JPH01304099A - Air flow amount controlling method for aeration tank - Google Patents
Air flow amount controlling method for aeration tankInfo
- Publication number
- JPH01304099A JPH01304099A JP63136186A JP13618688A JPH01304099A JP H01304099 A JPH01304099 A JP H01304099A JP 63136186 A JP63136186 A JP 63136186A JP 13618688 A JP13618688 A JP 13618688A JP H01304099 A JPH01304099 A JP H01304099A
- Authority
- JP
- Japan
- Prior art keywords
- control
- ratio
- aeration tank
- predetermined
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005273 aeration Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 13
- 239000010865 sewage Substances 0.000 claims abstract description 13
- 238000007664 blowing Methods 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は下水処理場等におけるエアレーションタンクの
風量制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the air volume of an aeration tank in a sewage treatment plant or the like.
第4図は従来のエアレーションタンクの風量制御方法の
制御系を示すブロック線図であり、図中1は送風管、2
はエアレーションタンク、3はブロア、4は溶存酸素濃
度(DOという)を示している。エアレーションタンク
2の下水中には送風管1を通じてブロア3により吸込弁
5の開度に応じた量の空気が吹き込まれ、その結果であ
るエアレーションタンク2内の下水中の溶存酸素濃度、
即ちDO値はDOO12て計測されるようになっている
。Fig. 4 is a block diagram showing the control system of the conventional method for controlling the air volume of an aeration tank.
3 indicates the aeration tank, 3 indicates the blower, and 4 indicates the dissolved oxygen concentration (referred to as DO). An amount of air corresponding to the opening degree of the suction valve 5 is blown into the sewage water in the aeration tank 2 by the blower 3 through the blast pipe 1, and as a result, the dissolved oxygen concentration in the sewage water in the aeration tank 2,
That is, the DO value is measured as DOO12.
吹込弁5の開度制御は曝気風量一定制御系Δ、流入量比
率制御系B及びDO一定制御系Cの3系統によって選択
的に行われる。The opening degree control of the blow valve 5 is selectively performed by three systems: an aeration air volume constant control system Δ, an inflow rate ratio control system B, and a DO constant control system C.
曝気風量一定判?1’l系Aは切換スイッチSW、が閉
じると風量設定値(通常はトータル曝気風量)が配分器
6に入力され、各エアレーションタンク(図面には1基
のみ表しである)2毎に配分し、その出力をPID制御
器7に出力する。PAD制?111t7はこの配分値及
び送風管1に配した風星計8にて検出した検出値に基づ
き、この検出値を配分値に一致させるに必要な出力を吸
込弁5に出力し、吸込弁5の開度調節を行う。Is the aeration air volume constant? In the 1'l system A, when the changeover switch SW is closed, the air volume setting value (usually the total aeration air volume) is input to the distributor 6, and is distributed to each aeration tank (only one is shown in the drawing) 2. , and outputs its output to the PID controller 7. PAD system? 111t7 outputs the output necessary to make this detected value match the distribution value to the suction valve 5 based on this distribution value and the detection value detected by the wind star meter 8 arranged in the air pipe 1, and Adjust the opening.
また流入量比率制御系Bは切換スイッチSW2を閉じる
と比率設定器9にて流入下水量に係数を乗じた値を配分
器6に入力し、前記した過程と同様に吸込弁5の開度調
節を行う。In addition, when the changeover switch SW2 is closed, the inflow ratio control system B inputs a value obtained by multiplying the inflow sewage amount by a coefficient to the distributor 6 using the ratio setting device 9, and adjusts the opening of the suction valve 5 in the same manner as in the above process. I do.
