JPS6095152A - Valve control device for internal-combustion engine - Google Patents
Valve control device for internal-combustion engineInfo
- Publication number
- JPS6095152A JPS6095152A JP20321783A JP20321783A JPS6095152A JP S6095152 A JPS6095152 A JP S6095152A JP 20321783 A JP20321783 A JP 20321783A JP 20321783 A JP20321783 A JP 20321783A JP S6095152 A JPS6095152 A JP S6095152A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- combustion engine
- internal combustion
- control
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関のバルブ制御l装四に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a valve control system for an internal combustion engine.
[従来技術]
内燃機関の電気制御lll化が進むにつれ、内燃機関へ
の吸入空気量等の種々の流量を制御するバルブ制御装置
が、アイドル回転数制御装置や初ガス循環装置といった
内燃m関の様々なm111611分野に供せられてぎた
。このひとつとして、アイドル回転数制御装置を取り上
げてみると、内燃機関のアイドリング時に、低燃費化、
排ガス浄化といった目的で、スロワ1〜ルバルブを迂回
するバイパス路に流れる空気量をバルブ手段により調整
し、アイドル回転数を内燃機関のおかれIこ8独の条イ
1、例えば内燃機関冷却水の水温、空vJ装置負荀の有
無等によって、緻密にアイドル回転数の目標値、即ち目
標回転数に制御1=lるアイドル回転数制御装置が11
−供されている。[Prior Art] As the electric control of internal combustion engines progresses, valve control devices that control various flow rates such as the amount of intake air to the internal combustion engine are becoming more and more popular. It has been used in various m111611 fields. One example of this is the idle speed control device, which improves fuel efficiency and improves fuel efficiency when the internal combustion engine is idling.
For the purpose of exhaust gas purification, the amount of air flowing into the bypass passage that bypasses the throat valve is adjusted by a valve means, and the idle rotation speed is adjusted by adjusting the idle speed of the internal combustion engine. The idle rotation speed control device precisely controls the idle rotation speed to the target value, that is, the target rotation speed, depending on the water temperature, the presence or absence of an empty VJ device, etc.
- Provided.
この方法は通常アイドルスピードZ1ントL1−ルシス
テム(以下、単にISCとも叶ぶ)と称されるが、一般
に内燃m関の回転数等、内燃機関の運軟状態を検出する
内燃m関運転状態検出器、バイパス路を流れる吸入空気
量を調整するアイドル空気量調整手段とし”Cの°アイ
ドルスピードコントロールバルブ(以下、ISOバルブ
と呼ぶ)、内燃機関のおかれた条件に従っ゛て前記IS
Cバルブを間開して内燃機関回転数を制御づるアイドル
回転vI演粋制御1手段からなっている。This method is usually called the idle speed control system (hereinafter also referred to simply as ISC), but it is generally used to detect the operating state of the internal combustion engine, such as the rotational speed of the internal combustion engine. A detector, an idle air amount adjusting means for adjusting the amount of intake air flowing through the bypass passage, and an idle speed control valve (hereinafter referred to as an ISO valve) that adjusts the amount of intake air flowing through the bypass passage according to the conditions of the internal combustion engine.
It consists of an idle rotation vI control means for controlling the internal combustion engine rotation speed by opening the C valve.
しかしながら、ISOに゛おいてISOバルブが故障し
たりJると、アイドル回転数の制御は満足に行ない得な
くなるばかりでなく、ISOが故障したまま機関運転を
続ければ、内燃機関負荷に対し−C内燃48関が異常な
回転数で運転されるなどの問題が生じ、場合ににっては
燃費の悪化、初ガス浄化性の劣化、あるいは内燃機関回
転数のフラつきといった問題をひさお゛こづことがあっ
た。However, if the ISO valve malfunctions in the ISO, not only will it be impossible to control the idle speed satisfactorily, but if the engine continues to operate with the ISO malfunctioning, -C Problems such as internal combustion engine 48 being operated at abnormal speeds may occur, and in some cases, problems such as deterioration of fuel efficiency, deterioration of initial gas purification performance, or fluctuations in internal combustion engine speed may occur. Something happened.
このにうな問題は、排ガス循環システム(EGRシステ
ム)、吸気系空燃゛比フィードバックシステムなど他の
内燃機関制御システムで、バルブ手段により排気循環m
や吸入空気量を制aiるシステムについても同様に生じ
る可能性があった。This problem occurs in other internal combustion engine control systems, such as the exhaust gas recirculation system (EGR system) and the intake system air-fuel ratio feedback system, where the exhaust gas recirculation system is controlled by valve means.
A similar problem could occur with systems that control the amount of intake air.
[発明の目的]
本発明の目的は、内燃機関制御用のバルブ手段の異常を
検出してフj−−ルセーフ処理を行ない、内燃機関負荷
を信頼111の高いものとし、制御上の安全性をも改善
づることにある。[Object of the Invention] An object of the present invention is to detect an abnormality in a valve means for controlling an internal combustion engine, perform full-safe processing, make the internal combustion engine load highly reliable, and improve control safety. It is also about improvement.
[鋒明の構成]
かかる目的を達成りるためにな2\れた本発明の構成は
、第1図に示づ如く、
内燃機関への運転状R検出手段13ど、該機関が吸入づ
る流体の流量を、間[]而栢の調整によって制御するバ
ルブ手段Cと、該パル1手段の間+−+ 1rii積調
整量を検出する調整量検出手段1〕と、前記運転状態検
出手段BにJ、り検出された内燃機関運転状態に応じて
、前記バルブ手段Cの開1−1面積の1]標調整fR,
+ titi陣し、当該]−1標調整吊に31(づい−
(前記バルブ手段Cを制御する演の制御丁段1−と、前
記調整量検出手段りにJ:り検出された調整量と前記目
標調整量との偏差量が所定品以上である状態が、所定時
間以上継続した場合に、異常検出処理を行なう異常検出
手段Fとを備えたことを特徴と覆る内燃1幾関のバルブ
制御装置を、
要旨としている。[Configuration of Fengming] The configuration of the present invention, which has been made to achieve the above object, is as shown in FIG. A valve means C for controlling the flow rate of fluid by intermittent adjustment; an adjustment amount detection means 1 for detecting the +-+1rii product adjustment amount between the pulse means; and the operating state detection means B. In accordance with the detected operating state of the internal combustion engine, the 1] standard adjustment fR of the open 1-1 area of the valve means C,
+titi camp, concerned]-1 mark adjustment hanging 31(zui-
(The state in which the deviation amount between the adjustment amount detected by the control stage 1- for controlling the valve means C and the adjustment amount detection means and the target adjustment amount is equal to or greater than a predetermined value is The gist of the present invention is a valve control device for internal combustion, which is characterized by being equipped with an abnormality detection means F that performs abnormality detection processing when the abnormality continues for a predetermined period of time or longer.
」−記構成において、異常検出処理とはバルブ手段の異
常を検出し、該異常の運転者への報知、燃料カッ1等に
よる機関運転の停止、あるいは特定の運転晶への移行等
を行なう処理を意味している。In the configuration described above, the abnormality detection process is a process of detecting an abnormality in the valve means, notifying the driver of the abnormality, stopping engine operation due to fuel shortage, etc., or shifting to a specific operation mode, etc. It means.
[実施例J 以下に本発明を、実施例をあげて図面と共に説明する。[Example J The present invention will be explained below by giving examples and referring to the drawings.
第2図は本発明による第1実施例のアイドル回転数制御
装置を含む内燃機関制御システム即ち機関制til+シ
ステムの一実施例構成を示1゜図中、1は内燃機関本体
すなわち機関本体、2はピストン、3は点火プラグ、4
は+71気マニホールド、5は排気マニホールド4に備
えられ、排ガス中の残存M累II!麿を検出づるIll
糸センサ、6は内燃機関本体1の吸入空気中に燃料を噴
射する燃料噴射弁、7は吸気マニホールド、8は吸気マ
ニホールド7に備えられ、内燃機関本体1に送られる吸
入空気の温度を検出する吸気温レンザ、9は内燃機関冷
却水の水温を検出する水温ヒンサ、10はスロットルバ
ルブ、11はスロットルバルブ10に連動し、スロット
ルバルブ10の間IOに応じた信号を出力づるスロット
ル間度しンザ、12はスロットルバルブ10を迂回づる
空気通路であるバイパス路、13はバイパス路12の間
口面積を調整してアイドル空気量を調整するバルブ手段
としてのISCバルブ、14はISCバルブ13内の弁
体の位置によってバイパス通路12の間口面積の調整量
を検出するボジシElンセンリ、15は吸入空気量゛を
測定するエアフローメータをそれぞれ表わしている。FIG. 2 shows the configuration of an embodiment of an internal combustion engine control system, that is, an engine control system, including an idle speed control device according to a first embodiment of the present invention. is the piston, 3 is the spark plug, 4
is provided in the +71 air manifold, 5 is provided in the exhaust manifold 4, and the remaining M in the exhaust gas II! Ill that detects Maro
A string sensor, 6 is a fuel injection valve that injects fuel into the intake air of the internal combustion engine main body 1, 7 is an intake manifold, and 8 is provided in the intake manifold 7, and detects the temperature of the intake air sent to the internal combustion engine main body 1. 9 is a water temperature sensor that detects the internal combustion engine cooling water temperature; 10 is a throttle valve; 11 is a throttle sensor that is linked to the throttle valve 10 and outputs a signal according to the IO during the throttle valve 10; , 12 is a bypass passage which is an air passage that bypasses the throttle valve 10, 13 is an ISC valve as a valve means for adjusting the opening area of the bypass passage 12 to adjust the idle air amount, and 14 is a valve body in the ISC valve 13. 15 represents an air flow meter that measures the amount of intake air.
又16は点火に必要なn電IIを出力Jるイグナイタ、
17は図示していないクランク軸に連動し−1−記イグ
ツイタ16で発生した凸型11を各気筒の点火プラグ3
に分配供給づるディストリピコ−°り、18はディスト
リビ1−タ17内に取り(J l〕られ、ディストリビ
ユータ17の1回転、即I3クランク軸2回転に24発
のパルス信号を出力ηる回転角レンジ、19はディスト
リビュー夕17の1回転に1発のパル742号を出力す
る内燃機関回転数センタ、20は異常検出手段を含む演
算制御手段としての電子制御回路、21はキースイッチ
、22はスタータモータ、23は車用の空調装置をそれ
ぞれ表わしている。16 is an igniter that outputs the n-electric II necessary for ignition;
Reference numeral 17 is connected to a crankshaft (not shown), and connects the convex shape 11 generated by the igniter 16 described in -1 to the spark plug 3 of each cylinder.
The distributor 18 is taken into the distributor 17 and outputs 24 pulse signals per one revolution of the distributor 17, that is, two revolutions of the I3 crankshaft. 19 is an internal combustion engine rotational speed center that outputs one pulse No. 742 per revolution of the distributor 17, 20 is an electronic control circuit as arithmetic control means including abnormality detection means, 21 is a key switch, 22 represents a starter motor, and 23 represents a vehicle air conditioner.
第3図は、ISOSCパルプ13成を示づ詳細図である
。図中、31はバイパス路12の間口面積を調整し、バ
イパス路を通る空気量を実際に調整づる弁体、32はバ
ルブシー1〜部、33はダイヤフラム、34はダイヤフ
ラム33によってバイパス路12から仕切られたダイヤ
フラム室を各々表わしている。ダイヤフラム33は両サ
イドの圧ツノ差により力を受け弁体31を動作させる。FIG. 3 is a detailed diagram showing the ISOSC pulp 13 composition. In the figure, 31 is a valve body that adjusts the frontage area of the bypass passage 12 and actually adjusts the amount of air passing through the bypass passage, 32 is a valve seat 1~, 33 is a diaphragm, and 34 is partitioned from the bypass passage 12 by the diaphragm 33. Each of the diaphragm chambers shown in FIG. The diaphragm 33 receives a force due to the pressure difference between the two sides and operates the valve body 31.
35はダイA7フラム室に設けられ前記圧力差によって
ダイヤフラムに生じる力とバランスしてダイヤフラム3
3を移動させるバランス発条、36.37は電子制御回
路20からの信号により排他的に開閉して、ダイヤフラ
ム室34に所定の負圧を導き、バランス発条35とのバ
ランスにおいてダイヤフラム33を移動させ、ひいては
バイパス路の空気量を調整するための弁体を作IF!I
Iさμる電磁弁、38は電磁弁36が聞いた時、タイA
/ノラム室34に大気圧を導く大気圧導圧管、39はT
if41弁37が弁動7時ダイヤフラム室34にfil
−tを轡くn圧導圧管をそれぞれ表わしている。35 is provided in the diaphragm chamber of the diaphragm A7, and the diaphragm 3
The balance springs 36 and 37 that move the balance springs 36 and 37 are exclusively opened and closed by signals from the electronic control circuit 20 to introduce a predetermined negative pressure into the diaphragm chamber 34, and move the diaphragm 33 in balance with the balance spring 35. Finally, I made a valve body to adjust the amount of air in the bypass path! I
When the solenoid valve 38 hears the solenoid valve 36, the tie A
/ Atmospheric pressure impulse pipe that leads atmospheric pressure to the noram chamber 34, 39 is T
If41 valve 37 fills the diaphragm chamber 34 at 7 o'clock valve operation
-t and n-pressure impulse tubes, respectively.
