JPH01302190A - マルチスライスリングect装置 - Google Patents
マルチスライスリングect装置Info
- Publication number
- JPH01302190A JPH01302190A JP13384888A JP13384888A JPH01302190A JP H01302190 A JPH01302190 A JP H01302190A JP 13384888 A JP13384888 A JP 13384888A JP 13384888 A JP13384888 A JP 13384888A JP H01302190 A JPH01302190 A JP H01302190A
- Authority
- JP
- Japan
- Prior art keywords
- apd
- temperature
- scintillator
- circuit
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 17
- 230000001419 dependent effect Effects 0.000 claims abstract description 7
- 230000005855 radiation Effects 0.000 claims description 11
- 230000003321 amplification Effects 0.000 abstract description 7
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 230000005251 gamma ray Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
- Nuclear Medicine (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
この発明は、人体に投与されたRI(ラジオアイソトー
プ)の分布像を多層にわたって撮影するマルチスライス
リングECT装置に関する。
プ)の分布像を多層にわたって撮影するマルチスライス
リングECT装置に関する。
リングECT装置は、被検体たる人体の周囲を囲むよう
に多数の放射線検出器をリング型に配置したものである
が、マルチスライス化するには、放射線入射位置をスラ
イス面方向く検出器がリング状に配列される面での方向
)に判別することに加えて、スライス面に直角な方向(
リング状配列の中心軸方向つまり人体の体軸方向)にも
位置判別を行なう必要がある。 そのため、従来では、たとえば特開昭63−61174
号公報に示すように、シンチレータからの微弱光を光電
子増倍管で増幅し、その出力信号を電子回路により処理
する構成などが考えられている。
に多数の放射線検出器をリング型に配置したものである
が、マルチスライス化するには、放射線入射位置をスラ
イス面方向く検出器がリング状に配列される面での方向
)に判別することに加えて、スライス面に直角な方向(
リング状配列の中心軸方向つまり人体の体軸方向)にも
位置判別を行なう必要がある。 そのため、従来では、たとえば特開昭63−61174
号公報に示すように、シンチレータからの微弱光を光電
子増倍管で増幅し、その出力信号を電子回路により処理
する構成などが考えられている。
しかしながら、光電子増倍管を使用すると、その価格が
高い、物理的に大きく且つ壊れ易い、1000ボルト以
上の高電圧が必要である等に加えて、増幅率が経時変化
したり温度変化したりしてそれらをリアルタイムに補正
することが難しいという問題がある。 この発明は、光電子増倍管の使用を避けて上記の問題を
回避し、低コスト且つコンパクトなマルチスライスリン
グECT装置を提供することを目的とする。
高い、物理的に大きく且つ壊れ易い、1000ボルト以
上の高電圧が必要である等に加えて、増幅率が経時変化
したり温度変化したりしてそれらをリアルタイムに補正
することが難しいという問題がある。 この発明は、光電子増倍管の使用を避けて上記の問題を
回避し、低コスト且つコンパクトなマルチスライスリン
グECT装置を提供することを目的とする。
上記目的を達成するため、この発明によるマルチスライ
スリングECT装置においては、シンチレータと、その
光が導かれる半導体光検出素子と、この半導体光検出素
子に熱結合された温度依存性のある半導体素子を含む温
度補償回路とを有する放射線検出器が多数直線状に並べ
られて一体化されたマルチチャンネル放射線検出器を、
多数リング型に配列している。
スリングECT装置においては、シンチレータと、その
光が導かれる半導体光検出素子と、この半導体光検出素
子に熱結合された温度依存性のある半導体素子を含む温
度補償回路とを有する放射線検出器が多数直線状に並べ
られて一体化されたマルチチャンネル放射線検出器を、
多数リング型に配列している。
シンチレータに放射線が入射すると、それが吸収されて
シンチレーション発光が生じる。この光は微弱なもので
あるが、半導体光検出素子に導かれて増幅され、電気信
号が得られる。 この半導体光検出素子は温度依存性を持っているため、
それを補償する必要がある。そのため、温度依存性のあ
る半導体素子を、この半導体光検出素子に熱結合させ、
その出力により半導体光検出素子の出力信号を温度補償
する温度補償回路を形成する。 このような構成の放射線検出器が多数直線状に並べられ
て一体化され、マルチチャンネル放射線検出器が構成さ
れる。 このマルチチャンネル放射線検出器が、多数、リング型
に配列されるため、個々の放射線検出器はリング型配列
の周方向及びそれに直角な方向に2次元的に配列される
ことになり、どの放射線検出器から出力信号が生じたか
により、スライス面方向での入射位置判別及びスライス
面に直角な方向での入射位置判別ができる。
シンチレーション発光が生じる。この光は微弱なもので
あるが、半導体光検出素子に導かれて増幅され、電気信
号が得られる。 この半導体光検出素子は温度依存性を持っているため、
それを補償する必要がある。そのため、温度依存性のあ
る半導体素子を、この半導体光検出素子に熱結合させ、
その出力により半導体光検出素子の出力信号を温度補償
する温度補償回路を形成する。 このような構成の放射線検出器が多数直線状に並べられ
て一体化され、マルチチャンネル放射線検出器が構成さ
れる。 このマルチチャンネル放射線検出器が、多数、リング型
に配列されるため、個々の放射線検出器はリング型配列
の周方向及びそれに直角な方向に2次元的に配列される
ことになり、どの放射線検出器から出力信号が生じたか
により、スライス面方向での入射位置判別及びスライス
面に直角な方向での入射位置判別ができる。
つぎにこの発明の一実施例について図面を参照しながら
説明する。第1図に示すように、被検者1の頭部を囲む
ようにリング型のコリメータ2が配置され、その外側に
リング型のγ線検出器3が配置される。このリング型γ
線検出器3は、多数のマルチチャンネルγ線検出器4が
リング型に配列されたものからなる。 このマルチチャンネルγ線検出器4は、細長く形成され
たもので、その長さ方向に多数のγ線検出器のチャンネ
ルを有している。すなわち、たとえば第2図に示すよう
に、長さ方向にチャンネル1からチャンネルnまでn個
に分割されたn個のγ線検出器からなる。各チャンネル
のγ線検出器は、NaI (T(1)やBGOなどのシ
ンチレータ42と、ライトガイド43と、このライトガ
イド43を介してシンチレータ42に光結合されたAP
D(アバランシェフォトダイオード)44と、このAP
D44に熱結合されるように貼り合わされたPD(シリ
コンフォトダイオード)45とからなる。各チャンネル
のシンチレータ42はMgO2などの反射材46により
包まれて区分けされた上で1列に並べられてアルミニウ
ムなどのハウジング41に納められたものとなっている
。 APD44に熱結合されたPD45は、第3図に示すよ
うに温度補償回路を形成する。すなわち、APD44に
は定電圧回路51がら制御回路52を経てバイアス電圧
が加えられるが、APD44の増幅率は温度依存性が大
きい、そこで、このAPD44の温度が伝導されるPD
45に定電流回路54よりバイアス電流を加えてPD4
5より出力を取り出し、これをAPD44の出力と比較
増幅回路55において比較して制御回路52を制御して
、APD44に加えるバイアス電圧をその温度に応じて
変化させ、温度補償を行なうのである。 PD45には順方向温度依存性があり、その出力が温度
に応じて変化することを利用しているのである。 被検者1にはRIが投与されており、頭部に集積したR
Iから外部にγ線が放射されると、そのγ線はコリメー
タ2を経てリング型γ線検出器3のいずれかのマルチチ
ャンネルγ線検出器4に入射する。さらに細かく言うと
マルチチャンネルγ線検出器4内のいずれかのチャンネ
ルのシンチレータ42に入射する。すると、この入射し
たγ線はシンチレータ42で微弱なシンチレーション光
に変換され、ライトガイド43によりAPD44に導か
れる。APD44でこの光が電気信号に変換されるとと
もに、APD44の持つ内部増幅機能により十分増幅さ
れて電流信号として出力される。このAPD44の増幅
率は温度依存性を有しているが、上記のようにAPD4
4の温度に応じたバイアス電圧制御が行なわれているた
め、温度補償された電流信号が増幅回路53を経て出力
されることになる。 このようにγ線が入射したチャンネルのAPD44から
出力が生じるため、どのAPD44から出力が生じたか
によりスライス面方向及び体軸方向のγ線入射位置判別
が行えることになる。 この場合、マルチチャンネルγ線検出器4における各シ
ンチレータ42の厚さを5111111とし30個並べ
るとすると、体軸方向の視野は150mmとなり、人間
の脳の全体をカバーできることになる。 もちろんチャンネル数を増やせば全身用マルチチャンネ
ルソングECT装置として構成可能である。 なお、上記では半導体光検出素子としてAPDを用いて
いるが、Hg 1.などの半導体光検出素子を用いるこ
とも可能である。さらにSiP、CdTeなどの半導体
γ線検出素子を用いればシンチレータも不要になるが、
効率が悪くなる。また、上記では一応シングルフオトン
ECT装置を想定しているが、同時計数回路の付加によ
りポジトロンECT装置としても使用できる。
説明する。第1図に示すように、被検者1の頭部を囲む
ようにリング型のコリメータ2が配置され、その外側に
リング型のγ線検出器3が配置される。このリング型γ
線検出器3は、多数のマルチチャンネルγ線検出器4が
