JPH01302075A - Multi-room type air conditioner - Google Patents

Multi-room type air conditioner

Info

Publication number
JPH01302075A
JPH01302075A JP13188288A JP13188288A JPH01302075A JP H01302075 A JPH01302075 A JP H01302075A JP 13188288 A JP13188288 A JP 13188288A JP 13188288 A JP13188288 A JP 13188288A JP H01302075 A JPH01302075 A JP H01302075A
Authority
JP
Japan
Prior art keywords
expansion valve
electric expansion
indoor
room
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13188288A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoneda
米田 浩
Akihiro Kino
章宏 城野
Hiroyoshi Yamada
山田 弘喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP13188288A priority Critical patent/JPH01302075A/en
Publication of JPH01302075A publication Critical patent/JPH01302075A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform a dehumidifying operation which can take much latent heat by reducing the control width of the opening of a door motor-driven expansion valve in each room apparatus at the time of dehumidifying operation mode smaller than that at the time of room cooling operation mode. CONSTITUTION:In room controllers 60A to 60C of room apparatuses 45A to 45C, sucked air temperatures are detected by sucked air temperature detectors 51A to 51C, set room temperature values set by remote controllers 54A to 54C are detected by set room temperature detectors 50A to 50C, and air conditioning loads are calculated from the set room temperature values and the sucked air temperatures by air conditioning load calculators 52A to 52C. Then, controlling widths are determined by valve opening control width determining means 62A to 62C in response to preset cooling and dehumidifying operation modes, the altering widths of the openings of motor-driven expansion valves are determined by valve opening altering width determining means 57A to 57C, thereby controlling room motor-driven expansion vale controllers 49A to 49C. In this case, since the room motor-driven expansion valve controlling widths of the dehumidifying operation mode is smaller than those of the cooling operation mode to be controlled in a reducing trend, its evaporation temperature is low, the ratio of latent heat exchanging amount is increased, and a large dehumidifying effect is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多室形空気調和機の能力制御及びサイクル制
御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to capacity control and cycle control of a multi-room air conditioner.

従来の技術 近年、ビル空調において個別空調化が進展しつつあシ、
特に多室形空気調和機においては、能力制御、各室内機
の個別制御が注目されてきている。
Conventional technology In recent years, individual air conditioning has been progressing in building air conditioning.
Particularly in multi-room air conditioners, capacity control and individual control of each indoor unit are attracting attention.

以下図面を参照しながら、上述した従来の多室形空気調
和機の一例について説明する。
An example of the conventional multi-room air conditioner mentioned above will be described below with reference to the drawings.

第6図、第7図は冷凍サイクル図、ブロック図を示すも
のである。第6図において、31けインバータ32によ
)能力可変できる能力可変圧縮機、33はモータの極数
を極致切換器34によって変えることによって能力可変
できる極変式圧縮機、35は油分離器、3eは冷暖房サ
イクルを切換える四方弁、37は室外熱交換器、38は
室外電動膨張弁、39はアキュームレータ、40はEl
 配室外電動膨張弁38の室外熱交換器37と反対側の
配管に設けた冷媒温度検知器、41は西方弁36と室内
機45A、45B、450間の配管に設けた圧力検知器
、42は前記室外電動膨張弁38を制御する室外電動膨
張弁制御器43などを有する室外コントローラーであシ
、室外機44に備えられている。前記油分離器36から
は減圧器46を設けた油戻し管47にてアキュームレー
タ39に接続されている。室内機45A 、45B 、
45Cそれぞれには、室内熱交換器46A、46B。
FIG. 6 and FIG. 7 show a refrigeration cycle diagram and a block diagram. In FIG. 6, a variable capacity compressor whose capacity can be varied by a 31-piece inverter 32, 33 a pole variable compressor whose capacity can be varied by changing the number of poles of the motor by a pole switch 34, 35 an oil separator, 3e is a four-way valve that switches the heating and cooling cycle, 37 is an outdoor heat exchanger, 38 is an outdoor electric expansion valve, 39 is an accumulator, and 40 is an El
A refrigerant temperature sensor installed in the piping on the opposite side of the outdoor heat exchanger 37 of the outside electric expansion valve 38, 41 a pressure detector installed in the piping between the west valve 36 and the indoor units 45A, 45B, 450, and 42 An outdoor controller including an outdoor electric expansion valve controller 43 for controlling the outdoor electric expansion valve 38 and the like is provided in the outdoor unit 44 . The oil separator 36 is connected to an accumulator 39 through an oil return pipe 47 equipped with a pressure reducer 46 . Indoor units 45A, 45B,
45C has indoor heat exchangers 46A and 46B, respectively.

46C1室内電動膨張弁47A、47B、47C。46C1 Indoor electric expansion valves 47A, 47B, 47C.

前記室内電動膨張弁47A 、47B 、4γCを制御
する室内電動膨張弁制御器49A、49B 。
Indoor electric expansion valve controllers 49A, 49B that control the indoor electric expansion valves 47A, 47B, 4γC.

49C1設定室温検知器50A、50B 、esoc。49C1 setting room temperature detector 50A, 50B, esoc.

吸込空気温度検知器51A、51B、51C1空調負荷
検出器52A、52B、520などを有する室内コント
ローラ53A 、53B 、53C,リモコン54A、
54B、54Gを備えている。
Indoor controllers 53A, 53B, 53C, remote control 54A, including suction air temperature detectors 51A, 51B, 51C1, air conditioning load detectors 52A, 52B, 520, etc.
Equipped with 54B and 54G.

以上のように構成された多室形空気調和機について、以
下その動作について説明する。
The operation of the multi-room air conditioner configured as described above will be described below.

まず、冷房運転では、並列に設けられた能力可変圧縮機
31、極変式圧縮機33から吐出さnた高温高圧ガス冷
媒は、油分離器36と四方弁36を介して室外熱交換器
37に流入し、凝縮液化し室外電動膨張弁38を介して
、並列に接続された各室内機45A 、45B 、45
Gの室内電動膨張弁47A 、47B 、47Cで減圧
され、室内熱交換器48A、48B、46Cで蒸発気化
して、四方弁36、アキュームレータ39を介して能力
可変圧縮機31及び極変式圧縮機33にもどる。又暖房
運転では、能力可変圧縮機31及び極変式圧縮機33か
ら吐出された高温高圧ガス冷媒は、油分離器35と四方
弁3θを介して、室内熱交換器46A、46B、46C
に流入し凝縮液化し、室内電動膨張弁47J 、47B
 、47Cを介して室外電動膨張弁38で減圧され、室
外熱交換器37で蒸発気化し、四方弁38、アキューム
レータ39を介して能力可変圧縮機31及び極変式圧縮
器33にもどる。
First, in cooling operation, high-temperature, high-pressure gas refrigerant discharged from the variable capacity compressor 31 and polar variable compressor 33, which are installed in parallel, is transferred to the outdoor heat exchanger 37 via the oil separator 36 and the four-way valve 36. The air flows into the indoor units 45A, 45B, and 45 connected in parallel through the outdoor electric expansion valve 38.
The pressure is reduced by the indoor electric expansion valves 47A, 47B, and 47C of G, and is evaporated and vaporized by the indoor heat exchangers 48A, 48B, and 46C. Return to 33. In addition, during heating operation, the high temperature and high pressure gas refrigerant discharged from the variable capacity compressor 31 and the polar variable compressor 33 is passed through the oil separator 35 and the four-way valve 3θ to the indoor heat exchangers 46A, 46B, 46C.
It flows into the indoor electric expansion valves 47J and 47B and condenses into liquid.
, 47C, is depressurized by the outdoor electric expansion valve 38, evaporated by the outdoor heat exchanger 37, and returned to the variable capacity compressor 31 and polar variable compressor 33 via the four-way valve 38 and accumulator 39.

次に能力制御、システム制御について第7図〜第10図
にて説明すると、前記圧力検出器41によって検出され
た圧力に応じて、各圧縮機31゜33の能力制御を行う
。冷房時には、低圧側圧力を検知し、所定の設定低圧圧
力になる様に、又、暖房時には高圧側圧力を検知しく5
TEP11)、所定の設定高圧圧力になる様に行うが、
それぞれ検知出力と設定圧力との差を圧力差算出手段5
5にて算出しく5TEP12)、あらかじめ定めた両正
縮機31.33の能力制御組合せ(第1表)の組合せス
テップを前記圧力差に応じて第2表の如く変化させる能
力変更中決定及び制御手段66にてインバータ32及び
極数切換器34を制御する(STEP13,5TEP1
4)。
Next, capacity control and system control will be explained with reference to FIGS. 7 to 10. The capacity control of each compressor 31 and 33 is performed according to the pressure detected by the pressure detector 41. During cooling, the low pressure side pressure is detected and set to the predetermined low pressure, and during heating, the high pressure side pressure is detected.
TEP11), perform to the predetermined set high pressure,
Pressure difference calculation means 5 calculates the difference between the detection output and the set pressure.
5TEP12), determination and control during capacity change in which the combination steps of the predetermined capacity control combinations (Table 1) of both normal compressors 31 and 33 are changed as shown in Table 2 according to the pressure difference. The inverter 32 and the pole number switch 34 are controlled by the means 66 (STEP13, 5TEP1
4).