更にDo一定制御系Cは切換スイッチSW3を閉じるこ
とによって選択される。Do計4の測定値PvはPID
制御器10に入力される。PID制御器10はこの測定
値pvと予め設定されているDO設設定値S色に基づき
、測定値pvをDO設設定値S色一致させるに必要な操
作出力MVを乗算器11に出力する。乗算2g t 1
は予め設定されている比率αを前記操作出力MVに乗じ
た値を加算器12に出力する。この加算器12には比率
設定器9の出力に(1−α)を乗じた値が乗算器13か
ら入力されており、両者を加算した値を配分器6に出力
し、前述したのと同様に吸込弁5の開度を調節する。Further, the Do constant control system C is selected by closing the changeover switch SW3. The measured value Pv of Do total 4 is PID
It is input to the controller 10. The PID controller 10 outputs to the multiplier 11 a manipulation output MV necessary to match the measured value pv with the DO setting value S color, based on the measured value pv and the DO setting value S color set in advance. Multiplication 2g t 1
outputs a value obtained by multiplying the operation output MV by a preset ratio α to the adder 12. A value obtained by multiplying the output of the ratio setter 9 by (1-α) is input to this adder 12 from a multiplier 13, and the value obtained by adding both is output to the distributor 6, and the same as described above is performed. The opening degree of the suction valve 5 is adjusted accordingly.
なお、ここに比率αは流入量比率制御n系Bに対するD
O一定制御率の制御比である。Note that the ratio α here is D for the inflow ratio control n system B.
O is the control ratio of constant control rate.
ところで上述した如き従来の方法にあっては通常用いら
れるDo一定制御系Cによる制御中、例えばDOO12
故障したとき、或いはDO計4系のメンテナンス時には
Do一定制御系Cによる制御はできないから、他の流入
量比率制御系B等に切替える必要があるが、故障発生を
知らないまま運転が継続される等の不都合を生じる外、
DO一定制御に用いる比率αは実際の運転状況から判断
して設定しなければならず煩わしい等の問題があった。By the way, in the conventional method as described above, during control by the commonly used Do constant control system C, for example, DOO12
When a failure occurs or during maintenance of the DO meter 4 system, control cannot be performed using the Do constant control system C, so it is necessary to switch to another inflow ratio control system such as B, but operation continues without knowing that the failure has occurred. In addition to causing inconvenience such as
The ratio α used for constant DO control has to be determined and set based on actual driving conditions, which poses problems such as cumbersomeness.
本発明はかかる事情に鑑みなされたものであって、その
目的とするところは流入量比率制御と、DO一定制御と
を組み合わせた比率追従DO一定制御を行い、しかも不
都合な制御状況が発生すると自動的に流入比率制御に切
替え得るようにしたエアレーションタンクの風量制御方
法を提供するにある。The present invention has been made in view of the above circumstances, and its purpose is to perform ratio-following constant DO control that combines inflow ratio control and constant DO control, and to automatically perform automatic control when an unfavorable control situation occurs. An object of the present invention is to provide an air volume control method for an aeration tank that can switch to inflow ratio control automatically.
本発明に係るエアレーションタンクの風量制御方法は、
エアレーションタンク内への下水流入量に応じて吹込み
風量を制御する流入量比率制御に対する、エアレーショ
ンタンク内の下水中のDO値を一定に維持するよう吹込
み風量を制御する00−定制御の制御比率を可変とし、
予め定めた制御上の条件が満たされている間、この制御
比率を順次的に変更する過程と、前記制御上の条件が満
たされなくなったとき前記制御比率を雰とし、流入量比
率制御に切替えて制御を行う過程とを含む。The air volume control method for an aeration tank according to the present invention includes:
00-constant control that controls the blowing air volume to maintain a constant DO value in the sewage in the aeration tank, as opposed to inflow rate ratio control that controls the blowing air volume according to the amount of sewage flowing into the aeration tank. The ratio is variable,
A process in which the control ratio is sequentially changed while a predetermined control condition is satisfied, and when the control condition is no longer satisfied, the control ratio is changed to the inflow ratio control. This includes the process of controlling the
本発明にあってはこれによって流量比率制御nとDO一
定制御との最適比率を自動的に決定し得、また制御上の
不都合を生じた時は流■比率制御に自動的に切り替え得
ることとなる。According to the present invention, the optimal ratio between flow ratio control n and DO constant control can be automatically determined, and when a control problem occurs, it can be automatically switched to flow ratio control. Become.
以下本発明をその実施例を示す図面に基づいて具体的に
説明する。第1図は本発明に係るエアレーションタンク
の風量制御の制御系を示すブロック線図であり、図中1
は送風管、2はエアレーションタンク、3はブロア、4
は溶存酸素濃度計(以下DO計という)、5は吸込弁、
6は配分器、7はPID制御器、8は風量計を示してい
る。The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 1 is a block diagram showing a control system for controlling the air volume of an aeration tank according to the present invention.
is the air pipe, 2 is the aeration tank, 3 is the blower, 4
is a dissolved oxygen concentration meter (hereinafter referred to as a DO meter), 5 is a suction valve,
6 is a distributor, 7 is a PID controller, and 8 is an airflow meter.
エアレーションタンク2には送風管1を通じてブロア3
により吸込弁5の開度に応じた空気量が吹き込まれ、そ
の結果であるエアレーションタンク2内の下水中の溶存
酸素濃度はDOO12て計測されるようになっている。A blower 3 is connected to the aeration tank 2 through the air pipe 1.
An amount of air corresponding to the opening degree of the suction valve 5 is blown in, and the resulting dissolved oxygen concentration in the sewage in the aeration tank 2 is measured by the DOO 12.
吸込弁5の開度制御は曝気風量一定制御系A、流入量比
率制御系B及び比率追従Do一定制御系りによって選択
的に行われる。曝気風量一定制御系A、流入量比率制御
系Bは従来方法と実質的に同じである。The opening degree control of the suction valve 5 is selectively performed by the aeration air volume constant control system A, the inflow rate ratio control system B, and the ratio follow-up Do constant control system. The aeration air volume constant control system A and the inflow ratio control system B are substantially the same as the conventional method.
即ち曝気風量一定制御系Aは切替スイッチSW。That is, the aeration air volume constant control system A is a changeover switch SW.
を閉じるとトータル曝気風けである風量設定値が配分器
6に入力され、各エアレーションタンク(図面には1基
のみ表れている)2毎に配分され、その配分値がPID
制御器7に出力される。When closed, the air volume set value, which is the total aeration flow, is input to the distributor 6, and distributed to each aeration tank (only one tank is shown in the drawing) 2, and the distribution value is the PID.
It is output to the controller 7.
PID制御器7はその配分値及び送風管1付設の風量計
8の検出値に基づきこの検出値を配分値に一致させるに
必要な出力を吸込弁5に出力し、吸込弁5の開度調節を
行う。Based on the distribution value and the detected value of the air flow meter 8 attached to the blower pipe 1, the PID controller 7 outputs to the suction valve 5 the output necessary to make the detected value match the distribution value, and adjusts the opening of the suction valve 5. I do.
また流入量比率制御系Bは切替スイッチSW2を閉しる
と比率設定器9によって流入下水量に係数を乗じた値が
配分器6に入力され、前記したのと同じ過程で吸込弁5
の開度調節が行われる。In addition, in the inflow ratio control system B, when the changeover switch SW2 is closed, a value obtained by multiplying the inflow sewage amount by a coefficient is inputted to the distributor 6 by the ratio setting device 9, and in the same process as described above, the value obtained by multiplying the inflow sewage amount by a coefficient is inputted to the
The opening degree is adjusted.
そして比率追従DO一定制御系りは制御比率αが固定モ
ードのときは切替スイッチSW3が、また制御比率αが
可変モードのときは切替スイッチSW。In the ratio follow-up DO constant control system, the changeover switch SW3 is used when the control ratio α is in the fixed mode, and the changeover switch SW is used when the control ratio α is in the variable mode.
がそれぞれ選択的に閉じられ、以下の如くに行われる。are selectively closed, respectively, as follows.
先ずDOO12測定値pvがPID制御器lOに入力さ
れる。PID制御器10はこの測定値Pvと予め定めら
れでいるDO設設定値S色に基づき測定値pvをDO設
設定値S色一致させるに必要な操作出力Hνを乗算器1
1に出力する。乗算器11は比率αが固定モードに設定
されているとき、即ちスイッチS、が閉成されていると
きは操作出力MVに比率αを乗じた値を、また比率αが
可変モードに設定されているとき、即ちスイッチS2が
閉成されているときは操作出力MVにそのときどきに変
化した比率αを乗じた値を加算器12へ出力する。First, the DOO12 measurement value pv is input to the PID controller IO. The PID controller 10 multiplies the operation output Hν required to match the measured value pv with the DO setting value S color based on the measured value Pv and the predetermined DO setting value S color.
Output to 1. The multiplier 11 multiplies the manipulated output MV by the ratio α when the ratio α is set to the fixed mode, that is, when the switch S is closed, and multiplies the value obtained by multiplying the ratio α by the ratio α when the ratio α is set to the variable mode. In other words, when the switch S2 is closed, a value obtained by multiplying the operation output MV by the ratio α that changes from time to time is output to the adder 12.
加算器12には別の乗算器13から比率設定器9の出力
に、比率αが固定モードに設定されているとき、即ちス
イッチS1が閉成されているときは1−αを乗じた値が
、また比率αが可変モートに設定されているとき、即ち
スイッチS2が閉成されているときはそのときどきに変
化した1−αを乗じた値が入力される。The adder 12 receives a value obtained by multiplying the output of the ratio setter 9 by 1-α from another multiplier 13 when the ratio α is set to the fixed mode, that is, when the switch S1 is closed. , when the ratio α is set to variable mode, that is, when the switch S2 is closed, a value multiplied by 1-α that changes from time to time is input.
加算器12は両者を加算して配分器6に出力し、前記他
の制御系A、Bにおける場合と同様に吸込弁5の開度調
節を行う。The adder 12 adds the two together and outputs the result to the distributor 6, and adjusts the opening of the suction valve 5 in the same manner as in the other control systems A and B.
比率αが固定モードのときは従来方法におけるDo一定
制御系Cの制御内容と実質的に同じである。When the ratio α is in the fixed mode, the control content is substantially the same as that of the Do constant control system C in the conventional method.
−力比率αが可変モードのときは比率αの設定は次の過
程で行われる。先ず、減算器14がDOO12測定値p
vと、PID制御器10に対するDO設設定値S色を取
り込み、その偏差EV (=SV−PV)を算出し、こ
れを比較器15に出力する。比較器15はこの偏差EV
と予め設定入力されている偏差の限界値IEvH1を比
較し、下記(11,(21式の条件が成立する場合には
所定信号を出力する。- When the force ratio α is in the variable mode, the setting of the ratio α is performed in the following process. First, the subtracter 14 calculates the measured value p of the DOO12.
v and the DO setting value S color for the PID controller 10 are taken in, the deviation EV (=SV-PV) is calculated, and this is output to the comparator 15. Comparator 15 calculates this deviation EV
is compared with a deviation limit value IEvH1 that has been set and input in advance, and if the conditions of formulas (11 and (21) below are satisfied, a predetermined signal is output.
Ev≧l EV)l I・(11
EV≧l EVHl −(21またPID制
御器10の操作出力MVを比較器16.17に取り込み
、これを比較器16にあっては予め設定されている上限
値MvHと、また比較器17にあっては予め設定されて
いる下限値MvLと夫々比較し、下記(3+、 441
弐が成立するときは夫々所定の信号を出力する。Ev≧l EV)l I・(11 EV≧l EVHl −(21) Also, the operation output MV of the PID controller 10 is taken into the comparator 16.17, and the comparator 16 inputs it to the preset upper limit. The comparator 17 compares the value MvH with the preset lower limit value MvL, and calculates the following (3+, 441
When 2 is established, respective predetermined signals are output.