リング型に配列されたものからなる。 このマルチチャンネルγ線検出器4は、細長く形成され
たもので、その長さ方向に多数のγ線検出器のチャンネ
ルを有している。すなわち、たとえば第2図に示すよう
に、長さ方向にチャンネル1からチャンネルnまでn個
に分割されたn個のγ線検出器からなる。各チャンネル
のγ線検出器は、NaI (T(1)やBGOなどのシ
ンチレータ42と、ライトガイド43と、このライトガ
イド43を介してシンチレータ42に光結合されたAP
D(アバランシェフォトダイオード)44と、このAP
D44に熱結合されるように貼り合わされたPD(シリ
コンフォトダイオード)45とからなる。各チャンネル
のシンチレータ42はMgO2などの反射材46により
包まれて区分けされた上で1列に並べられてアルミニウ
ムなどのハウジング41に納められたものとなっている
。 APD44に熱結合されたPD45は、第3図に示すよ
うに温度補償回路を形成する。すなわち、APD44に
は定電圧回路51がら制御回路52を経てバイアス電圧
が加えられるが、APD44の増幅率は温度依存性が大
きい、そこで、このAPD44の温度が伝導されるPD
45に定電流回路54よりバイアス電流を加えてPD4
5より出力を取り出し、これをAPD44の出力と比較
増幅回路55において比較して制御回路52を制御して
、APD44に加えるバイアス電圧をその温度に応じて
変化させ、温度補償を行なうのである。 PD45には順方向温度依存性があり、その出力が温度
に応じて変化することを利用しているのである。 被検者1にはRIが投与されており、頭部に集積したR
Iから外部にγ線が放射されると、そのγ線はコリメー
タ2を経てリング型γ線検出器3のいずれかのマルチチ
ャンネルγ線検出器4に入射する。さらに細かく言うと
マルチチャンネルγ線検出器4内のいずれかのチャンネ
ルのシンチレータ42に入射する。すると、この入射し
たγ線はシンチレータ42で微弱なシンチレーション光
に変換され、ライトガイド43によりAPD44に導か
れる。APD44でこの光が電気信号に変換されるとと
もに、APD44の持つ内部増幅機能により十分増幅さ
れて電流信号として出力される。このAPD44の増幅
率は温度依存性を有しているが、上記のようにAPD4
4の温度に応じたバイアス電圧制御が行なわれているた
め、温度補償された電流信号が増幅回路53を経て出力
されることになる。 このようにγ線が入射したチャンネルのAPD44から
出力が生じるため、どのAPD44から出力が生じたか
によりスライス面方向及び体軸方向のγ線入射位置判別
が行えることになる。 この場合、マルチチャンネルγ線検出器4における各シ
ンチレータ42の厚さを5111111とし30個並べ
るとすると、体軸方向の視野は150mmとなり、人間
の脳の全体をカバーできることになる。 もちろんチャンネル数を増やせば全身用マルチチャンネ
ルソングECT装置として構成可能である。 なお、上記では半導体光検出素子としてAPDを用いて
いるが、Hg 1.などの半導体光検出素子を用いるこ
とも可能である。さらにSiP、CdTeなどの半導体
γ線検出素子を用いればシンチレータも不要になるが、
効率が悪くなる。また、上記では一応シングルフオトン
ECT装置を想定しているが、同時計数回路の付加によ
りポジトロンECT装置としても使用できる。
この発明によれば、光電子増倍管を使用しないので、コ
ストの安い、コンパクトなマルチスライスリングECT
装置を実現できる。また、温度変化を、簡単な温度補償
回路でリアルタイムに補償することができる。
ストの安い、コンパクトなマルチスライスリングECT
装置を実現できる。また、温度変化を、簡単な温度補償
回路でリアルタイムに補償することができる。
第1図はこの発明の一実施例の全体を示す模式的な斜視
図、第2図は1つのマルチチャンネルγ線検出器を示す
模式的な斜視図、第3図は温度補償回路を示すブロック
図である。 1・・・被検者、2・・・コリメータ、3・・・リング
型γ線検出器、4・・・マルチチャンネルγ線検出器、
41・・・ハウジング、42・・・シンチレータ、43
・・・ライトガイド、44・・・APD (アバランシ
ェフォトダイオード)、45・・・PD(フォトダイオ
ード)、46・・・反射材、51・・・定電圧回路、5
2・・・制御回路、53・・・増幅回路、54・・・定
電流回路、55・・・比較増幅回路。
図、第2図は1つのマルチチャンネルγ線検出器を示す
模式的な斜視図、第3図は温度補償回路を示すブロック
図である。 1・・・被検者、2・・・コリメータ、3・・・リング
型γ線検出器、4・・・マルチチャンネルγ線検出器、
41・・・ハウジング、42・・・シンチレータ、43
・・・ライトガイド、44・・・APD (アバランシ
ェフォトダイオード)、45・・・PD(フォトダイオ
ード)、46・・・反射材、51・・・定電圧回路、5
2・・・制御回路、53・・・増幅回路、54・・・定
電流回路、55・・・比較増幅回路。
Claims (1)
- (1)シンチレータと、その光が導かれる半導体光検出
素子と、この半導体光検出素子に熱結合された温度依存
性のある半導体素子を含む温度補償回路とを有する放射
線検出器が多数直線状に並べられて一体化されたマルチ
チャンネル放射線検出器を、多数リング型に配列してな
るマルチスライスリングECT装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13384888A JPH01302190A (ja) | 1988-05-31 | 1988-05-31 | マルチスライスリングect装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13384888A JPH01302190A (ja) | 1988-05-31 | 1988-05-31 | マルチスライスリングect装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01302190A true JPH01302190A (ja) | 1989-12-06 |
Family
ID=15114448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13384888A Pending JPH01302190A (ja) | 1988-05-31 | 1988-05-31 | マルチスライスリングect装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01302190A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003518624A (ja) * | 1999-12-28 | 2003-06-10 | トリクセル エス.アー.エス. | 画像検出器の感度の温度補償方法 |
CN100346365C (zh) * | 2002-10-04 | 2007-10-31 | 菲尼萨公司 | 用于补偿光电检测器的方法及装置 |
JP2011007693A (ja) * | 2009-06-26 | 2011-01-13 | Toshiba Corp | 光電子増倍装置 |
WO2010070487A3 (en) * | 2008-12-15 | 2011-05-26 | Koninklijke Philips Electronics N.V. | Temperature compensation circuit for silicon photomultipliers and other single photon counters |
KR20120003900A (ko) * | 2009-03-26 | 2012-01-11 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 데이터 획득 |
JP2012519843A (ja) * | 2009-03-06 | 2012-08-30 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 単一光子カウンタのための高度な温度報償及び制御回路 |
JP2018174224A (ja) * | 2017-03-31 | 2018-11-08 | 株式会社デンソー | 光検出器 |
-
1988
- 1988-05-31 JP JP13384888A patent/JPH01302190A/ja active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003518624A (ja) * | 1999-12-28 | 2003-06-10 | トリクセル エス.アー.エス. | 画像検出器の感度の温度補償方法 |
CN100346365C (zh) * | 2002-10-04 | 2007-10-31 | 菲尼萨公司 | 用于补偿光电检测器的方法及装置 |
WO2010070487A3 (en) * | 2008-12-15 | 2011-05-26 | Koninklijke Philips Electronics N.V. | Temperature compensation circuit for silicon photomultipliers and other single photon counters |
US8476594B2 (en) | 2008-12-15 | 2013-07-02 | Koninklijke Philips Electronics N.V. | Temperature compensation circuit for silicon photomultipliers and other single photon counters |
JP2012519843A (ja) * | 2009-03-06 | 2012-08-30 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 単一光子カウンタのための高度な温度報償及び制御回路 |
KR20120003900A (ko) * | 2009-03-26 | 2012-01-11 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 데이터 획득 |
JP2012521554A (ja) * | 2009-03-26 | 2012-09-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | データ取得 |