(第1表) 能力制御組合せステップ表(第2表) 圧
力差−能力変更幅対応表各室内機45A 、45B 、
45Cにおいては室内コントローラー53A 、53B
 、63Cにて、吸込空気温度を吸込空気温度検知器6
1A、51B。
(Table 1) Capacity control combination step table (Table 2) Pressure difference - capacity change width correspondence table Each indoor unit 45A, 45B,
In 45C, indoor controllers 53A and 53B
, 63C, the suction air temperature sensor 6 detects the suction air temperature.
1A, 51B.

S1Cで検知しく5TEP21 )、リモコン64A。S1C detects 5TEP21), remote control 64A.

54B 、54Cにて設定されたそれぞれの室温設定値
を設定室温検知器soA 、 5oB 、esoCで検
知しく5TEP22)、前記室温設定値と吸込空気温度
から空調負荷を空調負荷算出器52 A 、52B。
The room temperature detectors soA, 5oB, and esoC detect the room temperature set values set at the room temperature set values 54B and 54C, and the air conditioning load calculators 52A and 52B calculate the air conditioning load from the room temperature set values and the intake air temperature.

52Cにて算出しく5TEP23)、この空調負荷に応
じて第3表の如く変化させる電動膨張弁の弁開度の変更
中を弁開度変更中決定手段57A、57B。
52C and 5TEP23), the valve opening degree changing determining means 57A, 57B determines that the valve opening degree of the electric expansion valve is being changed as shown in Table 3 according to the air conditioning load.

57Cにより決め(STEP24)、室内電動膨張弁制
御器49A 、49B 、49Cを制御する(STEP
25)。
57C (STEP 24), and control the indoor electric expansion valve controllers 49A, 49B, and 49C (STEP 24).
25).

室外電動膨張弁38については、冷房運転時は弁開度を
室外電動膨張弁制御器43にて全開とする。暖房運転時
は、(STEP31)で前記冷媒温度検知器4oにて検
知した室外電動膨張弁38@の過冷却液冷媒温度と所定
設定冷媒温度との差温を冷媒差温算出手段58にて算出
し、第4表の如く変化させる室外電動膨張弁38の弁開
度変更幅を室外弁開度変更幅決定手段69にて決定しく
5TEP32)、室外電動膨張弁制御器43にて弁開度
の制御を行う(STEP33)。
Regarding the outdoor electric expansion valve 38, the valve opening degree is set to full open by the outdoor electric expansion valve controller 43 during cooling operation. During heating operation, the refrigerant temperature difference calculation means 58 calculates the temperature difference between the subcooled liquid refrigerant temperature of the outdoor electric expansion valve 38 @ detected by the refrigerant temperature detector 4o and the predetermined set refrigerant temperature in (STEP 31). Then, the outdoor electric expansion valve controller 43 determines the valve opening change width of the outdoor electric expansion valve 38 as shown in Table 4 by the outdoor valve opening change width determining means 69. Control is performed (STEP 33).

(第4表) 冷媒差温−室外弁開度変更幅対応表発明か
解決しようとする課題 しかしながら上記のような構成では、冷房運転時時、各
室内機の空調負荷に応じて室内電動膨張弁の制御をその
室内電動膨張弁の持つ弁開度の全域を使って制御してい
るため、空調負荷に対応する弁開度に決められ、除湿運
転のように蒸発温度を下げて潜熱を多くとるような運転
は出来ないという課題を有していた。
(Table 4) Refrigerant temperature difference - Outdoor valve opening change range correspondence table Problem to be solved by the invention However, in the above configuration, during cooling operation, the indoor electric expansion valve is adjusted according to the air conditioning load of each indoor unit. Since the indoor electric expansion valve is controlled using the entire valve opening range, the valve opening is determined to correspond to the air conditioning load, and like dehumidification operation, the evaporation temperature is lowered and more latent heat is captured. The problem was that it was impossible to drive like that.

本発明は上記課題に鑑み、冷房運転だけではなく、潜熱
を多くとシうる除湿運転を可能にする多室形空気調和機
を提供するものである。
In view of the above-mentioned problems, the present invention provides a multi-room air conditioner that enables not only cooling operation but also dehumidification operation that can remove a large amount of latent heat.

課題を解決するための手段 上記課題を解決するために本発明の多室形空気調和機は
、2台の圧縮機を備えた1台の室外機と複数台の室内機
を並列的に接続し、前記2台の圧縮機の能力制御は圧力
検知器に基づき制御し、前記各室内機の室内電動膨張弁
の弁開度制御幅は冷房運転モードに比べ、除湿運転モー
ドの方が小さいものとしたという構成を備えたものであ
る。
Means for Solving the Problems In order to solve the above problems, the multi-room air conditioner of the present invention connects one outdoor unit equipped with two compressors and a plurality of indoor units in parallel. , the capacity control of the two compressors is controlled based on a pressure detector, and the valve opening control width of the indoor electric expansion valve of each indoor unit is smaller in the dehumidification operation mode than in the cooling operation mode. It is equipped with the following configuration.

作  用 本発明は上記した構成によって、除湿運転時には、冷房
運転時に比べ、室内電動膨張弁を絞シ気味の制御を行な
うため、蒸発温度が低く潜熱交換量の比率が増し、室温
低下に比べよシ大きな除湿効果が得られることとなる。
Effect: Due to the above-described configuration, the present invention performs control such that the indoor electric expansion valve is slightly throttled during dehumidification operation compared to during cooling operation, so the evaporation temperature is low and the ratio of latent heat exchange increases, and the temperature decreases more than when the room temperature decreases. A great dehumidifying effect can be obtained.

実施例 以下本発明の一実施例の多室形空気調和機について、図
面を参照しながら説明する。なお、説明にあたり従来例
と同じものについて一同一番号を付す。
EXAMPLE Hereinafter, a multi-room air conditioner according to an example of the present invention will be described with reference to the drawings. In addition, in the description, the same numbers are given to the same parts as in the conventional example.

第1図、第2図は本発明の一実施例における多室形空気
調和機の冷凍サイクル図、ブロック図を示すものである
。第1図において、31はインバータ32によフ能力可
変できる能力可変圧縮機、33はモータの極数を極数切
換器34によって変えることによって能力可変できる極
変式圧縮機、36は油分離器、36は冷暖房サイクルを
切換える西方弁、37は室外熱交換器、38は室外電動
膨張弁、39はアキュームレータ、40はmJ記室外電
動膨張弁38の室外熱交換器37と反対側の配管に設け
た冷媒温度検知器、41は四方弁36と室内機aoA 
、aoB 、soC間の配管に設けた圧力検知器、42
は前記室外電動膨張弁38を制御する室外電動膨張弁制
御器43などを有する室外コントローラーであシ、室外
機44に備えられている。前記油分離器36からは減圧
器46を設けた油戻し管47にてアキュームレータ39
に接続されている。室内機60A 、60B 、soC
それぞれには、室内熱交換器46A、46B、46C1
室内電動膨張弁47A、47B、47C1前記室内電動
膨張弁47A 、47B 、47Cを制御する室内電動
膨張弁制御器49A 、49B 、49C1設定室温検
知器50A、soB 、soc、吸込空気温度検知器5
1 A 、 51 B 、 51 C1空調負荷検出器
52A、52B 、52Cなどを有する室内コントロー
ラ61A、elB、elc、  リモコン54A 、5
4E 、54Cを備えている。
1 and 2 show a refrigeration cycle diagram and a block diagram of a multi-room air conditioner according to an embodiment of the present invention. In FIG. 1, 31 is a variable capacity compressor whose capacity can be varied by an inverter 32, 33 is a pole variable compressor whose capacity can be varied by changing the number of poles of the motor with a pole number switch 34, and 36 is an oil separator. , 36 is a west valve for switching the heating and cooling cycle, 37 is an outdoor heat exchanger, 38 is an outdoor electric expansion valve, 39 is an accumulator, and 40 is a mJ outdoor electric expansion valve 38 provided on the pipe on the opposite side of the outdoor heat exchanger 37. 41 is a four-way valve 36 and indoor unit aoA.
, aoB, pressure detector installed in the piping between soC, 42
is an outdoor controller having an outdoor electric expansion valve controller 43 for controlling the outdoor electric expansion valve 38, etc., and is provided in the outdoor unit 44. An oil return pipe 47 equipped with a pressure reducer 46 connects the oil separator 36 to an accumulator 39.
It is connected to the. Indoor unit 60A, 60B, soC
Each has indoor heat exchangers 46A, 46B, and 46C1.
Indoor electric expansion valves 47A, 47B, 47C1 Indoor electric expansion valve controllers 49A, 49B, 49C1 that control the indoor electric expansion valves 47A, 47B, 47C1 Set room temperature detector 50A, soB, soc, intake air temperature detector 5
1A, 51B, 51C1 Indoor controller 61A, elB, elc, remote controller 54A, 5 having air conditioning load detectors 52A, 52B, 52C, etc.
Equipped with 4E and 54C.

以上のように構成された多室形空気調和機について、以
下その動作について説明する。
The operation of the multi-room air conditioner configured as described above will be described below.

まず、冷房運転では、並列に設けられた能力可変圧縮機
31、極変式圧縮機33から吐出された高温高圧ガヌ冷
謀は、油分離器35と四方弁36を介して室外熱交換器
37に流入し、凝縮液化し室外電動膨張弁38を介して
、並列に接続された各室内機soA 、eoB 、so
Cの室内電動膨張弁47A 、47B 、47Cで減圧
され、室内熱交換器46A、46B、46Cで蒸発気化
して、四方弁36、アキュームレータ39を介して能力
可変圧縮機31及び極変式圧縮機33にもどる。又暖房
運転では、能力可変圧縮機31及び極変式圧縮機33か
ら吐出された高温高圧ガス冷媒は、油分離器35と四方
弁36を介して、室内熱交換器4eA 、46B 、4
8Cに流入し凝縮液化し、室内電動膨張弁47A、47
B、47Cを介して室外電動膨張弁38で減圧され、室
外熱交換器37で蒸発気化し、四方弁36、アキューム
レータ39を介して能力可変圧縮機31及び極変式圧縮
器33にもどる。
First, in the cooling operation, the high temperature and high pressure gas discharged from the variable capacity compressor 31 and the polar variable compressor 33, which are installed in parallel, is transferred to the outdoor heat exchanger via the oil separator 35 and the four-way valve 36. 37, condenses and liquefies and passes through the outdoor electric expansion valve 38 to each of the indoor units soA, eoB, so
The pressure is reduced by the indoor electric expansion valves 47A, 47B, and 47C of C, and evaporated and vaporized by the indoor heat exchangers 46A, 46B, and 46C. Return to 33. In the heating operation, the high-temperature, high-pressure gas refrigerant discharged from the variable capacity compressor 31 and the polar variable compressor 33 passes through the oil separator 35 and the four-way valve 36 to the indoor heat exchangers 4eA, 46B, 4.
8C, condenses and liquefies, and indoor electric expansion valves 47A, 47
B, 47C, the pressure is reduced by the outdoor electric expansion valve 38, evaporated by the outdoor heat exchanger 37, and returned to the variable capacity compressor 31 and polar variable compressor 33 via the four-way valve 36 and accumulator 39.

次に能力制御、システム制御について第2図〜第6図に
て説明すると、前記圧力検出器41によって検出された
圧力に応じて、各圧縮機31.33の能力制御を行う。
Next, capacity control and system control will be explained with reference to FIGS. 2 to 6. The capacity control of each compressor 31, 33 is performed according to the pressure detected by the pressure detector 41.

冷房時には、低圧側圧力を検知し、所定の設定低圧圧力
になる様に、又、暖房時には高圧側圧力を検知しく5T
EP11 )、所定の設定高圧圧力になる様に行うが、
それぞれ検知圧力と設定圧力との差を圧力差算出手段5
5にて算出しく5TEP12)、あらかじめ定めた両正
縮機! 3j、33の能力制御組合せ(第1表)の組合せステッ
プを前記圧力差に応じて第1表の如く変化させる能力変
更幅決定及び制御手段56にてインバータ32及び極数
切換器34を制御する(STEP13.5TEP14)
During cooling, the low pressure side pressure is detected and set to the predetermined low pressure, and during heating, the high pressure side pressure is detected.
EP11), so that the predetermined set high pressure is achieved,
Pressure difference calculation means 5 calculates the difference between the detected pressure and the set pressure.
Calculated in 5 5TEP12), predetermined double-sided reduction machine! The inverter 32 and the pole number switch 34 are controlled by a capacity change range determination and control means 56 that changes the combination steps of the capacity control combinations (Table 1) of 3j and 33 as shown in Table 1 according to the pressure difference. (STEP13.5TEP14)
.

! (第1表) 圧力差−能力変更幅対応表各室内機45A
 、46B 、45Cにおいては室内コントローラー6
0A 、60B 、soCにて、吸込空気温度を吸込空
気温度検知器51A、51B。
! (Table 1) Pressure difference - capacity change width correspondence table for each indoor unit 45A
, 46B, 45C, indoor controller 6
0A, 60B, soC, the intake air temperature detectors 51A, 51B measure the intake air temperature.

S1Cで検知しく5TEP21)、リモコン54A、5
4B。
Detected by S1C 5TEP21), remote control 54A, 5
4B.

54Cにて設定されたそれぞれの室温設定値を設定室温
検知器50A、50B 、 6ocで検知しく5TEP
22)、前記室温設定値と吸込空気温度から空調負荷を
空調負荷算出器52A、52B。
Set each room temperature setting value set at 54C to be detected by room temperature detectors 50A, 50B, 6oc 5TEP
22) Air conditioning load calculators 52A and 52B calculate the air conditioning load from the room temperature set value and the intake air temperature.

52Cにて算出しく5TEP23)、又あらかじめ設定
された冷房及び除湿の運転モードに応じて弁開度制御幅
決定手段62A、62B、62Cにて制御弁を決定しく
5TEP26)、この空調負荷に応じて第1表の如く変
化させる電動膨張弁の弁開度の変更幅を弁開度変更幅決
定手段57A 、57B 。
52C 5TEP23), and the valve opening control width determining means 62A, 62B, 62C determine the control valve 5TEP26) according to the preset cooling and dehumidification operation mode.5TEP26) The valve opening change range determining means 57A, 57B determines the change range of the valve opening of the electric expansion valve as shown in Table 1.

cs7cにより決め(STEP24)、室内電動膨張弁
制御器49A、49B、49Cを制御する(STEP2
5)。
cs7c (STEP 24), and controls the indoor electric expansion valve controllers 49A, 49B, and 49C (STEP 2).
5).

この時、上記室内電動膨張弁制御幅は冷房運転モードに
比べ除湿運転モードの方が小さいものにしている。又、
暖房運転時は従来と同じであるので、説明を省略する。
At this time, the indoor electric expansion valve control width is made smaller in the dehumidifying operation mode than in the cooling operation mode. or,
Since the heating operation is the same as the conventional one, the explanation will be omitted.

以上のように本実施例によれば、2台の圧縮機を備えた
1台の室外機と複数台の室内機を並列的に接続し、前記
2台の圧縮機の能力制御は圧力検知器に基づき制御し、
前記各室内機の室内電動膨張弁の弁開度制御幅は冷房運
転モードに比べ、除湿運転モードの方が小さいものとし
たという構成を備えることにより、除湿運転時には、冷
房運転時に比べ、室内電動膨張弁を絞シ気味の制御を行
な5ため、蒸発湯度が低く潜熱交換量の比率が増し、室
温低下に比べよシ大きな除湿効果が得られることとなシ
、除湿運転が可能とすることができる。
As described above, according to this embodiment, one outdoor unit equipped with two compressors and a plurality of indoor units are connected in parallel, and the capacity of the two compressors is controlled by pressure detectors. control based on
By having a configuration in which the valve opening control width of the indoor electric expansion valve of each indoor unit is smaller in the dehumidifying operation mode than in the cooling operation mode, the indoor electric expansion valve is smaller during the dehumidifying operation than during the cooling operation. Since the expansion valve is controlled to be slightly throttled5, the evaporation water level is low and the rate of latent heat exchange increases, resulting in a greater dehumidifying effect compared to lowering the room temperature, making dehumidifying operation possible. be able to.

発明の効果 以上のように本発明は、2台の圧縮機を備えた1台の室
外機と複数台の室内機を並列的に接続し、前記2台の圧
縮機の能力制御は圧力検知器に基づき制御し、前記各室
内機の室内電動膨張弁の弁開度制御幅は冷房運転モード
に比べ、除湿運転モードの方が小さいものとしたという
構成を備えることにより、除湿運転時には、冷房運転時
に比べ、室内電動膨張弁を絞り気味の制御を行なうため
、蒸発温度が低く潜熱交換量の比率が増し、室温低下に
比べよフ大きな除湿効果が得られ、除湿運転を可能にす
ることができる。
Effects of the Invention As described above, the present invention connects one outdoor unit equipped with two compressors and a plurality of indoor units in parallel, and controls the capacity of the two compressors using a pressure detector. The valve opening control range of the indoor electric expansion valve of each indoor unit is smaller in the dehumidifying operation mode than in the cooling operation mode. Compared to normal conditions, the indoor electric expansion valve is controlled to be slightly throttled, which lowers the evaporation temperature and increases the rate of latent heat exchange, resulting in a greater dehumidifying effect compared to lowering the room temperature, making dehumidifying operation possible. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における多室形空気調和機の
冷凍キイクル図、第2図は同ブロック図、第3図は同室
内機の室内電動膨張弁制御のフローチャート図、第4図
は同室外機の圧縮機能力制御の70−チャート図、第5
図は同室外機の室外電動膨張弁制御のフローチャート図
、第6図は従来の多室形空気調和機の冷凍サイクル図、
第7図は同ブロック図、第8図は同室内機の室内電動膨
張弁制御のフローチャート図、第9図は同室外機の圧縮
機油出制御のフローチャート図、第10図は同室外機の
室外電動膨張弁制御のフローチャート図である。 47・・・・・室内電動膨張弁、49・・・・・・室内
電動膨張弁制御器、62・・・・弁開度制御答決定手段
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名お一
一一泊分継五 4−一一室グ獲 改凋、、i5B、1J5C−−−窒内慢≦A易BmC−
室内熟女欠ル 117A、117Bd7C−−一寛内電動唐県寿第2図 第 3 図     〈室内☆少j〉 く霊坏宅叫片ε、力II儒Nul+ン 寓5図 <室メー1壜3ζ看多iA番りg司ヲ9゛イlソン3ノ
ー  能カ可夛ユ!盪 33−一−旗麦式万ニ哩犠 B −−一油称縦五 36−−一 江σ 方 4F 37−−−一 里りへ贋鴫交去々よ【 4tA41BAIC−!内丼交撲R 47A、4’lB、、17C,−−−室凶電動、s頂弁
第7図 第 8 図        〈室内機1りン第9図 (tグ窄0屯カケj礎伊1〉 第10rXJ
Fig. 1 is a refrigeration cycle diagram of a multi-room air conditioner according to an embodiment of the present invention, Fig. 2 is a block diagram of the same, Fig. 3 is a flowchart of indoor electric expansion valve control of the indoor unit, and Fig. 4 is the 70-chart diagram of compression function power control of the same outdoor unit, No. 5
The figure is a flowchart of the outdoor electric expansion valve control of the outdoor unit, and Figure 6 is a refrigeration cycle diagram of a conventional multi-room air conditioner.
Figure 7 is a block diagram of the same, Figure 8 is a flowchart of the indoor electric expansion valve control of the indoor unit, Figure 9 is a flowchart of compressor oil output control of the outdoor unit, and Figure 10 is the outdoor unit of the outdoor unit. It is a flowchart figure of electric expansion valve control. 47...Indoor electric expansion valve, 49...Indoor electric expansion valve controller, 62...Valve opening control answer determining means. Agent's name: Patent attorney Toshio Nakao and one other person for 11 nights.
Indoor Mature Woman Missing 117A, 117Bd7C--One Kan's Electric Tang Prefecture Kotobuki 2nd Figure 3 <Indoor ☆ Small j> Ku Lingjian Taku Shouhe Piece ε, Force II Confucian Nul+N Fable 5 Figure <Room Mail 1 Bottle 3ζ Look at the iA number gji wo 9 Ilson 3 no you can do it! 33-1 - Flag barley style 10000000 sacrifice B -- 1 oil name vertical 5 36 -- 1 Jiang σ direction 4F 37 --- 1 The counterfeit exchange to the village [4tA41BAIC-! Indoor unit 1 R 47A, 4'lB, 17C, ---Indoor unit 〉 10th rXJ

Claims (1)

【特許請求の範囲】[Claims] インバータにより能力可変する圧縮機、極数変換式圧縮
機、油分離器、四方弁、室外熱交換器、室外電動膨張弁
、アキュームレータとを備えた1台の室外機と、室内電
動膨張弁、室内熱交換器とを各々備えた複数台の室内機
を並列的に接続し、前記室外機と四方弁間の配管(室外
機内)に圧力検知器を設け、この検知圧力に応じてイン
バータの周波数及び極数を制御するインバータ、極数切
換器と、前記室内機と室外電動膨張弁間の配管に冷媒温
度を検知する冷媒温度検知器と、この検知温度に応じて
室外電動膨張弁開度を制御する室外電動膨張弁制御器と
、室内機の吸込空気温度を検知する空気温度検知器と、
室内機の室温設定値を検知する設定室温検知器と、前記
検知吸込空気温度と室温設定値から演算する空調負荷算
出器と、この空調負荷に応じて室内電動膨張弁開度を制
御する室内電動膨張弁制御器とを設け、各々の前記室内
電動膨張弁の弁開度制御幅を冷房運転モードに比べ、除
湿運転モードの方が小さいものにしたことを特徴とする
多室形空気調和機。
One outdoor unit equipped with a compressor whose capacity can be varied by an inverter, a pole-change compressor, an oil separator, a four-way valve, an outdoor heat exchanger, an outdoor electric expansion valve, and an accumulator, an indoor electric expansion valve, and an indoor electric expansion valve. A plurality of indoor units, each equipped with a heat exchanger, are connected in parallel, and a pressure detector is installed in the piping (inside the outdoor unit) between the outdoor unit and the four-way valve, and the inverter frequency and An inverter that controls the number of poles, a pole number switcher, a refrigerant temperature detector that detects the refrigerant temperature in the piping between the indoor unit and the outdoor electric expansion valve, and an opening degree of the outdoor electric expansion valve is controlled according to the detected temperature. an outdoor electric expansion valve controller that detects air temperature, an air temperature sensor that detects the temperature of the intake air of the indoor unit,
A set room temperature detector that detects the room temperature set value of the indoor unit, an air conditioning load calculator that calculates from the detected intake air temperature and the room temperature set value, and an indoor electric controller that controls the opening degree of the indoor electric expansion valve according to the air conditioning load. A multi-room air conditioner comprising: an expansion valve controller, and a valve opening control range of each of the indoor electric expansion valves is smaller in a dehumidification operation mode than in a cooling operation mode.
JP13188288A 1988-05-30 1988-05-30 Multi-room type air conditioner Pending JPH01302075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13188288A JPH01302075A (en) 1988-05-30 1988-05-30 Multi-room type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13188288A JPH01302075A (en) 1988-05-30 1988-05-30 Multi-room type air conditioner

Publications (1)

Publication Number Publication Date
JPH01302075A true JPH01302075A (en) 1989-12-06

Family

ID=15068351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13188288A Pending JPH01302075A (en) 1988-05-30 1988-05-30 Multi-room type air conditioner

Country Status (1)

Country Link
JP (1) JPH01302075A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245613A (en) * 1975-09-02 1977-04-11 Eastman Kodak Co Process for molding of optical glass body and body with said process
JPS5515420A (en) * 1978-07-19 1980-02-02 Meiji Seika Kaisha Ltd Thiosemicarbazone derivative and its preparation
JPS61132524A (en) * 1984-11-30 1986-06-20 Hoya Corp Production of optical lens
JPS623029A (en) * 1985-06-28 1987-01-09 Olympus Optical Co Ltd Method for forming lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245613A (en) * 1975-09-02 1977-04-11 Eastman Kodak Co Process for molding of optical glass body and body with said process
JPS5515420A (en) * 1978-07-19 1980-02-02 Meiji Seika Kaisha Ltd Thiosemicarbazone derivative and its preparation
JPS61132524A (en) * 1984-11-30 1986-06-20 Hoya Corp Production of optical lens
JPS623029A (en) * 1985-06-28 1987-01-09 Olympus Optical Co Ltd Method for forming lens

Similar Documents

Publication Publication Date Title
JP3829867B2 (en) Air conditioner
JPH06257828A (en) Multi-chamber type air conditioning system
JP3421197B2 (en) Control device for air conditioner
JP2928245B2 (en) Multi-room air conditioner
JP3684860B2 (en) Air conditioner
JPH01302075A (en) Multi-room type air conditioner
KR101153421B1 (en) Condensation volume control method for air conditioner
JPH01212870A (en) Multichamber type air conditioner
JP3760259B2 (en) Air conditioner
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
JP4288979B2 (en) Air conditioner, and operation control method of air conditioner
JP2002206788A (en) Multi-chamber type air conditioner
JPH03267657A (en) Multi-room air-conditioner
JP2612864B2 (en) Multi-room air conditioner
JP2541172B2 (en) Operation control device for air conditioner
JP3511708B2 (en) Operation control unit for air conditioner
JPH0285656A (en) Airconditioner
JPH05322275A (en) Multi-chamber type air conditioning system
JPS6033443A (en) Operation control of air-conditioning machine
JPH086951B2 (en) air conditioner
JPS63180052A (en) Multi-chamber type air conditioner
JP2802060B2 (en) Multi-room air conditioner
JPH04158144A (en) Air conditioner
JPH01212869A (en) Multichamber type air conditioner
JPS63233245A (en) Air conditioner