MV ≧MVH−(3)
MV≦門vL ・・・(4)
(11〜(4)式が成立するときはいずれも偏差EV、
操作出力MVが制御上好ましくない状況にあることを示
している。MV≧MVH−(3) MV≦gate vL (4) (When formulas 11 to (4) hold true, the deviation EV,
This indicates that the manipulated output MV is in an unfavorable situation for control.
そしてこれら各比較器15.16.17の信号に基づき
第2,3図に示す如きアルゴリズムに従って比率αが設
定される。Based on the signals of these comparators 15, 16, and 17, the ratio α is set according to the algorithm shown in FIGS.
(比率αの変更アルゴリズム)
第2図は比率αの自動設定のアルゴリズムを示す説明図
であり、(1)及び(3)式の条件、(2)及び(4)
式の条件がいずれも成立していないとき、換言すれば制
′411上好ましくない状況が発生していない正常な状
態にあるときはAND回路2L22からはいずれもロー
レベルの信号が出力され、従ってタイマーT、、T、は
動作状態には至らず、またOR回路23からは(11,
f3)式の条件、(2+、 (4)弐の条件の少なくと
もいずれかの条件が成立していないときはローレベルの
信号が出力され、NOT回路24からはハイレベルの信
号が出力される。(Algorithm for changing ratio α) Figure 2 is an explanatory diagram showing the algorithm for automatically setting ratio α, and the conditions of equations (1) and (3), (2) and (4)
When none of the conditions in the equation are satisfied, in other words, when the system is in a normal state with no unfavorable conditions occurring, both AND circuits 2L22 output low-level signals, and therefore The timers T, , T, do not reach the operating state, and the OR circuit 23 outputs (11,
When at least one of the conditions of equation f3), (2+, and (4) 2) is not satisfied, a low level signal is output, and the NOT circuit 24 outputs a high level signal.
これによって比率αは例えば初期値としてα1に設定さ
れているときはα2 (−α1 +Δα)に変更され、
以後順次所定のタイミングでα3.α4・・・”n(最
大値)まで自動的に変更される。As a result, when the ratio α is set to α1 as the initial value, it is changed to α2 (−α1 +Δα),
Thereafter, α3. α4...” is automatically changed up to n (maximum value).
なおこの比率αの値の設定変更順序については上記した
α1からα。に至るまで順次的に変更する代わりにα1
.α。、α2.α、、−1・・・の如く所定値に収束す
る態様で変更してもよいことは勿論である。The order of changing the setting of the ratio α is from α1 to α described above. Instead of changing sequentially until α1
.. α. , α2. It goes without saying that the values may be changed in such a manner that they converge to a predetermined value, such as α, -1, . . . .
一方、fl)〜(4)式の条件が最初から成立している
場合、或いは途中で成立した場合、換言すれば制御上の
不都合を生じた場合には第2図に示ずNOT回路24か
らはローレベルの信号が出力されることとなり、比率α
の変更は行われず、第3図に示すアルゴリズムに従った
比率αの設定が行われる。On the other hand, if the conditions of equations fl) to (4) are satisfied from the beginning or are satisfied in the middle, in other words, if a problem occurs in control, the information is not shown in FIG. 2 from the NOT circuit 24. , a low level signal will be output, and the ratio α
is not changed, and the ratio α is set according to the algorithm shown in FIG.
(α=0とするときのアルゴリズム)
既述した(11. (2)式、(2)、 (4)式が成
立するとAND回路31.32からはハイレベルの信号
が出力され、タイマーT□、TJは共に動作状態となり
、夫々限時に達するとOR回路33へ信号が出力される
。(Algorithm when α=0) (11. When the equations (2), (2), and (4) are satisfied, a high-level signal is output from the AND circuits 31 and 32, and the timer T□ , TJ are both in operation, and when each time limit is reached, a signal is output to the OR circuit 33.
OR回路33は少なくとも一方のタイマーT3又はT4
から信号が発せられるとハイレベルの信号が出力され、
先ず現在設定されている比率αの値、例えばこれをα、
とすると、この値を図示しない記憶装置によって記憶す
ると共に比率αを零に設定する。The OR circuit 33 connects at least one timer T3 or T4.
When a signal is emitted from, a high level signal is output,
First, set the currently set ratio α value, for example, α,
Then, this value is stored in a storage device (not shown) and the ratio α is set to zero.
これにより切替スイッチS6が閉じられ、第1図におい
て乗算器11の出力は零、また乗算器13の出力は比率
設定器9の出力と等しくなり、加算器12からも比率設
定器9の出力と等しい出力が配分器6へ出力され、実質
的に流入量比率制御系Bによる制御に自動的に切替えら
れることとなる。As a result, the selector switch S6 is closed, and in FIG. Equal outputs are output to the distributor 6, and control is essentially automatically switched to control by the inflow ratio control system B.
その後故障が修復されて(11,(31式、(21,(
41式が共に成立しない状態、即ち正常状態に復帰し、
AND回路31.32からの信号がローレベルとなり、
タイマーT、、T4が動作しない状態となると各807
回路34 、35からはハイレベルの信号が出力される
。After that, the failure is repaired and (11, (31 formula, (21, (
A state in which both formulas 41 and 41 do not hold, that is, a return to the normal state,
The signals from AND circuits 31 and 32 become low level,
When the timers T, , T4 become inoperable, each 807
High level signals are output from the circuits 34 and 35.
これによってへND回路36からはハイレベルの信号が
出力され、タイマーT、が動作状態となり、一定時間正
常状態が持続し、限時に達すると予め記憶していた比率
αの値α、を呼び出し、この値α、をその前回のα1−
1(=α、−Δα)に変更し、以後は故障発生前の制御
状態に戻る。As a result, a high-level signal is output from the ND circuit 36, and the timer T enters the operating state, and the normal state continues for a certain period of time. When the time limit is reached, the value α of the ratio α stored in advance is called. This value α, is the previous value α1−
1 (=α, -Δα), and thereafter returns to the control state before the failure occurred.
以上の如く本発明方法にあっては流入量比率に対するD
〇一定制御の制御比率αを順次自動的に更新するから容
易に適正な制御が可能となり、また制御状態の不都合を
生じたときは自動的に流入量比率制御に切替え得て不適
正な制御を継続するという不都合も解消し得るなど本発
明は優れた効果を奏するものである。As described above, in the method of the present invention, D
〇 Appropriate control is easily possible because the control ratio α of constant control is automatically updated sequentially, and when an inconvenience occurs in the control state, it can be automatically switched to inflow rate ratio control to prevent inappropriate control. The present invention has excellent effects, such as being able to eliminate the inconvenience of continuing the process.
第1図は本発明方法に用いる制御系を示すブロック線図
、第2,3図は比率αの設定通線を示す説明図、第4図
は従来方法の制御系を示すブロック線図である。
■・・・送風管 2・・・エアレーションタンク3・・
・ブロア 4・・・DO計 5・・・吸込弁 6・・・
配分器7・・・PID制御器 8・・・風量計 9・・
・比率設定器10・・・PID制御器 11・・・乗算
器 12・・・加算器13・・・乗算器 14・・・′
/Ii算器 15.16.17・・・比較器なお、図中
、同一符号は同一、又は相当部分を示す。Fig. 1 is a block diagram showing the control system used in the method of the present invention, Figs. 2 and 3 are explanatory diagrams showing the setting line for the ratio α, and Fig. 4 is a block diagram showing the control system of the conventional method. . ■...Air pipe 2...Aeration tank 3...
・Blower 4...DO meter 5...Suction valve 6...
Distributor 7... PID controller 8... Air flow meter 9...
・Ratio setter 10... PID controller 11... Multiplier 12... Adder 13... Multiplier 14...'
/Ii calculator 15.16.17... Comparator In the figures, the same reference numerals indicate the same or equivalent parts.
Claims (1)
込み風量を制御する流入量比率制御に対する、エアレー
ションタンク内の下水中のDO値を一定に維持するよう
吹込み風量を制御するDO一定制御の制御比率を可変と
し、予め定めた制御上の条件が満たされている間、この
制御比率を順次的に変更する過程と、前記制御上の条件
が満たされなくなったとき前記制御比率を零とし、流入
量比率制御に切替えて制御を行う過程とを含むことを特
徴とするエアレーションタンクの風量制御方法。1. In contrast to inflow rate ratio control, which controls the blowing air volume according to the amount of sewage flowing into the aeration tank, DO constant control controls the blowing air volume to maintain a constant DO value in the sewage in the aeration tank. A step of making the control ratio variable and sequentially changing the control ratio while a predetermined control condition is satisfied, and setting the control ratio to zero when the control condition is no longer satisfied, 1. A method for controlling air volume of an aeration tank, comprising the step of performing control by switching to inflow ratio control.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136186A JPH0683833B2 (en) | 1988-06-01 | 1988-06-01 | Air volume control method for aeration tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136186A JPH0683833B2 (en) | 1988-06-01 | 1988-06-01 | Air volume control method for aeration tank |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01304099A true JPH01304099A (en) | 1989-12-07 |
JPH0683833B2 JPH0683833B2 (en) | 1994-10-26 |
Family
ID=15169357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63136186A Expired - Lifetime JPH0683833B2 (en) | 1988-06-01 | 1988-06-01 | Air volume control method for aeration tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0683833B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113518764A (en) * | 2019-03-11 | 2021-10-19 | 江田水处理技研株式会社 | Test method for wastewater treatment facility |
-
1988
- 1988-06-01 JP JP63136186A patent/JPH0683833B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113518764A (en) * | 2019-03-11 | 2021-10-19 | 江田水处理技研株式会社 | Test method for wastewater treatment facility |
Also Published As
Publication number | Publication date |
---|---|
JPH0683833B2 (en) | 1994-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230333575A1 (en) | Flowrate control device, flowrate control method, and fluid supply system | |
JPH01304099A (en) | Air flow amount controlling method for aeration tank | |
JPH07168627A (en) | Valve control unit | |
JP5001659B2 (en) | Dissolved oxygen control device | |
JPH0230076Y2 (en) | ||
JP2000265968A (en) | Fluid feed pump recirculating control device | |
JPS56111088A (en) | Method for controlling dissolved oxygen of sewage treatment process | |
JP3488886B2 (en) | Load adjustment control method for dam type power plant | |
JP3546121B2 (en) | Fluid pressure control device in pipeline | |
JPH055404A (en) | Steam controlling method for steam using plant and device therefor | |
JPH10326101A (en) | Pid control method and device therefor | |
JP3126024B2 (en) | Bath automatic hot water filling equipment | |
JP2566237Y2 (en) | Water supply control device | |
JPS63197201A (en) | Cascade controller | |
JPH05331790A (en) | Device for controlling level of white water-recovering pit | |
RU2127895C1 (en) | Cascade automatic control method | |
JPS61131102A (en) | Process controller | |
JP2633589B2 (en) | Hot water mixing equipment | |
JPS598020A (en) | Gate controlling system | |
JPH04104307A (en) | Control method for dam discharge rate | |
JPH10300170A (en) | Air conditioner | |
JP3895051B2 (en) | Automatic bath apparatus and hot water filling control method thereof | |
JPH10267214A (en) | Waste heat recovery boiler controller | |
CN116339124A (en) | Manual and automatic undisturbed switching system and method for deaerator double valves | |
JPS63271062A (en) | Temperature control system for gas hot water heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071026 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081026 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081026 Year of fee payment: 14 |