JP2015158501A (ja) * | 2009-03-26 | 2015-09-03 | コーニンクレッカ フィリップス エヌ ヴェ | データ取得 |
JP2011007693A (ja) * | 2009-06-26 | 2011-01-13 | Toshiba Corp | 光電子増倍装置 |
JP2018174224A (ja) * | 2017-03-31 | 2018-11-08 | 株式会社デンソー | 光検出器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4672207A (en) | Readout system for multi-crystal gamma cameras | |
US5773829A (en) | Radiation imaging detector | |
US6768326B2 (en) | SiC photodiode detectors for radiation detection applications | |
US20020195565A1 (en) | PET scanner | |
Otte et al. | The SiPM—A new photon detector for PET | |
US20040129886A1 (en) | PET scanner | |
US10976450B2 (en) | Combined scintillation crystal, combined scintillation detector and radiation detection device | |
US5015860A (en) | Scintillator materials containing lanthanum fluorides | |
Derenzo et al. | Initial characterization of a position-sensitive photodiode/BGO detector for PET | |
Wong et al. | Characteristics of small barium fluoride (BaF2) scintillator for high intrinsic resolution time-of-flight positron emission tomography | |
Jeong et al. | Comparison between pixelated scintillators: CsI (Tl), LaCl 3 (Ce) and LYSO (Ce) when coupled to a silicon photomultipliers array | |
Huber et al. | Characterization of a 64 channel PET detector using photodiodes for crystal identification | |
US5719400A (en) | High resolution detector array for gamma-ray imaging | |
Bloser et al. | Scintillator gamma-ray detectors with silicon photomultiplier readouts for high-energy astronomy | |
US20040200966A1 (en) | Gamma-ray detection apparatus and method for positron emission tomography | |
JPH01302190A (ja) | マルチスライスリングect装置 | |
JPWO2007113898A1 (ja) | 放射線検出器 | |
US5171998A (en) | Gamma ray imaging detector | |
US10254437B2 (en) | Temperature performance of a scintillator-based radiation detector system | |
Piltingsrud | The low-temperature scintillation properties of bismuth germanate and its application to high-energy gamma radiation imaging devices | |
Burr et al. | Evaluation of a position sensitive avalanche photodiode for PET | |
JP3255371B2 (ja) | X線撮像装置 | |
KR102340521B1 (ko) | 에너지 분리에 기반한 방사선 검출기기용 방사선(감마선) 반응 깊이 측정 방법 및 방사선(감마선) 반응 깊이 측정 장치 | |
Mele et al. | The ORION chipset for the X-Gamma imaging spectrometer onboard of the THESEUS space mission | |
JPH07311270A (ja) | 放射線検出器 |