期およびリフト量が定められ、この吸気弁の
開閉作動が得られるように圧力制御弁111,112の
開閉タイミングが定められる。ステップ202では作動
油温センサ144から作動油温が読込まれる。ステップ
203では、マツプあるいは計算式に基いて作動油温か
ら作動油の粘性が推定される。
In step 201, the opening/closing timing and lift amount of the intake valve are determined according to the operating state of the engine, and the opening/closing timing of the pressure control valves 111 and 112 is determined so as to obtain the opening/closing operation of the intake valve. In step 202, the hydraulic oil temperature is read from the hydraulic oil temperature sensor 144. In step 203, the viscosity of the hydraulic oil is estimated from the hydraulic oil temperature based on a map or calculation formula.

作動油の粘性が増大すると、圧力制御弁111゜112
における作動油の抵抗が大きくなる。この結果、吸気弁
11.21において、開弁動作が遅くなって最大リフト
量が小さくなり、また閉弁時期が遅れ、エンジン性能が
低下するおそれがある。逆に作動油の粘性が減少すると
、圧力制御弁111゜112における作動油の抵抗が小
さくなり、吸気弁11.21の開閉速度が増大し、動弁
系の各部材での衝撃が大きくなり、騒音が増大する。ス
テップ204では、作動油の粘性の大きさに拘らず吸気
弁11.21が所期の開閉動作をするように、圧力制御
弁111・112の開閉タイミングの補正係数が定めら
れる。すなわち、作動油の粘性が大きくなるほど補正係
数は大きくなり、圧力制御弁111 、112の開弁期
間が長くなってアクチュエータ14.24への作動油の
供給および解放動作の低下が防止され、吸気弁11.2
1の所期の開閉動作が確保される。また作動油の粘性が
小さくなるほど補正係数は小さくなり、圧力制御弁11
1,112の開弁期間が短くなって吸気弁11 、21
の開閉速度が過大になることが防止される。
When the viscosity of the hydraulic oil increases, the pressure control valves 111 and 112
The resistance of the hydraulic oil increases. As a result, in the intake valves 11, 21, the valve opening operation is delayed, the maximum lift amount is reduced, and the valve closing timing is delayed, which may reduce engine performance. Conversely, when the viscosity of the hydraulic oil decreases, the resistance of the hydraulic oil at the pressure control valves 111 and 112 decreases, the opening and closing speed of the intake valves 11 and 21 increases, and the impact on each member of the valve train increases. Noise increases. In step 204, correction coefficients for the opening and closing timings of the pressure control valves 111 and 112 are determined so that the intake valves 11 and 21 open and close as expected regardless of the viscosity of the hydraulic oil. In other words, as the viscosity of the hydraulic oil increases, the correction coefficient increases, and the opening period of the pressure control valves 111 and 112 becomes longer, thereby preventing the supply of hydraulic oil to the actuator 14, 24 and the release operation from deteriorating. 11.2
The desired opening/closing operation of No. 1 is ensured. Also, as the viscosity of the hydraulic oil decreases, the correction coefficient decreases, and the pressure control valve 11
The opening period of intake valves 11 and 21 becomes shorter.
This prevents the opening/closing speed from becoming excessive.

ステップ205では、ステップ204で求められた補正
係数を用いて開弁期間が算出され、駆動回路136 、
137内のタイマにセントされる。駆動回路136 、
137はタイマにセットされた時間だけ圧力制御弁11
1 、112を開弁させる。
In step 205, the valve opening period is calculated using the correction coefficient obtained in step 204, and the drive circuit 136,
137 to the timer. drive circuit 136,
137 is the pressure control valve 11 for the time set in the timer.
1, 112 is opened.

第4図は制御ルーチンの第2実施例を示す。第1実施例
ではステップ202において作動油温か読込まれていた
が、第2実施例では、ステップ212においてセンサ1
45から作動油の粘性が読込まれる。したがって第1実
施例のステップ203のように作動油の粘性を推定する
処理が不要であり、ステップ212から直接ステップ2
04へ進み、圧力制御弁111 、112の開閉タイミ
ングの補正係数が定められる。その他の処理は第1実施
例と同様である。
FIG. 4 shows a second embodiment of the control routine. In the first embodiment, the hydraulic oil temperature was read in step 202, but in the second embodiment, the sensor 1 was read in step 212.
The viscosity of the hydraulic oil is read from 45. Therefore, there is no need for the process of estimating the viscosity of the hydraulic oil as in step 203 of the first embodiment, and step 212 is directly followed by step 2.
04, a correction coefficient for the opening/closing timing of the pressure control valves 111 and 112 is determined. Other processing is the same as in the first embodiment.

第5図は制御ルーチンの第3実施例を示す。第1実施例
では、ステップ202において作動油温が読込まれステ
ップ203において油温に基いて作動油の粘性が推定さ
れていたのに対し、この第3実施例では、ステップ22
2においてセンサ146から冷却水温が読込まれ、ステ
ップ223において、冷却水温に基いてマツプあるいは
計算式により作動油の粘性が推定される。その他の処理
は第1実施例と同様である。
FIG. 5 shows a third embodiment of the control routine. In the first embodiment, the hydraulic oil temperature was read in step 202 and the viscosity of the hydraulic oil was estimated based on the oil temperature in step 203, whereas in the third embodiment, the hydraulic oil temperature was read in step 202.
In Step 2, the cooling water temperature is read from the sensor 146, and in Step 223, the viscosity of the hydraulic oil is estimated based on the cooling water temperature using a map or a calculation formula. Other processing is the same as in the first embodiment.

しかして第1〜第3実施例によれば、作動油の粘性の大
きさに応じて圧力制御弁111,112の開閉タイミン
グが制御され、吸気弁11.21が常に所期の開閉動作
を行なようになる。したがって、エンジン性能の低下が
防止されるとともに、吸気弁の各部材の衝突による騒音
の発生が防止され、また各部材の耐久性が向上する。
According to the first to third embodiments, the opening/closing timing of the pressure control valves 111, 112 is controlled according to the viscosity of the hydraulic oil, and the intake valves 11, 21 always perform the intended opening/closing operation. It becomes like this. Therefore, deterioration of engine performance is prevented, noise generation due to collision of each member of the intake valve is prevented, and durability of each member is improved.

第6図は制御ルーチンの第4実施例を示す。この第4実
施例は、作動油中に含まれる気泡の割合に応じて圧力制
御弁111 、112の開閉タイミングを変え、吸気弁
11.21の開閉動作の精度を確保するものである。第
1実施例と対比して説明すると、ステップ202 、2
03 、204がそれぞれステップ233 、234に
対応し、ステップ232ではセンサ142からエンジン
回転数が読込まれ、ステップ233ではエンジン回転数
に基いてマツプあるいは計算式により作動油中の気泡割
合が推定される。
FIG. 6 shows a fourth embodiment of the control routine. In this fourth embodiment, the opening/closing timing of the pressure control valves 111, 112 is changed depending on the proportion of air bubbles contained in the hydraulic oil, thereby ensuring the accuracy of the opening/closing operations of the intake valves 11.21. To explain in comparison with the first embodiment, steps 202 and 2
03 and 204 correspond to steps 233 and 234, respectively. In step 232, the engine speed is read from the sensor 142, and in step 233, the bubble ratio in the hydraulic oil is estimated based on the engine speed using a map or a calculation formula. .

ここでエンジン回転数が高いほど、すなわち動弁系の作
動サイクル数が大きいほど、作動油中の気泡割合は多く
なると推定される。この気泡割合が変わると、作動油の
体積弾性率が変化して作動油の圧力上昇特性が変わり、
吸気弁11.21の開閉動作が所期のものとは異なって
くる。ステップ234では、気泡割合が多くなるほど圧
力制御弁111゜112の開弁期間を長くすべく補正係
数を大きく定め、すなわち気泡割合が多くなるほどアク
チュエータ12・22への作動油供給量を多くして吸気
弁11・21の所期の開閉動作を確保している。その他
の処理は第1実施例と同様である。
Here, it is estimated that the higher the engine speed, that is, the greater the number of operating cycles of the valve train, the higher the proportion of bubbles in the hydraulic oil. When this bubble ratio changes, the bulk modulus of the hydraulic oil changes and the pressure increase characteristics of the hydraulic oil change.
The opening and closing operations of the intake valves 11.21 become different from the expected ones. In step 234, a correction coefficient is set to be large so as to lengthen the opening period of the pressure control valves 111 and 112 as the bubble ratio increases.In other words, as the air bubble ratio increases, the amount of hydraulic oil supplied to the actuators 12 and 22 is increased to increase the intake air. The desired opening and closing operations of the valves 11 and 21 are ensured. Other processing is the same as in the first embodiment.

第7図は制御ルーチンの第5実施例を示す。第4実施例
ではステップ232においてエンジン回転数が読込まれ
ていたが、第5実施例では、ステップ242においてセ
ンサ147から作動油中の気泡割合が直接読込まれる。
FIG. 7 shows a fifth embodiment of the control routine. In the fourth embodiment, the engine speed is read in step 232, but in the fifth embodiment, the bubble ratio in the hydraulic oil is directly read from the sensor 147 in step 242.

したがって第4実施例のステップ233のように気泡割
合を推定する処理が不要であり、ステップ232から直
接ステップ234へ進み、圧力制御弁111 、112
の開閉タイミングの補正係数が定められる。その他の処
理は第4実施例と同様である。
Therefore, there is no need to perform the process of estimating the bubble ratio as in step 233 of the fourth embodiment, and the process proceeds directly from step 232 to step 234.
A correction coefficient for the opening/closing timing is determined. Other processing is the same as in the fourth embodiment.

しかして第4および第5実施例によれば、作動油中の気
泡割合に応じて圧力制御弁111,112の開閉タイミ
ングが制御され、吸気弁11・21が常に所期の開閉動
作を行うようになり、したがってエンジンの性能の低下
が防止されるとともに吸気弁の各部材の衝突による騒音
の発生が防止され、また各部材の耐久性が向上する。
According to the fourth and fifth embodiments, the opening and closing timings of the pressure control valves 111 and 112 are controlled according to the proportion of air bubbles in the hydraulic oil, so that the intake valves 11 and 21 always perform the intended opening and closing operations. Therefore, deterioration in engine performance is prevented, noise generation due to collision of each member of the intake valve is prevented, and durability of each member is improved.

また、第1〜第5実施例は、吸気弁11.21の所期の
開閉動作を部品点数を増加させることなく達成するもの
であり、コスト、装置全体の寸法および重量、また各部
材の配置の点で有利である。
In addition, the first to fifth embodiments achieve the intended opening and closing operations of the intake valves 11.21 without increasing the number of parts, and the cost, the dimensions and weight of the entire device, and the arrangement of each member are reduced. It is advantageous in this respect.

なお、上記各実施例は、吸気弁の開閉タイミングを制御
しているが、同様に、排気弁の開閉タイミングを制御し
てもよい。
In each of the above embodiments, the opening/closing timing of the intake valve is controlled, but the opening/closing timing of the exhaust valve may be similarly controlled.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、機関の運転状態等の変化
により作動油の性状が変化しても、開閉弁は常に所期の
開閉動作を行い、これにより、エンジン性能の低下が防
止され、また動弁系からの騒音の発生が防止される。
As described above, according to the present invention, even if the properties of the hydraulic oil change due to changes in the operating conditions of the engine, the opening/closing valve always performs the intended opening/closing operation, thereby preventing a decline in engine performance. Also, the generation of noise from the valve train is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発明の構成図、 第2図は本発明の一実施例における油圧システムおよび
電子制御システムの概略構成図、第3図は第1実施例の
制御ルーチンのフローチャート、 第4図は第2実施例の制御ルーチンのフローチャート、 第5図は第3実施例の制御ルーチンのフローチャート、 第6図は第4実施例の制御ルーチンのフローチャート、 第7図は第5実施例の制御ルーチンのフローチ    
□ヤードである。 11.21・・・吸気弁(開閉弁)、 12.22・・・アクチュエータ、 111.112・・・圧力制御弁、 116・・・油圧ポンプ(圧力源)、 130・・・制御回路。 第1図 第2図 1121・・・吸気弁     111,112  ・
・圧力制御弁12.22・・・アクチュエータ    
116・;゛ 油圧ボング第3図 第5図 第6図
Fig. 1 is a block diagram of the invention; Fig. 2 is a schematic block diagram of a hydraulic system and an electronic control system in an embodiment of the invention; Fig. 3 is a flowchart of a control routine of the first embodiment; FIG. 5 is a flowchart of the control routine of the third embodiment; FIG. 6 is a flowchart of the control routine of the fourth embodiment; FIG. 7 is a flowchart of the control routine of the fifth embodiment.
□It is a yard. 11.21... Intake valve (on/off valve), 12.22... Actuator, 111.112... Pressure control valve, 116... Hydraulic pump (pressure source), 130... Control circuit. Fig. 1 Fig. 2 1121... Intake valve 111, 112 ・
・Pressure control valve 12.22...actuator
116・;゛ Hydraulic bong Fig. 3 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 1、内燃機関の開閉弁を開閉駆動する装置であって、圧
力源と、上記開閉弁を開閉駆動するアクチュエータと、
上記圧力源とアクチュエータの間に設けられ、上記圧力
源の油圧のアクチュエータへの供給、および該油圧のア
クチュエータからの解放を制御する圧力制御弁と、上記
圧力源から供給される作動油の性状を検出する手段と、
該作動油の性状に応じて上記圧力制御弁の開閉動作を制
御し、上記開閉弁の開閉動作を調整する手段とを備える
ことを特徴とする内燃機関の弁駆動装置。
1. A device for opening and closing an on-off valve of an internal combustion engine, which includes a pressure source, an actuator for opening and closing the on-off valve, and
A pressure control valve is provided between the pressure source and the actuator, and controls the supply of hydraulic pressure from the pressure source to the actuator and the release of the hydraulic pressure from the actuator, and controls the properties of the hydraulic oil supplied from the pressure source. a means for detecting;
A valve drive device for an internal combustion engine, comprising means for controlling the opening and closing operations of the pressure control valve according to the properties of the hydraulic fluid, and adjusting the opening and closing operations of the opening and closing valve.
JP63134500A 1988-06-02 1988-06-02 Valve drive for internal combustion engine Expired - Lifetime JP2625895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134500A JP2625895B2 (en) 1988-06-02 1988-06-02 Valve drive for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134500A JP2625895B2 (en) 1988-06-02 1988-06-02 Valve drive for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01305112A true JPH01305112A (en) 1989-12-08
JP2625895B2 JP2625895B2 (en) 1997-07-02

Family

ID=15129776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134500A Expired - Lifetime JP2625895B2 (en) 1988-06-02 1988-06-02 Valve drive for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2625895B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400747A (en) * 1992-11-30 1995-03-28 Nippondenso Co., Ltd. Valve timing control apparatus for internal combustion engine
JP2009521643A (en) * 2005-12-27 2009-06-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Control method for actuator of gas exchange valve in internal combustion engine
JP2009143640A (en) * 2007-12-12 2009-07-02 Tadano Ltd Stable limit signal generating device of truck-mounting type crane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290241A (en) * 2005-04-13 2006-10-26 Toyota Motor Corp Four-wheel drive car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139011A (en) * 1977-05-10 1978-12-05 Mitsubishi Heavy Ind Ltd Valve mechanism of internal combustion engine
JPS59159706U (en) * 1983-04-12 1984-10-26 日産自動車株式会社 Hydraulic valve drive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139011A (en) * 1977-05-10 1978-12-05 Mitsubishi Heavy Ind Ltd Valve mechanism of internal combustion engine
JPS59159706U (en) * 1983-04-12 1984-10-26 日産自動車株式会社 Hydraulic valve drive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400747A (en) * 1992-11-30 1995-03-28 Nippondenso Co., Ltd. Valve timing control apparatus for internal combustion engine
JP2009521643A (en) * 2005-12-27 2009-06-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Control method for actuator of gas exchange valve in internal combustion engine
JP2009143640A (en) * 2007-12-12 2009-07-02 Tadano Ltd Stable limit signal generating device of truck-mounting type crane

Also Published As

Publication number Publication date
JP2625895B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JP5940126B2 (en) Control device for internal combustion engine with supercharger and control method for internal combustion engine with supercharger
US4608952A (en) Balancer control device for multiple-cylinder four-cycle engine
JPH03242447A (en) Fuel injection device of multiple cylinder diesel engine
JP4094195B2 (en) Engine intake air amount control device
JPH01305112A (en) Valves system device for internal combustion engine
US6167860B1 (en) Method of controlling idle of internal combustion engine
JPS63212740A (en) Electronic controller for internal combustion engine
JP3993659B2 (en) Method and apparatus for controlling setting elements of internal combustion engine
JP3104522B2 (en) Electronic control engine mounting device
JP3879227B2 (en) Mirror cycle engine intake / exhaust valve control system
JP2762433B2 (en) Fuel injection rate control method for diesel engine
JPS6318014B2 (en)
WO1994011632A1 (en) Knocking noise avoiding device for an engine with a variable valve driving mechanism
JP2580711B2 (en) Valve drive for internal combustion engine
JP3975546B2 (en) Valve timing control device for internal combustion engine
JPH11257137A (en) Fuel injection controller of engine
JP2008106699A (en) Control device for vehicle
JPS63230940A (en) Fuel injector
JPH09119891A (en) Viscosity detection apparatus and apparatus for controlling injection of engine fuel
JP2733233B2 (en) Intake control device for internal combustion engine
JPH0443804A (en) Hydraulic valve drive control device for internal combustion engine
JPH03117623A (en) Intake controller of internal combustion engine
JP3060485B2 (en) Hydraulic valve drive for internal combustion engine
JPS6095152A (en) Valve control device for internal-combustion engine
JP2006177177A (en) Hydraulic drive unit for internal combustion engine