第4図は電子制御回路20のブ【」ツク図を表わしてい
る。FIG. 4 represents a block diagram of the electronic control circuit 20.
50は各センサより出力されるデータを制til+プロ
グラムに従って入力及び演算づると共に、I’ SCパ
ルプ13等の各種装置を作動制御等づるための処理を行
なうセントラルプロセシングユニツ1−(CPU) 、
51は前記制御11.1グラム及び初期データが格納さ
れるリードAンリーメしり(ROM>、52は電子制御
回路20に人力されるデータや演篩制御に必要なデータ
が読みpiきされるランダムアクレスメモリ(RAM)
、53は4二−スイッチ21がメツされても内燃機関作
動に必′f5.ムデータを保持するよう、バラブリによ
ってバックアップされたバックアップランダム71クヒ
スメにす(バックアップRAM)、54は入力部であっ
て、図示しない入力ボート、波形整形回路、各センサの
出力信号をCPU50に選択的に出力するマルチプレク
サ、アナログ信号をデジタル信号に変換づるA/D変換
器等が備えられている。55は入・出力部であって図示
しない入ツノボート等の他に出′カボートが設けられI
SOSCパルプ13CPU50の制御信号に従って駆動
する駆動回路等が備えられている。56はCPU50よ
り任意の11.’j間をセットでき、ぞの時点からタイ
ムカウントを始め、タイム値をCP U 50によって
自由に読みとることができるタイマ部、57はCPU
50、ROM51等の各素子及び入力部54.入・出力
部55.タイマ56を結び各データが送られるパスライ
ンをそれぞれ表わしている。50 is a central processing unit 1-(CPU) which inputs and calculates the data output from each sensor according to the control program, and performs processing to control the operation of various devices such as the I'SC pulp 13;
51 is a read access memory (ROM) in which the control 11.1 program and initial data are stored, and 52 is a random address in which data manually input to the electronic control circuit 20 and data necessary for flow control are read. Memory (RAM)
, 53 are necessary for the internal combustion engine to operate even if the 42 switch 21 is closed. 54 is an input section which selectively sends the output signals of an input board (not shown), a waveform shaping circuit, and each sensor to the CPU 50 so as to retain the random data. It is equipped with a multiplexer for output, an A/D converter for converting analog signals into digital signals, and the like. Reference numeral 55 denotes an input/output section, in which an output boat is provided in addition to an input boat (not shown).
The SOSC pulp 13 is equipped with a drive circuit and the like that are driven according to control signals from the CPU 50. 56 is an arbitrary 11. 57 is a timer section that can set the time interval, start time counting from that point, and read the time value freely by the CPU 50;
50, each element such as ROM 51 and input section 54. Input/output section 55. The path lines connecting the timer 56 and through which each data is sent are respectively represented.
アイドル時におい゛C1電子制御回路20では内燃機関
のJ3かれた条1′1、例えば内燃機関冷却水の水温を
検出Jる水ff1Lンサ9の出力や空調装置23の0N
10FF等ににって、各条件に対応するアイドル回転数
の目標値を輝出し、ISOSCパルプ13御づる。本実
施例ではアイドル回転数の目標値に応じた制御出力は、
2つの電磁弁36゜37に印加され、当該電磁弁36.
37を同時に開状態としないよう制−御Jる印加パルス
の各デコーティをかえることにより、前出第3図に示し
たダイA7フラム室34の負圧の大きさを変えて弁体3
1の位置を目標位置、例えばPOまぐ変更覆る。During idling, the C1 electronic control circuit 20 detects the temperature of the internal combustion engine cooling water, for example, the output of the water sensor 9 and the 0N of the air conditioner 23.
10FF etc., the target value of the idle rotation speed corresponding to each condition is determined, and the ISOSC pulp 13 is controlled. In this example, the control output according to the target value of the idle rotation speed is
The voltage is applied to the two solenoid valves 36 and 37, and the solenoid valve 36.
By changing the respective decoulets of the applied pulses so as not to open the valve body 37 at the same time, the magnitude of the negative pressure in the die A7 flamm chamber 34 shown in FIG.
Change the position of 1 to the target position, for example, PO.
弁体31の移動はバルブシート部32の間口面積を変え
るので、バイパス路12を経由して内燃機関に吸入され
る空気量を所定の量だり増減し、内燃機関のアイドル回
転数を目標1ftに制til+−41る。Since the movement of the valve body 31 changes the frontage area of the valve seat portion 32, the amount of air taken into the internal combustion engine via the bypass passage 12 is increased or decreased by a predetermined amount, and the idle speed of the internal combustion engine is adjusted to the target 1 ft. Control +-41.
次に、上記公知のI’ S Gに加えて本実施例にて実
行される本発明の特徴であるISOSCパルプ13常に
対する制御について説明覆る。Next, in addition to the above-mentioned well-known I'S G, the control over the ISOSC pulp 13, which is a feature of the present invention and is executed in this embodiment, will be explained.
IscにJjいで、弁体31 (7) +</ tFl
が11標iイjV’tから人さくはずれたとJる3、か
かる偏Xをzl、じさけるようなISCバルブ13の異
常が、例えばIsCバルブ13のダイレフラム33の破
1(1であったとJると、ダイA7フラム室34の負圧
はもはや相持できず、バランス発条35の作用ににって
、弁休31は移動し、開口面積は大きくなって内燃機関
は異常高回転となる。こうした異常は応答遅れのある内
燃機関回転数の上昇を持つまでもなく、本実施例では弁
体31の位置を検出しているので目標61置Poと弁体
実位置P1との偏差の発生としてとらえることができ、
l5OI1111illlはこれを処理リベく第5図に
示り処理ルーチンへ移行づる。Jj to Isc, valve body 31 (7) +</tFl
It is assumed that there is an abnormality in the ISC valve 13 that would cause the deviation Then, the negative pressure in the die A7 flamm chamber 34 can no longer be maintained, and due to the action of the balance spring 35, the valve rest 31 moves, the opening area increases, and the internal combustion engine rotates at an abnormally high speed. The abnormality does not need to be caused by an increase in the internal combustion engine rotational speed with a response delay, and in this embodiment, since the position of the valve body 31 is detected, it is regarded as the occurrence of a deviation between the target position 61 Po and the actual position P1 of the valve body. It is possible,
15OI1111ll processes this and moves to the processing routine shown in FIG.
第5図Aより制御にはいる本処理ルーチンで番41まず
ステップ100で弁体31の実位置P1を目標位置1〕
0に一致させるよう電子制御回路20より電磁弁36.
37に印加されている制御パルスのデユーティが変更さ
れる。続いてステップ101?l−はタイマ56を初I
ll値零としくタイムhウントを開始させる。ステップ
102では、弁体31の実1(tIaを検出りるポジシ
ョンレン1)14により検出された実位置P1を読み、
続くステップ103で該検出実位置1)1と目標位置と
の偏差11P1−Pa lが許容偏差値ΔPOの範囲に
はいっているかどうかを判定づる。しかしながら、ダイ
ヤフラム33の破損等により弁体31が制御されなれて
いても、ステップ102で読み取られた実4Ct@P1
は目標(tL装p oから大きくはり゛れたままである
。この為、ステップ102でポジションセンサ14によ
り検出された弁体の実位置P1と目標位置Poの偏差量
は許容偏差値△POよりも大きく、処理はステップ10
3からステップ10.4に移り、[SCバルブの弁体位
置の制御が開始されてタイマ56がスタートしたステッ
プ101からの経過時間tがチェックされる。ステップ
104で経過時間tが設定された所定の時間+1を下回
っているなら処理は102へ戻つ【再び弁体31の実υ
L匠P1を読み、続くステップ103ぐ]゛1標位置P
oとの偏差tFi l P+ −P o lと許容−i
”; I+rlΔ]〕oを比較゛りる。しかし、弁体3
i LL制911されないからIP+−Palが△1
)oをト同ることはなく、ステップ104で該経過+1
.i lが所定の時間【1以上となった時、処理はスデ
ッ1105へ進み、ISOSCバルブ障であると判定し
て異常検出処理、例えば燃料カットやインジケータへの
表示を行ない制御を終了づる。In this processing routine, control is started from FIG.
The electronic control circuit 20 controls the solenoid valve 36.
The duty of the control pulse applied to 37 is changed. Next step 101? l- starts timer 56
The time h count is started with the ll value set to zero. In step 102, the actual position P1 detected by the actual position P1 of the valve body 31 (position lens 1 for detecting tIa) 14 is read;
In the following step 103, it is determined whether the deviation 11P1-Pal between the detected actual position 1)1 and the target position is within the range of allowable deviation value ΔPO. However, even if the valve body 31 is not controlled due to damage to the diaphragm 33, the actual 4Ct@P1 read in step 102
remains far from the target (tL arrangement po). Therefore, the amount of deviation between the actual position P1 of the valve body detected by the position sensor 14 in step 102 and the target position Po is less than the allowable deviation value △PO. Largely, the process is step 10
Step 3 moves to step 10.4, where the elapsed time t from step 101 when control of the valve body position of the SC valve is started and the timer 56 is started is checked. If the elapsed time t is less than the set predetermined time +1 in step 104, the process returns to step 102 [again, the actual value υ of the valve body 31].
Read L Takumi P1 and continue step 103]゛1 mark position P
deviation from o tFi l P+ −P o l and tolerance −i
"; I+rlΔ]]o. However, valve body 3
i Since LL system 911 is not used, IP+-Pal is △1
) o is not the same, and in step 104, the corresponding progress +1
.. When i l becomes equal to or greater than 1 for a predetermined period of time, the process proceeds to step 1105, where it is determined that there is an ISOSC valve failure, and abnormality detection processing, such as fuel cut or display on an indicator, is performed, and the control is terminated.
仮に、ISOバルブ13が正常であったとづれば、ステ
ップ100で電子υ制御回路20より電磁弁36.37
に印加されているパルスのデユーティが変更されると、
該電磁弁36.37の相対的な量弁時間が変わることに
より、ダイヤフラム室34に導入される圧力が変化して
弁体31の位置は変更され、結果的にバイパス路の開口
面積が増減してアイドル回転数は目fI値まで制御され
る。If it is determined that the ISO valve 13 is normal, the electronic υ control circuit 20 switches on the solenoid valves 36 and 37 in step 100.
When the duty of the pulse applied to is changed,
By changing the relative valve time of the electromagnetic valves 36 and 37, the pressure introduced into the diaphragm chamber 34 changes and the position of the valve body 31 is changed, resulting in an increase or decrease in the opening area of the bypass passage. The idle speed is controlled up to the fI value.
この時弁体31の実位置P1と目標位置POとの偏差f
f1lP+−Palは、設定時間t1のうちに許容偏差
値Δ1〕0以下になるので、ステップ103よりスデツ
1106へ処理は移行し、ISOSCバルブ常であった
と判断し、本ルーチンより通7:Xのl S Cm1l
l IIIへ戻る際の制御情報、例えばISOバルブ1
正常」・「異常」のいずれかを示すフラグを1正常」に
セツトシて本ルーチンを終了Jる。At this time, the deviation f between the actual position P1 of the valve body 31 and the target position PO
Since f1lP+-Pal becomes less than or equal to the allowable deviation value Δ1]0 within the set time t1, the process moves from step 103 to step 1106, where it is determined that the ISOSC valve is normal, and from this routine 7: l S Cm1l
l Control information when returning to III, e.g. ISO valve 1
The flag indicating either "normal" or "abnormal" is set to 1 "normal" and this routine ends.
尚上記の処理ルーチンにおいて、タイマの設定mt 、
LW’ −−’ir?(11* J−1,Tt’+ヨ
&’ シ、制御ll Ill始時点における弁体の実位
置P1と目標1セ!餡Poとの偏差量IP+−Polの
関数としくむにい。In the above processing routine, the timer settings mt,
LW'--'ir? (11* J-1, Tt'+Y&', control ll Ill It works as a function of the deviation amount IP+-Pol between the actual position P1 of the valve body at the start time and the target 1st bean paste Po.
本実施例の制御にお(〕る弁体31の移動の状態を第6
図に示す。The state of movement of the valve body 31 in the control of this embodiment is
As shown in the figure.
第6図においてイで示1時点、りなわち1=0で、弁体
31の実位置P1が目標位W P oからスレICもの
とする。このことはJでに説明したJ、うに、内燃機関
回転数の変化を持つまでしむく、ポジションセンサ14
より電子制御回路20に取り込まれ、該電子制御回路2
0により弁体31を1」標位置P oに近づ()るにう
ISCバルブ13にa+++御出力がなされる。この時
、ISCバルブ13がj1常C−あれば、弁体31の実
(ダ7 iFI I’ +は第6図中破線の如く変化し
く、設定時間[1のiff過前K1[1標位置P oと
の偏差h5 l P+−l’ o lはR’l容輪差偵
ΔP oの範囲内に戻る。しかし、ISOバルブ13に
何らかの故障が生じ、弁体31が正常に制御されなG)
れば、弁体31の実(η置])1は図中、口の時点、す
なわら設定時間[1の経過後も、第6図実線の如くとな
り、目標B11Q l〕oとのIf;A ;S甲If”
+−Polがti’f容偏差蛸ΔPOの範囲にはいるこ
とはない。In FIG. 6, it is assumed that at a point in time indicated by A, that is, 1=0, the actual position P1 of the valve body 31 is a level IC from the target position W P o. This is explained in Section J, and the position sensor 14 continues until there is a change in the internal combustion engine rotation speed.
is taken into the electronic control circuit 20, and the electronic control circuit 2
When the valve body 31 approaches the 1'' mark position P o by 0, an a+++ control output is made to the ISC valve 13. At this time, if the ISC valve 13 is j1 normally C-, the actual value of the valve body 31 (da7 iFI I' + changes as shown by the broken line in FIG. The deviation h5 l P+-l' o l from P o returns to within the range of R'l displacement difference ΔP o.However, some kind of failure occurs in the ISO valve 13, and the valve body 31 is not normally controlled. )
Then, the actual value (η position) 1 of the valve body 31 remains as shown in the solid line in FIG. ;A ;SKIf”
+-Pol never falls within the range of the ti'f volume deviation ΔPO.
以上詳述しICように、本実施例では所定時間内に弁体
31の実位置P1と目標位置との偏差量IP+ −Po
lが許容偏差値ΔPOの範囲にはいっているかどうか
を検出することにより、[SCバルブ13の異常を検出
づることがでさる。電子IQ御部20はlSCバルブ1
3の異常を検出して、燃料カッ!−やインジケータへの
表示等の異常検出処理を行なうのぐ、機関が内燃機関負
荷からみて異常燃焼となることを防止することができる
。As described above in detail and as shown in the IC, in this embodiment, the deviation amount IP+ -Po between the actual position P1 of the valve body 31 and the target position within a predetermined time
By detecting whether l is within the range of allowable deviation value ΔPO, it is possible to detect an abnormality in the SC valve 13. Electronic IQ control section 20 is ISC valve 1
Detected abnormality 3 and found out that the fuel was hot! By performing an abnormality detection process such as displaying a - or an indicator, it is possible to prevent the engine from experiencing abnormal combustion in view of the internal combustion engine load.
次に本発明の第2実施例について説明する。本発明を適
用した第2実施例は、第1実施例と同一の装置を用い、
以下の如き制御を行なうものである。Next, a second embodiment of the present invention will be described. A second embodiment to which the present invention is applied uses the same device as the first embodiment,
The following control is performed.
第7図は本実施例の制御を示づフローチャートである。FIG. 7 is a flowchart showing the control of this embodiment.
図において制御はCより開始され、以下処理が行なわれ
る。ステップ200では、第1の実施例と同様に、lS
Cバルブ13の弁体31の位置を目標位12 P oへ
移動させる制御出力が電子制御回路20よりlSCバル
ブ13へ出力される。In the figure, control is started from C, and the following processing is performed. In step 200, as in the first embodiment, lS
A control output for moving the position of the valve body 31 of the C valve 13 to the target position 12 P o is output from the electronic control circuit 20 to the ISC valve 13 .
ステップ201は制御ルーチンの初1111化にあlζ
す、弁体移動時間の測定回数Nを設定しくここではN=
2〉、タイマを零よりスタートさせる。又許容偏差値Δ
P oを該測定回数Nで除した偵をSとして設定づる。Step 201 is for initialization of the control routine.
Set the number of measurements N for the valve body movement time. Here, N=
2> Start the timer from zero. Also, allowable deviation value Δ
The value obtained by dividing Po by the number of measurements N is set as S.
続くステップ202では弁体の実位置1〕1をポジショ
ンレノ1ノ14より読みどり、次のステップ203Cは
該実位置[〕1と目標II′/冒1〕0との偏差m l
Pl−P o l 7J萼’l容偏差値Δl) 。In the following step 202, the actual position 1]1 of the valve body is read from the position record 1 no 14, and in the next step 203C, the deviation m l between the actual position [1] 1 and the target II' / 1) 0 is determined.
Pl-P o l 7J calyx'l volume deviation value Δl).
を下回っているかどうかを判別ηる。ステップ203に
おいて弁体31の1回[1の検出実位r P +と目標
位置Paとの偏差量IP+−Palが許容偏差値ΔPa
の範囲にはいっていなりれば、処理はステップ204に
移り、制御間!I!1からの経過時間tが段定植【1を
越え(いないかどうが判…iりる。経過時間tが設定(
iflt1未満(・あれば、処理は再びステップ202
へ戻り、弁体31の丈4(を置P1を読みとり、ステッ
プ203へ進む。lSCバルブ13に異常が発生し、弁
体31が8fIできなくなっているようなケースでは、
ステップ203の判断はNoでありつづ【ノるから、や
がてステップ204における判断はt≧11成立となっ
て、ステップ205へ進む。これは第5図に一ハノるス
テップ104.105の処理と同一であるから説明は省
121 ”lる。ステップ203において、弁体31が
すみやかに動作し、その実位置P1と目標位置Paとの
Q差量lP+−Polが許容偏差鉤ΔP oの範囲には
いった場合、ステップ203の判断はYESどなってス
ラップ206へ進む。ステップ206では、制御が始ま
ってから、弁体の実、・位fJ P 1ど[1標位置I
) oの偏差IIP+ 〜Polが許容範囲偏差値ΔP
aの範囲に初めてはいったと判断されるまでの時間亀を
T Nとして記憶させる。初期化のステップ201でN
=2としているのでここで−1−Nは■2である。又、
ステップ206では弁体移動時間の測定が1回終了した
として、Nより1を減じている。続くステップ207で
は測定回数が終了したか、すなわちN=0かどうかをヂ
、lツクする。N=Oでなければ処理はステップ208
に移り、ここで弁体の実位置P1と目標位置Paとの偏
差ff1lP+−Polに対する8′1容範囲である許
容偏差値ΔPOの変更を行なう。Sには初期に設定した
n′1容偏差1111Δl) oを測定回数Nで除した
値がはいっているから、ステップ208ではSだ番ノ許
容偏差値は小さくされで、ステップ202へ戻る。一連
のステップ202→203→206→207→208→
202・・・を繰返Jことににす、設定されIこ測定回
数N回(ここでは2回〉の測定が終了Jると、ステップ
207での判断によって測定終了とされ、ステップ20
9に処理は移行する。ステップ209ぐはlSCバルブ
が正常であったとして、制御情報として上記処理のうち
ステップ206で記憶されlこN個の一1’Nの値(こ
こrはT2.1’lの2個)を保存して本処理ルーチン
を終了Jる。本ルーーfンぐ保存したN個のINの11
j1は、後述りる如く、I S (E rの制御情報ど
して使用Jることがでさる。。Determine whether the value is below η. In step 203, the deviation amount IP+-Pal between the detected actual position rP+ of the valve body 31 once [1] and the target position Pa is the allowable deviation value ΔPa.
If the range is within the control range, the process moves to step 204, and the control period! I! The elapsed time t from 1 to 1 is over 1 (you can tell whether it is or not. The elapsed time t is set (
less than iflt1 (・If there is, the process returns to step 202
Return to step 4, place the length 4 (P1) of the valve body 31, and proceed to step 203. In the case where an abnormality occurs in the lSC valve 13 and the valve body 31 cannot perform 8fI,
Since the judgment in step 203 is No and continues to be negative, the judgment in step 204 becomes t≧11, and the process proceeds to step 205. This is the same process as steps 104 and 105 shown in FIG. If the Q difference amount lP+-Pol falls within the range of the allowable deviation hook ΔP o, the judgment in step 203 is YES and the process proceeds to slap 206. In step 206, after the control starts, the actual and fJ P 1d [1 mark position I
) Deviation of o IIP+ ~Pol is the allowable range deviation value ΔP
The time period until it is determined that it has entered the range of a for the first time is stored as TN. N at step 201 of initialization
=2, so here -1-N is 2. or,
In step 206, 1 is subtracted from N, assuming that the measurement of the valve body movement time has been completed once. In the following step 207, it is checked whether the number of measurements has been completed, that is, whether N=0. If N=O, the process proceeds to step 208
Now, the allowable deviation value ΔPO, which is within the 8'1 range, with respect to the deviation ff11P+-Pol between the actual position P1 and the target position Pa of the valve body is changed. Since S contains the value obtained by dividing the initially set n'1 volume deviation 1111Δl)o by the number of measurements N, the allowable deviation value for number S is reduced in step 208, and the process returns to step 202. A series of steps 202→203→206→207→208→
202... is repeated. When the measurement is completed N times (in this case, 2 times), the determination in step 207 is made to end the measurement, and step 20
The process moves to step 9. Step 209 assumes that the SC valve is normal, and uses the value of 1'N (here r is 2 of T2.1'l) stored in step 206 of the above process as control information. Save and end this processing routine. 11 of the N INs saved in this routine
As will be described later, j1 can be used as control information for IS(Er).
lSCバルブ13のダイレノラム33が破損j)たり弁
体31が凍結性r固着している場合、フ目ホ31は電子
制御回路20からの制御出力にしかかわらず目標位置P
aに移動しない。この為前記処理ループーンのステップ
204でタイムアウトとなり、続くステップ205でI
SOバルブの異常と判断して、異常表示を行なったり、
燃料カットなどの方法で機関を停止させ、機関運転上の
安全を第1実施例と同様に確保づることができる。If the dilenorum 33 of the SC valve 13 is damaged or the valve body 31 is frozen, the eye hole 31 will not move to the target position P regardless of the control output from the electronic control circuit 20.
Does not move to a. For this reason, a timeout occurs in step 204 of the processing loop, and I
It is determined that there is an abnormality in the SO valve, and an abnormality display is displayed.
The engine can be stopped by a method such as a fuel cut, and safety in engine operation can be ensured in the same manner as in the first embodiment.
第8図は本発明の第2実施例の制御にJ3ける弁体の移
動を示づ説明図である。図にJ3いて実線はISOバル
ブに特に問題のない場合の弁体31の動きを示しでいる
。弁体31は目標位置Poへ移動するよう制御出力を与
えられるど、移動をl1tl始しくt =Oより)、偏
差m l P+ −P、o lが許容偏差値ΔPo、Δ
Pa−8である2つの設定範囲にはいるのに、それぞれ
Tz、T+の時間だけがかっ−でいる。FIG. 8 is an explanatory diagram showing the movement of the valve body in J3 in the control of the second embodiment of the present invention. In the figure, the solid line J3 indicates the movement of the valve body 31 when there is no particular problem with the ISO valve. The valve body 31 is given a control output to move to the target position Po, but when the movement begins l1tl (from t = O), the deviation m l P+ -P, o l is the allowable deviation value ΔPo, Δ
Even though they are within the two setting ranges of Pa-8, only the times Tz and T+, respectively, are negative.
一方、図中におい−(破線は、ISOバルブに何らかの
異常が生じた時、例えば電磁弁36.37のいずれか、
あるいは両方のバルブが目詰りをおごし、ダイヤフラム
室34の圧力を変えるのに時間がかかるようになった場
合などのように、i’2211弁36.37の間開のデ
ユーティは変更されたとしても弁体31の応答が遅延づ
るにうな場合の弁体31の動きの一例を示している。弁
体31は目標位IFffiPoへ移動するよう制御され
るが、バルブ目詰りなどによってダイヤフラム934の
圧力は緩慢にしか変化せず、偏差量I P+ −Pa
lが許容偏差値ΔPo、ΔPo−8である2つの設定範
囲にはいるのに、それぞれTz−、−1−+ −の時間
を必要とJる。On the other hand, the dashed line in the figure indicates that when some abnormality occurs in the ISO valve, for example, one of the solenoid valves 36 and 37.
Or, if both valves are clogged and it takes time to change the pressure in the diaphragm chamber 34, the duty of opening the i'2211 valve 36 and 37 may be changed. This shows an example of the movement of the valve body 31 when the response of the valve body 31 is delayed. The valve body 31 is controlled to move to the target position IFffiPo, but the pressure in the diaphragm 934 changes only slowly due to valve clogging, etc., and the deviation amount I P+ -Pa
It takes Tz- and -1-+ - times for l to fall within the two setting ranges where allowable deviation values ΔPo and ΔPo-8, respectively.
」間第2の実施例にJりい(、内燃1幾関の回転数にに
リアイドル回転数のフィードバック制御が行なわれてお
り、制御系の応答!yれ、りなわちISCバルブの1m
度の変更に追従しlこ内燃機関回転数の変化の発現まで
の時間(応答Hれ時間)を見込lυぐ、フィードバック
制御出力を該1Ii5答νヱれ(14間による補正値で
補正しフィードバックflill til+の(jさ過
ぎが生じないにうに処理しくいる11N+、ブを体2′
S1が1みやかに動作Jるような1幾関の初期状j[!
!(第8図、実線のような状態)で調整された補正1「
1ににる制御は、経年変化等にj;つ(該5f休31の
動作が緩慢になった時(第8図、破線のような場合)に
は、かえってフィードバック制御におけるA−バージ、
1−ト、ダウンシュートひいてはハンチング現象をひき
おこしかねない。In the second embodiment, feedback control of the re-idle rotation speed is performed at the engine speed of the internal combustion engine, and the response of the control system, that is, the 1 m of the ISC valve.
The feedback control output is corrected by the correction value according to flill til+ (j 11N+, which should be processed to prevent overflow, 2' body)
The initial state j [!
! (Figure 8, solid line) Adjustment 1
1. When the operation of the 5f holiday 31 becomes slow due to aging etc. (as shown by the broken line in Fig. 8), the A-barge in the feedback control,
This may lead to a downshoot or a hunting phenomenon.
しかるに、本実施例の制御では、弁体31の移動に必要
な時間T Nを測定し、すなわち弁体31の動作近れ1
15間を検出、保存しているので、図示しない公知の[
SC制御の中で、当該遅れ時間TNに応じてフィードバ
ック91部におりる前記補正値を増減しC11iIII
Ilを行なえば、経年変化、バルブ目詰り等で弁体31
の動作が初期状態より緩慢になったとしても、これに応
じて応答遅れ時間に対応して補正値を修正−りるので、
ハンチング等をひき起こりことなくアイドル回転数を制
御づることができる。However, in the control of this embodiment, the time TN required for the movement of the valve body 31 is measured, that is, the time TN required for the movement of the valve body 31 is measured.
15 is detected and stored, the well-known [not shown]
During SC control, the correction value sent to the feedback section 91 is increased or decreased according to the delay time TN.
If Il is performed, the valve body 31 may become damaged due to aging, valve clogging, etc.
Even if the operation becomes slower than the initial state, the correction value will be corrected according to the response delay time.
The idle speed can be controlled without causing hunting or the like.
尚、本実施例では弁体31の動作における動作時間の測
定回数は2回として処理を行なっているが、測定回数は
1回でもあるいは3回以上でも、本発明を適用ぐきるこ
とは明らかである。lscパルプの1it ray t
、−上1T宇手711大欠2わ1よ 11117人−数
理れ時間の増大となるような場合であれば、N−1でも
よいし、リニアソレノイドのにうにスデイツクスリップ
が経年変化にJ、って牛じや1いISCパルプでは、N
を複数とした方が180パルプの応答dれの状態を詳し
く知−)て、にり緻密な制御を行なうことができる。In this embodiment, the operation time of the valve body 31 is measured twice, but it is clear that the present invention can be applied even if the number of measurements is one or three or more times. be. 1it ray t of lsc pulp
, - Upper 1T Ute 711 Otsuchi 2Wa 1yo 11117 people - If it increases the math time, N-1 may be used, or J , in the case of ISC pulp, N
By setting a plurality of values, it is possible to know the state of the response of the 180 pulp in detail and perform precise control.
第1.第2実施例では、Ti磁ブ7を用いたISOバル
ブで説明したが、ステップし一タ代ISCバルブ、リニ
アソレノイド式ISOバルブであっ(ちよく、該開口面
積の、ill整吊を検出づるボジシ・奮ンセンサ等の調
整量検出手段を段(〕たしの【゛あれば、本発明を適用
でさることはaうまぐ6ない。1st. In the second embodiment, an ISO valve using a Ti magnetic plate 7 was explained, but a step-type ISC valve and a linear solenoid-type ISO valve can also be used. If there is a means for detecting the amount of adjustment such as a position/pressure sensor, there is no problem in applying the present invention.
このことはアイドル空気hIのかわりに、IJIガスの
循環量(IE G l’?吊)を楯環通路の聞1.11
rii禎で10j様に制御−461Jrガス循環のシス
7ム、又、吸気系のバルブ手段にJ:っで空燃比をフィ
ードバック制御りるシスデlい等にb上述した構成が適
用Cきることを彦味している。This means that instead of idle air hI, the circulation amount of IJI gas (IE G l'? suspension) can be increased to 1.11 times the amount of IJI gas in the shield ring passage.
The above-mentioned configuration can be applied to the system of gas circulation, and the system in which the air-fuel ratio is feedback-controlled by J: to the valve means of the intake system. I'm excited.
1光明の効果1
以上詳述したように本什明に、1iいCは、内燃機関の
運転状態検出手段と、該機関が吸入する流体の流量を、
間口面積の調整によって制御するバルブ手段と、該バル
ブ手段の間口面積調整麗を検出づる調整量検出手段と、
前記運転状態検出手段により検出された内燃機関運転状
態に応じて、前記バルブ手段の開]コ面積の目標調整量
を演算し、当該口4−調整量に基づいて前記バルブ手段
を制御2′I11る演算制御手段と、前記調整量検出手
段により検出された調整量と約2目標調整かとの偏差量
が所定泄以上である状態が、所定時局以上継続した場合
に、異常検出処理を行なう異常検出手段とを備えたこと
を特徴としている。1 Effect of Light 1 As explained in detail above, 1iC detects the operating state of an internal combustion engine and detects the flow rate of fluid taken into the engine.
a valve means for controlling by adjusting the frontage area; an adjustment amount detection means for detecting the adjustment of the frontage area of the valve means;
A target adjustment amount of the opening area of the valve means is calculated according to the internal combustion engine operating state detected by the operating state detection means, and the valve means is controlled based on the opening adjustment amount. an arithmetic control means that performs abnormality detection processing when a state in which the deviation amount between the adjustment amount detected by the adjustment amount detection means and the approximately 2 target adjustment continues for a predetermined time period or more; It is characterized by comprising a detection means.
従って、ダイAシフラムの破損や弁体の固着等といった
バルブ手段の異常な状態を、素早く検出できるので、燃
料カットや表示等の異常検出処理を行ない機関を停止さ
せるなど機関運転状態を安全側に制御できるという効果
がある。Therefore, abnormal states of the valve means such as damage to the diaphragm or sticking of the valve body can be quickly detected, so abnormality detection processing such as fuel cut and display can be performed to stop the engine, thereby reducing the engine operating state to the safe side. It has the effect of being controllable.
第1図は本発明の基本的な構成を承り説明図、第2図は
本発明による第1.第2実施例のノフイドル回転数制1
III装置を含む内燃機閉制ffl+システムの概略構
成図、第3図は同じ(実施例のISOバルブの詳細図、
第4図は同じ(実施例中の電了制帥回路のブロック図、
第5図は第1実施例の制御を示づフローチャー1・、第
6図は同じく弁体の動作を示ず説明図、第7図は第2実
施例の制御を示づ〕LJ−ヂト一ト、第8図は同じく弁
体の動作を示づ説明図を各4表わ1゜
1・・・内燃機関
12・・・バイパス路
13・・・tSCバルブ
14・・・ポジションUンサ
20・・・電子制ti11回路
31・・・弁体
36.37・・・電磁弁
代理人 弁理士 足A′f 勉
GJ /Jl 1名
第5図
第6図
8)間FIG. 1 is an explanatory diagram of the basic configuration of the present invention, and FIG. 2 is a diagram illustrating the basic configuration of the present invention. No fiddle rotation speed system 1 of the second embodiment
The schematic configuration diagram of the internal combustion engine closing ffl+ system including the III device, and Figure 3 are the same (detailed diagram of the ISO valve of the example,
Figure 4 is the same (block diagram of the power control circuit in the embodiment,
FIG. 5 is a flowchart 1 showing the control of the first embodiment, FIG. 6 is an explanatory diagram without showing the operation of the valve body, and FIG. 7 is a flowchart showing the control of the second embodiment. Figure 8 also shows four explanatory diagrams showing the operation of the valve body. 20...Electronic system ti11 circuit 31...Valve body 36.37...Solenoid valve agent Patent attorney Foot A'f Tsutomu GJ/Jl 1 person Figure 5 Figure 6 Figure 8)
Claims (1)
て制御するバルブ手段と、 該バルブ手段の開口面積調整量を検出する調整量検出手
段と、 SjJ記運転状態検出手段にJこり検出された内燃機関
運転状態に応じて、前記バルブ手段の開口面積の目標調
整量を演算し、当該目標調整mに基づいC前記バルブ手
段を制御する演篩制御手段と、前記調整M検出手段によ
り検出された調整mと前記目標調整量との偏差量が所定
量以上である状態が、所定時間以上継続した場合に、異
常検出処理を行なう異常検出手段と、 を備えたことを特徴とづる内燃機関のバルブ制御装置。[Scope of Claims] An operating state detection means for an internal combustion engine, a valve means for controlling the flow rate of fluid taken into the engine by adjusting an opening area, and an adjustment amount for detecting the opening area adjustment amount of the valve means. a detection means; and a target adjustment amount of the opening area of the valve means is calculated according to the internal combustion engine operating state detected by the operating state detection means, and the valve means is controlled based on the target adjustment. and an abnormality detection process for performing an abnormality detection process when the deviation amount between the adjustment m detected by the adjustment M detection means and the target adjustment amount continues for a predetermined amount or more. A valve control device for an internal combustion engine, comprising: a detection means;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58203217A JPH0684738B2 (en) | 1983-10-28 | 1983-10-28 | Idle speed control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58203217A JPH0684738B2 (en) | 1983-10-28 | 1983-10-28 | Idle speed control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6095152A true JPS6095152A (en) | 1985-05-28 |
JPH0684738B2 JPH0684738B2 (en) | 1994-10-26 |
Family
ID=16470399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58203217A Expired - Fee Related JPH0684738B2 (en) | 1983-10-28 | 1983-10-28 | Idle speed control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0684738B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6282254A (en) * | 1985-10-03 | 1987-04-15 | Mitsubishi Motors Corp | Safety device for idling speed control device |
JPS62171639U (en) * | 1986-04-22 | 1987-10-30 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5340131A (en) * | 1976-09-24 | 1978-04-12 | Nippon Denso Co Ltd | Fuel-air mixture supply system for internal-combustion engine |
JPS5716231A (en) * | 1980-07-04 | 1982-01-27 | Nissan Motor Co Ltd | Safety device for engine controller |
-
1983
- 1983-10-28 JP JP58203217A patent/JPH0684738B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5340131A (en) * | 1976-09-24 | 1978-04-12 | Nippon Denso Co Ltd | Fuel-air mixture supply system for internal-combustion engine |
JPS5716231A (en) * | 1980-07-04 | 1982-01-27 | Nissan Motor Co Ltd | Safety device for engine controller |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6282254A (en) * | 1985-10-03 | 1987-04-15 | Mitsubishi Motors Corp | Safety device for idling speed control device |
JPS62171639U (en) * | 1986-04-22 | 1987-10-30 |
Also Published As
Publication number | Publication date |
---|---|
JPH0684738B2 (en) | 1994-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4583176A (en) | Method for detecting abnormality in the functioning of an electronic control system | |
US5816220A (en) | Process and device for monitoring a fuel delivery system | |
KR100445852B1 (en) | Control device for internal combustion engine | |
US4498443A (en) | Fuel supply control method having fail-safe function for abnormalities in intake passage pressure detecting means of an internal combustion engine having a turbocharger | |
KR101251369B1 (en) | Method for controlling a fuel delivering device of an internal combustion engine | |
US4531490A (en) | Idling speed feedback control method having fail-safe function for abnormalities in functioning of crank angle position-detecting system of an internal combustion engine | |
US4531495A (en) | Fuel supply control method having fail-safe function for abnormalities in engine temperature detecting means at the start of the engine | |
US6672284B2 (en) | Fuel supply amount control apparatus for internal combustion engine | |
JP3265794B2 (en) | Catalyst deterioration determination device for internal combustion engine | |
JPH084577A (en) | Fuel injection device for internal combustion engine | |
EP0360193B1 (en) | Method for controlling air-fuel ratio for use in internal combustion engine and apparatus for controlling the same | |
JPH08284764A (en) | Failure diagnosis device for exhaust gas recirculation system | |
JPH07247884A (en) | Idling control method | |
JPS6095152A (en) | Valve control device for internal-combustion engine | |
JPH08319874A (en) | Control method for fuel injection device of internal combustion engine | |
JP2003531998A (en) | Method of operating a fuel supply system for an internal combustion engine, for example a vehicle internal combustion engine | |
JP3264176B2 (en) | Diagnosis method of evaporative system | |
JPS63201346A (en) | Fuel supply controller for engine | |
KR19990006988A (en) | Engine control apparatus and recording medium therefor | |
JP2625895B2 (en) | Valve drive for internal combustion engine | |
JPS6067740A (en) | Suction air quantity controller for internal-combustion engine | |
JP3183095B2 (en) | Fuel supply control device for starting internal combustion engine | |
JP3052756B2 (en) | Control device for internal combustion engine | |
JPS62199941A (en) | Fuel feed controller for engine | |
JPH0882255A (en) | Abnormality diagnostic device for exhaust gas reflux device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |