JPH01301568A - Method for joining ceramics to metal base material - Google Patents

Method for joining ceramics to metal base material

Info

Publication number
JPH01301568A
JPH01301568A JP13131488A JP13131488A JPH01301568A JP H01301568 A JPH01301568 A JP H01301568A JP 13131488 A JP13131488 A JP 13131488A JP 13131488 A JP13131488 A JP 13131488A JP H01301568 A JPH01301568 A JP H01301568A
Authority
JP
Japan
Prior art keywords
base material
metal base
ceramics
bonding
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13131488A
Other languages
Japanese (ja)
Other versions
JP2796806B2 (en
Inventor
Hiroki Sugiyama
杉山 弘記
Hiroshi Suzuki
弘 鈴木
Kazushige Kawashima
川島 一茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP63131314A priority Critical patent/JP2796806B2/en
Publication of JPH01301568A publication Critical patent/JPH01301568A/en
Application granted granted Critical
Publication of JP2796806B2 publication Critical patent/JP2796806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To simply join ceramics to a metallic base material in high combination strength, by successively horizontally arranging each joined surface when ceramics are joined through a bond auxiliary to a metal base material 10 having >=2 joining surface. CONSTITUTION:When ceramics 11a, 11b, 11c, etc., are joined to the surface 12 of bottom wall 12 having U-shaped cross section metal base material 10 and surfaces 13a and 13b of lateral side wall crossing at right angle to the surface 12 of bottom wall, at first the metal base material 10 is put on a table 14 in a vacuum furnace. Then ceramics 11a are joined through a metal intermediate layer 3 as a joint auxiliary and flux 5a to the surface of wall at the left side. Then the metal base material 10 is rotated at the angle of 90 deg. and arranged on the table 14 while putting the surface 12 of bottom wall downward and similarly ceramics are joined to the metal base material 10. Then the metal base material 10 is further rotated at the angle of 90 deg. and arranged while putting the surface of right wall downward and similarly ceramics 11c are joined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属母材とセラミックスとの接合方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of joining a metal base material and ceramics.

〔従来の技術〕[Conventional technology]

最近、激しい摩耗や高熱を受ける金属部品・部材の一部
に、いわゆるファインセラミックスの部品を組合わせる
ことで、部品全体の耐摩耗性や耐熱性を向上させる手段
が採られている。このような組合せによる金属とセラミ
ックスとの接合構造体は、両者の間に金属中間層を介し
て一体的に接合するもので、金属母材とセラミックスと
の熱膨張係数の大きな差を金属中間層で吸収し、金属母
材とセラミックスとを電気炉中で加熱接合した後、常温
下で冷却する過程で発生する熱応力や熱歪が緩和され、
これによって接合面での剥離が防止されることになる。
Recently, measures have been taken to improve the wear resistance and heat resistance of the entire part by combining so-called fine ceramic parts with parts of metal parts and members that are subject to severe wear and high heat. The bonded structure of metal and ceramics based on such a combination is one in which they are integrally bonded with a metal intermediate layer between them, and the large difference in thermal expansion coefficient between the metal base material and the ceramic is compensated for by the metal intermediate layer. Thermal stress and thermal strain that occur during the process of heating and joining the metal base material and ceramics in an electric furnace and then cooling them at room temperature are alleviated.
This prevents peeling at the joint surface.

従来から行われている接合方法としては、例えば第4図
に示すように、セラミックスlの表面にメタライズ層2
を形成すると共に、このメタライズ層2の上に金属中間
層3を接合し、これを金属母材4の上にロウ材5を介し
て乗せ、両者を一体に加熱接合するものである。上記金
属中間層3には、例えばFe−Ni−Co合金[:17
ハー31.、、スーパーインバー(商品名)]6をロウ
材7a。
For example, as shown in FIG. 4, a conventional bonding method involves forming a metallized layer 2 on the surface of ceramic l.
At the same time, a metal intermediate layer 3 is bonded onto this metallized layer 2, and this is placed on a metal base material 4 via a brazing material 5, and the two are heat bonded together. The metal intermediate layer 3 includes, for example, a Fe-Ni-Co alloy [:17
Her31. ,, Super Invar (trade name)] 6 and brazing material 7a.

7bを介して銅板8,9で挟んだサンドイッチ構造のも
のが用いられ、この金属中間層3によって金属母材4と
セラミックス1との熱膨張係数の差に基づく熱応力の緩
和を図っている。
A sandwich structure in which copper plates 8 and 9 are sandwiched through 7b is used, and this metal intermediate layer 3 is used to alleviate thermal stress due to the difference in coefficient of thermal expansion between the metal base material 4 and the ceramic 1.

(発明が解決しようとする課題) ところで、セラミックス1で被覆しようとする金属母材
4の接合面4aは、第4図に示すような一つの単純平面
だけではなく、一般には曲面であったり、面方向の異な
る複数の平面であるなど、一つの金属母材の中にいくつ
もの接合面を持っていることが多い。
(Problems to be Solved by the Invention) By the way, the bonding surface 4a of the metal base material 4 to be coated with the ceramics 1 is not only a simple plane as shown in FIG. 4, but is generally a curved surface. A single metal base material often has multiple bonding surfaces, such as multiple planes with different surface directions.

しかしながら、従来の接合方法は、上述したように、予
めセラミックス1の上にメタライズ層2と金属中間層3
とを設けておき、これを真空中で金属母材4にロウ材5
を介して高温で接合するものであったから、例えば第5
図に示すようなコ字状断面からなる金属母材10の内周
面をセラミックス11で被覆しようとする場合、金属母
材10の底壁面12は高強度の接合が得られるものの、
左右の側壁面13a、13bでは接合加熱時において溶
融したロウ材5が流下してしまい、ロウ付は自体が難か
しく、またロウ付けできたとしても信頼性の低いものと
なっていた。
However, in the conventional bonding method, as described above, the metallized layer 2 and the metal intermediate layer 3 are placed on the ceramic 1 in advance.
and soldering material 5 to the metal base material 4 in vacuum.
For example, the fifth
When trying to coat the inner circumferential surface of a metal base material 10 with a U-shaped cross section as shown in the figure with ceramics 11, a high-strength bond can be obtained on the bottom wall surface 12 of the metal base material 10;
The molten brazing material 5 flows down on the left and right side wall surfaces 13a and 13b during heating for joining, making brazing itself difficult and even if brazing is possible, the reliability is low.

そのため、従来にあっては金属母材10の接合面の形状
に制約があって適用範囲が狭くなってしまっていたり、
又は金属母材10を接合面毎に分割し、セラミックス1
1を分割部材毎に接合した後に再び組み付けるなど煩雑
な作業を強いられる結果となっていた。
Therefore, in the past, there were restrictions on the shape of the bonding surface of the metal base material 10, which narrowed the scope of application.
Alternatively, the metal base material 10 is divided for each joint surface, and the ceramic 1
This resulted in the user being forced to perform complicated work such as joining each divided member of 1 and then assembling it again.

そこで本発明の技術的課題は、方向の異なる二以上の接
合面を有する金属母材にセラミックスを接合する場合に
、簡易な手段により、1ノかも信頼性の高い接合強度を
持ち得る接合方法を提供するものである。
Therefore, the technical problem of the present invention is to develop a bonding method that can provide a highly reliable bonding strength by a simple means when bonding ceramics to a metal base material having two or more bonding surfaces in different directions. This is what we provide.

(課題を解決するための手段) 上記課題を解決するために、本発明に係る金属母材とセ
ラミックスとの接合方法は、方向の異なる二以上の接合
面を有する金属母材に、接合補助材を介してセラミック
スを接合する方法において、各接合面を順次水平に配置
し、該水平時における接合面にセラミックスを接合した
ことを手段としている。
(Means for Solving the Problems) In order to solve the above problems, the method for joining a metal base material and ceramics according to the present invention includes adding a joining auxiliary material to a metal base material having two or more joining surfaces in different directions. In the method of bonding ceramics through a wafer, each bonding surface is sequentially arranged horizontally, and the ceramic is bonded to the horizontal bonding surface.

またJ金属母材にセラミックスを接合する時の雰囲気温
度を、接合面の配置を変える毎に順次低くなるよう調整
することにより、更に接合強度の信頼性が高くなる。
Furthermore, the reliability of the bonding strength can be further increased by adjusting the ambient temperature when bonding the ceramic to the J metal base material so that it becomes lower each time the arrangement of the bonding surfaces is changed.

〔作用〕[Effect]

上述の手段によれば、−の面を加熱接合した時に接合補
助材の一部が組成変化して溶融温度が上がり、次の面を
加熱接合する時には先に接合した面での接合補助材は同
一の接合温度では溶けにくくなっているので、先の接合
面が垂直方向に配置されていたとしても、接合補助材が
溶は出したり、また接合したセラミックスが剥れ落ちる
といったことはない。
According to the above method, when the - side is heated and bonded, part of the bonding auxiliary material changes in composition and its melting temperature increases, and when the next surface is heat bonded, the bonding auxiliary material on the previously bonded surface changes. Since it is difficult to melt at the same bonding temperature, even if the previous bonding surface is arranged vertically, the bonding aid will not melt or the bonded ceramic will not peel off.

また、接合温度を順次低くなるように調整することによ
って、先に接合した面での接合補助材は更に溶融しにく
くなるので、接合強度の信頼性が一段と増す。
Furthermore, by adjusting the bonding temperature so that it becomes lower in sequence, the bonding auxiliary material on the previously bonded surface becomes more difficult to melt, thereby further increasing the reliability of the bonding strength.

(実施例) 以下添付図面に基づいて本発明の実施例を詳細のであり
、断面コ字状の金属母材10の内側面、即ち底壁面12
およびこれと直交する左右の側壁面13a、13bにセ
ラミックスを接合する場合の例である。
(Embodiment) The embodiment of the present invention will be described in detail below based on the attached drawings.
This is an example in which ceramics are bonded to the left and right side wall surfaces 13a and 13b orthogonal thereto.

まず、第1図に示すように、金属母材10を真空炉中の
台座14の上に左側壁面13aが下になるように載置し
、この左側壁面13aにセラミックスllaを加熱接合
する。この場合、セラミックスllaには、予め各小片
毎に接合補助材としてのメタライズ層と金属中間層3を
接合しておき、金属母材10の左側壁面13a上に接合
補助材としてのロウ材5aを介して敷き詰め、真空中で
約800〜950°Cで10分間加熱し、ロウ材5aを
溶融して金属母材10にセラミックス11aを一体的に
接合する。尚、金属中間層3もFe−Ni−Co合金と
これを両面から挟む銅板とがロウ材によって接合される
が、上記金属母材10との接合時にこれら金属中間層3
自体の接合を同時に行ってもよく、また金属母材10へ
の接合時には金属中間層3の接合は既に終了していても
よい。
First, as shown in FIG. 1, the metal base material 10 is placed on the pedestal 14 in a vacuum furnace with the left side wall surface 13a facing downward, and the ceramic lla is heat-bonded to the left side wall surface 13a. In this case, a metallized layer and a metal intermediate layer 3 as a bonding auxiliary material are bonded to the ceramic lla in advance for each small piece, and a brazing material 5a as a bonding auxiliary material is placed on the left side wall surface 13a of the metal base material 10. The solder material 5a is melted and the ceramic 11a is integrally joined to the metal base material 10 by heating in a vacuum at about 800 to 950° C. for 10 minutes. Note that the metal intermediate layer 3 is also made of a Fe-Ni-Co alloy and a copper plate sandwiching it from both sides, and is bonded to the metal intermediate layer 3 using a brazing material.
The bonding itself may be performed at the same time, or the bonding of the metal intermediate layer 3 may already be completed at the time of bonding to the metal base material 10.

上記のロウ材5aには、例えば銀ロウ(BAg−8)が
用いられ、600〜9500C溶融するといった特性を
有する。従って、約800〜950°Cに加熱した場合
にロウ材5aが十分に溶融して金属母材10と金属中間
層3との接合を可能にする。
For example, silver solder (BAg-8) is used as the solder material 5a, and has a characteristic of melting at 600 to 9500C. Therefore, when heated to approximately 800 to 950°C, the brazing material 5a is sufficiently melted to enable joining of the metal base material 10 and the metal intermediate layer 3.

一方、このロウ材5aの溶融時に、これと接する金属中
間層3、具体的には第4図で示した銅板9がロウ材5a
中に一部拡散し、これがロウ材5aと反応してその組成
を若干変化させ、ロウ材5aの融点を高める。因みに銅
の融点は1083°Cである。
On the other hand, when the brazing material 5a is melted, the metal intermediate layer 3 in contact with it, specifically the copper plate 9 shown in FIG.
A portion of the solder material diffuses into the interior of the solder material, and this reacts with the brazing material 5a to slightly change its composition, thereby raising the melting point of the brazing material 5a. Incidentally, the melting point of copper is 1083°C.

上述の接合が終了したら、次いで第2図に示すように、
金属母材10を90°回転させて底壁面12が水平にな
るように台座14上に配置し、上述と同様の手段でセラ
ミックスllbを加熱接合する。この場合にも先程と略
同じ温度に加熱して底壁面12に接するロウ材5bを溶
融するが、左側壁面13aでの既にセラミックスlla
を接合しであるロウ材5aは、上述したように組成変化
していて底壁面12でのロウ材5bに比べて溶融する温
度が多少高くなっているために、ロウ材5aが流れ出し
たり、また−旦接合したセラミックスllaの小片が剥
れ落ちるといった不都合がない。
After the above-mentioned joining is completed, as shown in Fig. 2,
The metal base material 10 is rotated by 90 degrees and placed on the pedestal 14 so that the bottom wall surface 12 is horizontal, and the ceramic Ilb is heated and bonded by the same means as described above. In this case as well, the brazing material 5b in contact with the bottom wall surface 12 is heated to approximately the same temperature as before, but the ceramic lla on the left wall surface 13a is already melted.
As mentioned above, the composition of the solder metal 5a used for joining the parts has changed, and the melting temperature is somewhat higher than that of the solder metal 5b at the bottom wall surface 12, so that the solder metal 5a may flow out or - There is no inconvenience that small pieces of ceramic lla once bonded come off.

底壁面12での接合が終了したら、更に第3図に示すよ
うに、金属母材lOを90°回転させて右側壁面13b
が下になるように配置し、前回と同様ロウ材5cを介し
てセラミックス片を敷き詰め、略同じ温度でセラミック
スllcを加熱接合する。そして、この場合にも底壁面
12でのロウ材5bは一部組成変化していて債融温度が
高くなっているため、左側壁面13aも含めてロウ材5
bが流れ出すといったことがなく、セラミック金属母材
10の内側面に強度的に信頼性の高いセラミックス11
の接合を比較的簡易な手段で行なうことができることに
なり、上述の金属母材10のような3つの接合面に限ら
れず、更に複雑な形状の接合面にも同様の手段で接合で
きることになる。
After the bonding on the bottom wall surface 12 is completed, as shown in FIG.
As before, the ceramic pieces are spread through the brazing filler metal 5c, and the ceramics llc are heated and bonded at approximately the same temperature. In this case as well, the composition of the brazing filler metal 5b on the bottom wall surface 12 has partially changed and the bond melting temperature has increased, so the brazing filler metal 5b on the bottom wall surface 12, including the left wall surface 13a,
Ceramics 11 with high strength and reliability are formed on the inner surface of the ceramic metal base material 10 without flowing out.
This means that the bonding can be performed by a relatively simple means, and it is not limited to three bonding surfaces such as the metal base material 10 described above, but also bonding surfaces of more complicated shapes can be bonded by the same method. .

また、上記実施例では、3つの接合面を全て同じ温度で
加熱接合したが、接合面の配置を変える毎に順次温度が
低くなるように調整し、先の接合面での接合温度より若
干低い温度で加熱接合することにより、信頼性はより一
段と向上する。
In addition, in the above example, all three bonding surfaces were heated and bonded at the same temperature, but each time the placement of the bonding surfaces was changed, the temperature was adjusted to be lower in sequence, and the bonding temperature was slightly lower than the bonding temperature of the previous bonding surface. Reliability is further improved by heat bonding at high temperatures.

上記実施例で説明すれば、最初に接合する金属母材10
の左側壁面13aを900〜950°Cで加熱接合した
場合に、底壁面12は850〜900°Cで、また最後
に接合する右側壁面13bは800〜850°Cで加熱
接合しようとするものである。この場合、最初に接合す
る接合面での加熱温度がロウ材の溶融温度を上回るよう
に温度調整する必要がある。
To explain with the above embodiment, the metal base material 10 to be joined first
When the left side wall surface 13a is heat-bonded at 900 to 950°C, the bottom wall surface 12 is to be heat-bonded at 850 to 900°C, and the right side wall surface 13b to be bonded last is to be heat-bonded at 800 to 850°C. be. In this case, it is necessary to adjust the temperature so that the heating temperature at the joint surface to be joined first exceeds the melting temperature of the brazing material.

上記ロウ材5には、銀ロウ材(BAg−8)の他に、り
ん銅ロウ材やニッケルロウ材を使用することもできる。
As the brazing material 5, in addition to the silver brazing material (BAg-8), a phosphorous brazing material or a nickel brazing material can also be used.

りん銅ロウ材は700〜950°Cの間で溶融状態にあ
り使用可能であるので、例えば上記実施例におけるセラ
ミックスの接合の場合には、第一の接合(金属母材の左
側壁面の接合)を850〜900°Cで行い、第二の接
合(金属母材の底壁面の接合)を800〜850’Cで
行い、第三の接合(金属母材の右側壁面の接合)を75
0〜soo’cで行うことにより、ロウ材が流出するこ
とのない強度の大きな接合を得ることができる。一方、
ニッケルロウ材は900°C〜1050°Cの間で溶融
するので、例えば第一の接合を1000〜1050°C
で、第二の接合を950〜100に)’Cで、第三の接
合を900〜950°Cでそれぞれ行うことで確実な接
合を得ることができる。
Since the phosphorous brazing material is in a molten state and can be used at temperatures between 700 and 950°C, for example, in the case of joining ceramics in the above example, the first joining (joining of the left side wall of the metal base material) The second bonding (bonding of the bottom wall surface of the metal base material) was carried out at 800 to 850'C, and the third bonding (bonding of the right side wall surface of the metal base material) was carried out at 75°C.
By performing the process at a temperature of 0 to soo'c, it is possible to obtain a high-strength bond that prevents the brazing material from flowing out. on the other hand,
Since nickel brazing material melts between 900°C and 1050°C, for example, the first bonding is performed at 1000°C to 1050°C.
A reliable bond can be obtained by performing the second bonding at a temperature of 950 to 100°C and the third bonding at a temperature of 900 to 950°C.

尚、本発明の金属母材には、炭素鋼(例えば345C)
その他種々のものが適用でき、また、セラミックスは酸
化アルミニウムや酸化ジルコニウム等の酸化物系セラミ
ックスおよび窒化ケイ素や炭化ケイ素等の非酸化物系セ
ラミックスのいずれにも適用できる。
Note that the metal base material of the present invention includes carbon steel (for example, 345C).
Various other materials can be used, and the ceramics can include oxide ceramics such as aluminum oxide and zirconium oxide, and non-oxide ceramics such as silicon nitride and silicon carbide.

また、上記実施例では、ロウ材5a、5b。Further, in the above embodiment, the brazing materials 5a and 5b.

5cと接触する金属中間層3は銅板9であるが、必ずし
もこに限定されるものではなく、銅と同様の性質を有す
る高展延性金属の銀や、銅又は銀を含む合金なども用い
ることができる 更に接合補助材も、上記第4図で示した構成のものに限
定されるものではなく、少なくともメタライズ層2とロ
ウ材5を有するものであればよい。
The metal intermediate layer 3 in contact with the metal layer 5c is a copper plate 9, but it is not necessarily limited to this, and silver, a highly malleable metal having similar properties to copper, or an alloy containing copper or silver may also be used. Furthermore, the bonding auxiliary material that can be used is not limited to the one having the structure shown in FIG.

次に金属母材に接合したセラミックスの圧縮せん断強度
を調べた結果を示す。
Next, we will show the results of examining the compressive shear strength of ceramics bonded to metal base materials.

平板状の炭素鋼材(32(J) X 5 Q (W) 
×6 (t)mm )上に、メタライズ層を表面に形成
した7 )L/ ミナセラミック(30” X 15 
”’ X5 (t)mm )をロウ材を介して蔵せ置き
、900〜950°Cで約10分間加熱して両者を接合
した。
Flat carbon steel material (32 (J) x 5 Q (W)
x 6 (t) mm) with a metallized layer formed on the surface 7) L/Mina Ceramic (30” x 15
"'X5 (t) mm)" was placed through a brazing material and heated at 900 to 950°C for about 10 minutes to join them together.

これを試料1とする。次に試料1を垂直に保ち、前記接
合面を垂直方向にして850〜900°Cで約10分間
加熱処理をした。これを試料2とする。更に試料2を再
び同じ状態に保ち、800〜850’Cで約10分間再
加熱処理をした。これを試料3とする。
This is designated as sample 1. Next, Sample 1 was held vertically, and heat treatment was performed at 850 to 900°C for about 10 minutes with the bonded surface in the vertical direction. This is designated as sample 2. Furthermore, Sample 2 was again kept in the same state and reheated at 800 to 850'C for about 10 minutes. This is designated as sample 3.

次に、上記試料1〜3のそれぞれについて、常温での圧
縮せん断強度および熱衝撃後の常温圧縮せん断強度を調
べた。熱衝撃は、大気中において400°Cと室温との
間を500回繰り返すことにより加えたものである。
Next, for each of Samples 1 to 3, the compressive shear strength at room temperature and the compressive shear strength at room temperature after thermal shock were examined. Thermal shock was applied by repeating 500 cycles between 400° C. and room temperature in the atmosphere.

表−1に測定の結果を示す。なお、nは測定回数である
Table 1 shows the measurement results. Note that n is the number of measurements.

表−1 以上の結果より、試料1に対して、2度加熱の試料2お
よび3度加熱の試料3とも、圧縮せん断強はほとんど変
わらず(熱衝撃後のものはむしろ強度が大きくなってい
る)、セラミックスの接合強度に何ら問題のないことが
確認できた。
Table 1 From the above results, the compressive shear strength of sample 2 heated twice and sample 3 heated 3 times is almost the same compared to sample 1 (the strength after thermal shock is rather higher). ), it was confirmed that there were no problems with the bonding strength of the ceramics.

〔効果〕〔effect〕

以上説明したように、本発明に係る金属母材とセラミッ
クスとの接合方法によれば、方向の異なる二以上の接合
面を有する金属母材にセラミックスを接合する場合に、
簡易な手段でしかも信頼性の高い接合強度を得ることが
できるので、その適用範囲が飛躍的に拡大するものであ
る。
As explained above, according to the method for joining a metal base material and ceramics according to the present invention, when joining a ceramic to a metal base material having two or more joining surfaces in different directions,
Since highly reliable bonding strength can be obtained with a simple means, the range of its application is dramatically expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明に係る接合方法の工程を示す
図、第4図は金属部材とセラミックスとの接合部位を示
す模式図、第5図は従来の接合方法の一例を示す図であ
る。 1、I La、1 lb、11c・・・セラミックス2
・・・メタライズ層(接合補助材) 3・・・金属中間層(接合補助材) 4.10・・・金属母材 5.5a、5b、5c、7・・・ロウ材(接合補助材) 6・・・Fe−Ni−Co合金(接合補助材)8.9・
・・銅板(接合補助材)
FIGS. 1 to 3 are diagrams showing the steps of the joining method according to the present invention, FIG. 4 is a schematic diagram showing the joining portion between a metal member and ceramics, and FIG. 5 is a diagram showing an example of the conventional joining method. It is. 1, I La, 1 lb, 11c...Ceramics 2
... Metallized layer (bonding aid) 3... Metal intermediate layer (bonding aid) 4.10... Metal base material 5.5a, 5b, 5c, 7... Brazing material (bonding aid) 6...Fe-Ni-Co alloy (joining auxiliary material) 8.9.
・・Copper plate (bonding auxiliary material)

Claims (2)

【特許請求の範囲】[Claims] (1)方向の異なる二以上の接合面を有する金属母材に
、接合補助材を介してセラミックスを接合する方法にお
いて、 各接合面を順次水平に配置し、該水平時における接合面
にセラミックスを接合したことを特徴とする金属母材と
セラミックスとの接合方法。
(1) In a method of bonding ceramics to a metal base material having two or more bonding surfaces in different directions via a bonding auxiliary material, each bonding surface is sequentially arranged horizontally, and the ceramic is placed on the horizontal bonding surface. A method for joining a metal base material and ceramics, characterized by joining.
(2)金属母材にセラミックスを接合する時の雰囲気温
度を、接合面の配置を変える毎に順次低くなるよう調整
したことを特徴とする請求項1記載の金属母材とセラミ
ックスとの接合方法。
(2) The method for joining a metal base material and ceramics according to claim 1, characterized in that the ambient temperature when joining the ceramics to the metal base material is adjusted to become lower each time the arrangement of the joining surfaces is changed. .
JP63131314A 1988-05-31 1988-05-31 Joining method of metal base material and ceramics Expired - Fee Related JP2796806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131314A JP2796806B2 (en) 1988-05-31 1988-05-31 Joining method of metal base material and ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131314A JP2796806B2 (en) 1988-05-31 1988-05-31 Joining method of metal base material and ceramics

Publications (2)

Publication Number Publication Date
JPH01301568A true JPH01301568A (en) 1989-12-05
JP2796806B2 JP2796806B2 (en) 1998-09-10

Family

ID=15055059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131314A Expired - Fee Related JP2796806B2 (en) 1988-05-31 1988-05-31 Joining method of metal base material and ceramics

Country Status (1)

Country Link
JP (1) JP2796806B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345044A (en) * 1986-04-11 1988-02-26 住金鋼材工業株式会社 Decorative steel material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345044A (en) * 1986-04-11 1988-02-26 住金鋼材工業株式会社 Decorative steel material

Also Published As

Publication number Publication date
JP2796806B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
US6131797A (en) Method for joining ceramic to metal
US6131796A (en) Direct brazing of refractory metal features
JPH02124778A (en) Joined body of two pieces of aln ceramics and heat radiating device using same
JPH01301568A (en) Method for joining ceramics to metal base material
JPH02108493A (en) Ceramics joining material
JP3119906B2 (en) Joint of carbon material and metal
JPH01186290A (en) Liquid phase diffusion joining method for ni base heat resistant alloy member
JPH0451583A (en) Metal-sheet bonded ceramic board
JPH05201777A (en) Ceramic-metal joined body
JP2001048670A (en) Ceramics-metal joined body
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JPS6042283A (en) Method of bonding oxide ceramics and active metal
JPH0142914B2 (en)
JPS59174581A (en) Method of bonding aluminum to alumina
JPS63168292A (en) Composite brazing filler metal and brazing method thereof
JPH0571544B2 (en)
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPS61286059A (en) Joining method for aluminum alloy and aluminum ceramics
JPH0826840A (en) Bonding method for silicon carbide and silicon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees