JPH01301502A - Production of ceramic microsphere - Google Patents

Production of ceramic microsphere

Info

Publication number
JPH01301502A
JPH01301502A JP31712388A JP31712388A JPH01301502A JP H01301502 A JPH01301502 A JP H01301502A JP 31712388 A JP31712388 A JP 31712388A JP 31712388 A JP31712388 A JP 31712388A JP H01301502 A JPH01301502 A JP H01301502A
Authority
JP
Japan
Prior art keywords
water
oil
metal compound
aqueous solution
soluble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31712388A
Other languages
Japanese (ja)
Other versions
JPH0478562B2 (en
Inventor
Seiji Yamanaka
山中 清二
Yasuyuki Ogata
緒方 康行
Koji Shirota
城田 巧二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP31712388A priority Critical patent/JPH01301502A/en
Publication of JPH01301502A publication Critical patent/JPH01301502A/en
Publication of JPH0478562B2 publication Critical patent/JPH0478562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/328Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process by processes making use of emulsions, e.g. the kerosine process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title microspheres of narrow size distribution, with desired mean granular size, by heating a water-in-oil emulsion produced by mixing an oil with an aqueous solution of water-soluble metal compound and applying ultrasonic vibration, and by carrying out a specific treatment. CONSTITUTION:An aqueous solution of water-soluble metal compound is mixed with an oil insoluble in this aqueous solution and having boiling point higher than that of water, and a ultrasonic vibration is applied on the resultant liquid mixture to produce a water-in-oil emulsion. This emulsion is heated at a temperature below the boiling point of water to evaporate the water in said metal compound-dissolved droplets to effect dispersion of said spherical metal compound into the oil phase. Thence, the resultant dispersion is heated at a temperature higher than that where said compound is decomposed into metallic oxide but lower than the grain growth initiation temperature for said metallic oxide to remove the oil through its evaporation or decomposition, thus obtaining the objective ceramic microspheres.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水溶性金属化合物の水溶液に油を混合し超音波
振動により生成した油中水型エマルジョンを加熱するこ
とにより、水分と油分を除去してセラミックマイクロ球
を製造する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention removes water and oil by mixing oil with an aqueous solution of a water-soluble metal compound and heating a water-in-oil emulsion generated by ultrasonic vibration. The present invention relates to a method for manufacturing ceramic microspheres.

[従来の技術] この種のセラミックマイクロ球の製造方法として、本出
願人はセラミック微粉体を水に分散させた懸濁液をこの
懸濁液とほぼ同じ比重であって水と混合せずかつセラミ
ック微粉体と反応しない高沸点液体中に小滴状で分散さ
せた後、セラミックマイクロ球を得る方法を特許出願し
く特開昭6l−263628) 、更にセラミック微粉
体をアルコール溶液中に分散させた懸濁液又はゾルを流
動パラフィン中に小滴状に分散させた後、アルコールを
蒸発させてセラミックマイクロ球を得る方法を特許出願
した(特開昭62−262734)。
[Prior Art] As a method for producing this type of ceramic microspheres, the applicant has developed a method for producing a suspension of fine ceramic powder dispersed in water, which has approximately the same specific gravity as this suspension and which is not mixed with water. A patent application has been filed for a method for obtaining ceramic microspheres by dispersing them in the form of small droplets in a high-boiling liquid that does not react with the ceramic fine powder (Japanese Patent Application Laid-Open No. 61-263628), and the ceramic fine powder was further dispersed in an alcohol solution. A patent application was filed for a method for obtaining ceramic microspheres by dispersing a suspension or sol in liquid paraffin in the form of small droplets and then evaporating the alcohol (Japanese Patent Laid-Open No. 62-262734).

[発明が解決しようとする課題] 上記従来の製造方法は、均一な粒径を有する真球のセラ
ミックマイクロ球が得られる優れた方法であるが、オリ
フィスを通してセラミック微粉体の懸濁液を高沸点液体
中に小滴状に分散させるため、得られるセラミックマイ
クロ球の平均粒径はオリフィス径に依存し、数μmから
数10μmの比較的大きなものしかつくることができな
い。
[Problems to be Solved by the Invention] The conventional manufacturing method described above is an excellent method for obtaining truly spherical ceramic microspheres having a uniform particle size. Since the ceramic microspheres are dispersed in the form of small droplets in a liquid, the average particle size of the resulting ceramic microspheres depends on the orifice diameter, and only relatively large particles ranging from several μm to several tens of μm can be produced.

また上記従来の製造方法は、懸濁液を調製するために使
用するセラミック微粉体の粒径が常に目的とするセラミ
ックマイクロ球の粒径よりも遥かに小さな粒径であるこ
とが必要であり、そのためアルコキシド加水分解法のよ
うな特別の製法によりつくられた微細なセラミック微粉
体を用いなければならない不具合があった。
Furthermore, in the conventional manufacturing method described above, it is necessary that the particle size of the ceramic fine powder used to prepare the suspension is always much smaller than the particle size of the target ceramic microspheres. Therefore, there was a problem in that fine ceramic powder produced by a special manufacturing method such as an alkoxide hydrolysis method had to be used.

本発明の目的は、出発原料として微細なセラミック微粉
体を必要とすることなく、粒度分布幅の狭い、サブミク
ロンオーダの平均粒径を有するセラミックマイクロ球が
得られるセラミックマイクロ球の製造方法を提供するこ
とにある。
An object of the present invention is to provide a method for producing ceramic microspheres that does not require fine ceramic powder as a starting material, and can produce ceramic microspheres with a narrow particle size distribution and an average particle size on the submicron order. It's about doing.

また本発明の別の目的は、油中水型エマルジョンを生成
するための超音波の周波数を変えることにより所望の平
均粒径のセラミックマイクロ球を作り出せるセラミック
マイクロ球の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing ceramic microspheres that can produce ceramic microspheres with a desired average particle size by changing the frequency of ultrasonic waves for producing a water-in-oil emulsion. .

[課題を解決するための手段] 上記目的を達成するために、本発明のセラミックマイク
ロ球の製造方法は、水溶性金属化合物が溶解した水溶液
にこの水溶液に不溶で水より高沸点の油を混合し、この
混合液に超音波振動を与えて油中水型エマルジョンを生
成し、このエマルジョンを水の沸点未満の温度で加熱し
、前記水溶性金属化合物が溶解する液滴の水分を萬発さ
せて油相に球形の水溶性金属化合物を分散させた後、こ
の分散液を前記水溶性金属化合物が分解し金属酸化物と
なる温度以上でこの金属酸化物の粒成長開始温度未満の
温度範囲で加熱して油を蒸発又は分解して除去し、金属
酸化物のマイクロ球を得る方法である。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing ceramic microspheres of the present invention includes mixing an aqueous solution in which a water-soluble metal compound is dissolved with an oil that is insoluble in this aqueous solution and has a higher boiling point than water. Then, ultrasonic vibration is applied to this mixed liquid to generate a water-in-oil emulsion, and this emulsion is heated at a temperature below the boiling point of water to devour the water in the droplets in which the water-soluble metal compound is dissolved. After dispersing a spherical water-soluble metal compound in an oil phase, the dispersion is heated in a temperature range above the temperature at which the water-soluble metal compound decomposes to form a metal oxide and below the temperature at which grain growth of the metal oxide starts. In this method, the oil is removed by evaporation or decomposition by heating to obtain metal oxide microspheres.

本発明の出発原料は目的とするセラミックスを構成する
水溶性金属化合物である。この水溶性金属化合物を所定
の組成比で20〜50℃の水に溶解して水溶液を調製す
る。
The starting material of the present invention is a water-soluble metal compound constituting the desired ceramic. An aqueous solution is prepared by dissolving this water-soluble metal compound in water at a temperature of 20 to 50°C at a predetermined composition ratio.

この水溶液に油を混合して油中水型エマルジョンを生成
する。油は上記水溶液に不溶でありかつ水より高沸点の
ものであれば、特に限定されず、毒性及び価格の点から
パラフィン油が望ましい。
Oil is mixed with this aqueous solution to produce a water-in-oil emulsion. The oil is not particularly limited as long as it is insoluble in the aqueous solution and has a boiling point higher than water, and paraffin oil is preferred from the viewpoint of toxicity and cost.

またエマルジョンを生成する際にはエマルジョンを長時
間安定に存在させるために乳化剤を使用した方がよい。
Furthermore, when producing an emulsion, it is better to use an emulsifier in order to keep the emulsion stable for a long time.

この乳化剤はイオン系乳化剤、非イオン系乳化剤等いず
れの乳化剤でもよい。上記水溶液100重量部に対して
油は35〜100重量部また乳化剤は1〜6重量部混合
する。
This emulsifier may be any emulsifier such as an ionic emulsifier or a nonionic emulsifier. 35 to 100 parts by weight of oil and 1 to 6 parts by weight of emulsifier are mixed with 100 parts by weight of the above aqueous solution.

本発明の特徴ある点の1つはエマルジョンを超音波振動
により生成する。エマルジョンの生成を超音波振動以外
の攪拌式ホモジナイザ、圧力式ホモジナイザ等の手段で
行った場合には、液滴の径は部分的にサブミクロンのオ
ーダとなるが、平均的にサブミクロンのオーダとならず
、しかもその液滴径の分布幅は広いため、最終的に得ら
れるセラミックマイクロ球の平均粒径が大きくかつ不揃
いとなる。このため超音波振動以外の方法は本発明に適
しない。この超音波の周波数は10kHz〜100kH
zの範囲が好ましい。超音波は一般的に可聴域より上の
周波数、すなわち20kHz以上の音波であるが、本発
明では10kHzの周波数においても液滴の平均径をサ
ブミクロンのオーダにすることができるので、周波数が
10kHz以上で20kHz未満の音波についても、超
音波の用語を用いる。周波数を高めて強い超音波にする
と、本発明の最終生成物であるセラミックマイクロ球の
平均粒径がより一層細かくなり、反対に周波数を低くし
て弱い超音波にすると、平均粒径が大きくなる。このこ
とから超音波の周波数を適宜選定すれば、平均粒径を所
望の値に設定することができる。
One of the characteristics of the present invention is that the emulsion is generated by ultrasonic vibration. When the emulsion is generated using a means other than ultrasonic vibration, such as a stirring homogenizer or a pressure homogenizer, the diameter of the droplets is partially on the order of submicrons, but on average it is on the order of submicrons. Moreover, since the distribution width of the droplet size is wide, the average particle size of the ceramic microspheres finally obtained is large and irregular. Therefore, methods other than ultrasonic vibration are not suitable for the present invention. The frequency of this ultrasonic wave is 10kHz to 100kHz
A range of z is preferred. Ultrasonic waves generally have a frequency above the audible range, that is, a sound wave of 20 kHz or more, but in the present invention, even at a frequency of 10 kHz, the average diameter of droplets can be made to the order of submicrons. In the above, the term ultrasonic wave is also used for sound waves of less than 20 kHz. If the frequency is increased to make the ultrasound stronger, the average particle size of the ceramic microspheres, which is the final product of the present invention, will become finer. Conversely, if the frequency is lowered to make the ultrasound weaker, the average particle size will become larger. . From this, by appropriately selecting the frequency of the ultrasonic waves, the average particle size can be set to a desired value.

生成したエマルジョンを加熱して水溶性金属化合物が溶
解する液滴の水分を蒸発させるときの加熱温度は、高温
の方が迅速に液滴の水分を除去できるが、100℃を越
えると水の沸騰が起きエマルジョンが壊れるので、10
0℃未満、望ましくは70〜95℃がよい。
When heating the generated emulsion to evaporate the water in the droplets in which the water-soluble metal compound is dissolved, the higher the heating temperature, the faster the water in the droplets can be removed, but if the temperature exceeds 100°C, the water will boil. occurs and the emulsion breaks, so 10
The temperature is preferably less than 0°C, preferably 70 to 95°C.

更に油を蒸発又は分解するとともに水溶性金属化合物を
熱分解するときの加熱温度は、水溶性金属化合物が分解
し金属酸化物となる温度以上でこの金属酸化物の粒成長
開始温度未満の温度であることが必要である。
Furthermore, the heating temperature when evaporating or decomposing the oil and thermally decomposing the water-soluble metal compound is at least the temperature at which the water-soluble metal compound decomposes into a metal oxide and lower than the temperature at which grain growth of this metal oxide starts. It is necessary that there be.

[作 用] 水溶性金属化合物が溶解した水溶液に油を混合し、必要
により乳化剤を加えて超音波振動を与えると、超音波に
よる強力なキャビテーション効果が混合液全体に均一に
加わり、前記水溶液がサブミクロンのオーダの液滴にま
で細分割されて油相に分散する。ここで超音波の周波数
を適宜選定すれば、マイクロ球の所望の平均粒径を決め
ることができる。
[Function] When oil is mixed with an aqueous solution in which a water-soluble metal compound is dissolved, an emulsifier is added if necessary, and ultrasonic vibration is applied, a strong cavitation effect due to ultrasonic waves is uniformly applied to the entire mixed solution, and the aqueous solution is It is finely divided into droplets on the order of submicrons and dispersed in the oil phase. By appropriately selecting the frequency of the ultrasonic waves, a desired average particle size of the microspheres can be determined.

このエマルジョンを加熱して水溶性金属化合物が溶解す
る液滴の水分を蒸発させると、液滴が濃縮され、油相に
サブミクロンのオーダの球形の水溶性金属化合物が分散
する。
When this emulsion is heated to evaporate the water in the droplets in which the water-soluble metal compound is dissolved, the droplets are concentrated and the spherical water-soluble metal compound on the order of submicrons is dispersed in the oil phase.

この水溶性金属化合物が分散した油液を加熱して油を蒸
発又は分解するとともに水溶性金属化合物を熱分解させ
れば、サブミクロンのオーダの金属酸化物のマイクロ球
が得られる。
By heating the oil liquid in which the water-soluble metal compound is dispersed to evaporate or decompose the oil and thermally decompose the water-soluble metal compound, submicron-order metal oxide microspheres can be obtained.

[発明の効果] 以上述べたように、本発明の製造方法は、超音波振動に
よりサブミクロンのオーダの水溶性金属化合物の液滴が
油相に分散するエマルジョンを生成した後、このエマル
ジョンを加熱して水と油を順次除去してセラミックマイ
クロ球を製造するので、従来のように出発原料として微
細なセラミック微粉体を用いずに、真球に近い粉体粒子
が得られる。
[Effects of the Invention] As described above, the manufacturing method of the present invention involves generating an emulsion in which submicron-order water-soluble metal compound droplets are dispersed in an oil phase by ultrasonic vibration, and then heating this emulsion. Since ceramic microspheres are manufactured by sequentially removing water and oil, powder particles that are close to perfect spheres can be obtained without using fine ceramic powder as a starting material as in the past.

特に乳化が超音波振動により行われ、かつ油の蒸発・分
解温度が金属酸化物の粒成長開始温度未満であるため、
得られた粒子は互いに本質的に点接触するだけで凝集せ
ず、サブミクロンのオーダの平均粒径を有し、かつ粒度
分布幅の狭いセラミックマイクロ球となる。
In particular, emulsification is carried out by ultrasonic vibration, and the evaporation and decomposition temperature of the oil is below the grain growth starting temperature of the metal oxide.
The obtained particles essentially only make point contact with each other and do not aggregate, resulting in ceramic microspheres having an average particle size on the order of submicrons and a narrow particle size distribution.

更に超音波の周波数を適宜選定すれば、マイクロ球の平
均粒径を所望の値にすることができる。
Furthermore, by appropriately selecting the frequency of the ultrasonic waves, the average particle diameter of the microspheres can be set to a desired value.

[実施例] 次に本発明の実施例を比較例とともに説明する。[Example] Next, examples of the present invention will be described together with comparative examples.

〈実施例1〉 Zr0(NOs)* ・2H*010gを40℃の水2
5gに溶解して水溶液を調製した。この水溶液をパラフ
ィン油50gと乳化剤としてポリ・オキシエチレン・ノ
ニルフェニル・エーテルIgを加えた後、超音波発生機
(Branson社製B−30社製上り15秒間超音波
振動を与えて油中水型エマルジョンを生成した。この時
の超音波の周波数は30kHzであった。このエマルジ
ョンを乾燥器に入れ、大気圧下80℃の温度で8時間乾
燥し、水を蒸発させて除去した。エマルジョンはZrO
,粒子が分散する懸濁液となった。この懸濁液を大気圧
下700℃の温度で3時間焼成し油を分解して除去し、
ZrO,球を得た。走査型電子顕微鏡によりこのZrO
,球の粒径を測定したところ、平均粒径が0.1μ晴で
粒度分布幅が±0.02μmの極めて微細でバラツキの
少ないZrO2の単分散セラミックマイクロ球であった
<Example 1> Zr0(NOs)*・2H*010g was added to 40°C water 2
5 g to prepare an aqueous solution. After adding 50 g of paraffin oil and polyoxyethylene nonylphenyl ether Ig as an emulsifier to this aqueous solution, ultrasonic vibration was applied for 15 seconds using an ultrasonic generator (manufactured by Branson B-30). An emulsion was produced.The frequency of the ultrasonic wave at this time was 30kHz.This emulsion was placed in a dryer and dried at a temperature of 80°C under atmospheric pressure for 8 hours to evaporate and remove water.The emulsion was made of ZrO
, resulting in a suspension in which the particles were dispersed. This suspension was calcined at a temperature of 700°C under atmospheric pressure for 3 hours to decompose and remove the oil.
ZrO, spheres were obtained. Using a scanning electron microscope, this ZrO
When the particle size of the spheres was measured, they were found to be extremely fine and uniform ZrO2 monodisperse ceramic microspheres with an average particle size of 0.1 μm and a particle size distribution width of ±0.02 μm.

く比較例1〉 超音波発生機の代わりに攪拌式ホモジナイザによりエマ
ルジョンを生成したこと以外は°実施例1と同様にして
Zr0m球を得た。実施例1と同様にこのZrO,の粒
径を測定したところ、0.1〜3μmの粒度分布幅の広
いセラミックマイクロ球であった。
Comparative Example 1 Zr0m spheres were obtained in the same manner as in Example 1, except that the emulsion was produced using a stirring homogenizer instead of the ultrasonic generator. When the particle size of this ZrO was measured in the same manner as in Example 1, it was found to be ceramic microspheres with a wide particle size distribution of 0.1 to 3 μm.

〈実施例2〉 ZrO(Now)* ・2H!05.34gとPb(C
HsCOO)* ・3Ht06.76gとを40℃の水
25gに溶解した水溶液を使用したこと以外は実施例1
と同様にしてPbZroa球を得た。実施例1と同様に
このPbZroa球の粒径を測定したところ、実施例1
と同じ0.1±0.02μmの極めて微細で粒度分布幅
の狭いPbZrOsの単分散セラミックマイクロ球であ
った。
<Example 2> ZrO(Now)* ・2H! 05.34g and Pb(C
Example 1 except that an aqueous solution of 06.76 g of 3Ht and 25 g of 40°C water was used.
PbZroa spheres were obtained in the same manner. When the particle size of this PbZroa sphere was measured in the same manner as in Example 1, it was found that Example 1
The PbZrOs monodisperse ceramic microspheres were extremely fine with the same diameter of 0.1±0.02 μm and had a narrow particle size distribution.

く比較例2〉 超音波発生機の代わりに圧力式ホモジナイザによりエマ
ルジョンを生成したこと以外は実施例2と同様にしてP
bZroa球を得た。実施例1と同様にこのPbZrO
sの粒径を測定したところ、比較例1と同じ0.1〜3
μmの粒度分布幅の広いセラミックマイクロ球であった
Comparative Example 2 P was carried out in the same manner as in Example 2 except that the emulsion was generated using a pressure homogenizer instead of the ultrasonic generator.
bZroa spheres were obtained. As in Example 1, this PbZrO
When the particle size of s was measured, it was 0.1 to 3, the same as in Comparative Example 1.
They were ceramic microspheres with a wide particle size distribution width of μm.

〈実施例3〉 超音波の周波数を1OkHzとした以外は実施例1と同
様にしてZrO,球を得た。実施例1と同様にこのZr
O□の粒径を測定したところ、平均粒径が実施例1より
若干大きい0.7μmで粒度分布幅も実施例1より若干
広い±0.11μmのZrO□の単分散セラミックマイ
クロ球であった。
<Example 3> ZrO and spheres were obtained in the same manner as in Example 1 except that the frequency of the ultrasonic waves was 10kHz. As in Example 1, this Zr
When the particle size of O□ was measured, it was found to be monodisperse ceramic microspheres of ZrO□ with an average particle size of 0.7 μm, which is slightly larger than Example 1, and a particle size distribution width of ±0.11 μm, which is slightly wider than Example 1. .

〈実施例4〉 超音波の周波数を100kHzとした以外は実施例1と
同様にしてZr0w球を得た。実施例1と同様にこのZ
rO□の粒径を測定したところ、平均粒径が実施例1よ
り極めて小さい0.02μmで粒度分布幅も実施例1よ
り極めて狭い±0.003μmのZrO2の単分散セラ
ミックマイクロ球であった。
<Example 4> A Zr0w sphere was obtained in the same manner as in Example 1 except that the frequency of the ultrasonic wave was 100 kHz. As in Example 1, this Z
When the particle size of rO□ was measured, it was found to be monodisperse ceramic microspheres of ZrO2 with an average particle size of 0.02 μm, which is much smaller than in Example 1, and a particle size distribution width of ±0.003 μm, which is much narrower than in Example 1.

一二、′1.−・L12,'1. -・L

Claims (1)

【特許請求の範囲】 1)水溶性金属化合物が溶解した水溶液にこの水溶液に
不溶で水より高沸点の油を混合し、この混合液に超音波
振動を与えて油中水型エマルジョンを生成し、このエマ
ルジョンを水の沸点未満の温度で加熱し、前記水溶性金
属化合物が溶解する液滴の水分を蒸発させて油相に球形
の水溶性金属化合物を分散させた後、この分散液を前記
水溶性金属化合物が分解し金属酸化物となる温度以上で
この金属酸化物の粒成長開始温度未満の温度範囲で加熱
して油を蒸発又は分解して除去し、金属酸化物のマイク
ロ球を得るセラミックマイクロ球の製造方法。 2)超音波の周波数を10kHz〜100kHzの範囲
から選定して所望の平均粒径のマイクロ球を得る請求項
1記載のセラミックマイクロ球の製造方法。 3)水溶性金属化合物が溶解した水溶液に油とともに乳
化剤を加えて油中水型エマルジョンを生成する請求項1
記載のセラミックマイクロ球の製造方法。
[Claims] 1) A water-in-oil emulsion is produced by mixing an aqueous solution in which a water-soluble metal compound is dissolved with an oil that is insoluble in this aqueous solution and has a higher boiling point than water, and applying ultrasonic vibration to this mixture. This emulsion is heated at a temperature below the boiling point of water to evaporate the water in the droplets in which the water-soluble metal compound is dissolved to disperse the spherical water-soluble metal compound in the oil phase. The oil is removed by evaporation or decomposition by heating in a temperature range that is above the temperature at which the water-soluble metal compound decomposes to become a metal oxide and below the temperature at which grain growth of this metal oxide begins, to obtain metal oxide microspheres. Method for manufacturing ceramic microspheres. 2) The method for producing ceramic microspheres according to claim 1, wherein microspheres having a desired average particle size are obtained by selecting the frequency of the ultrasonic waves from a range of 10 kHz to 100 kHz. 3) Claim 1, wherein a water-in-oil emulsion is produced by adding an emulsifier together with oil to an aqueous solution in which a water-soluble metal compound is dissolved.
The method for manufacturing the ceramic microspheres described.
JP31712388A 1988-02-18 1988-12-15 Production of ceramic microsphere Granted JPH01301502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31712388A JPH01301502A (en) 1988-02-18 1988-12-15 Production of ceramic microsphere

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-36239 1988-02-18
JP3623988 1988-02-18
JP31712388A JPH01301502A (en) 1988-02-18 1988-12-15 Production of ceramic microsphere

Publications (2)

Publication Number Publication Date
JPH01301502A true JPH01301502A (en) 1989-12-05
JPH0478562B2 JPH0478562B2 (en) 1992-12-11

Family

ID=26375281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31712388A Granted JPH01301502A (en) 1988-02-18 1988-12-15 Production of ceramic microsphere

Country Status (1)

Country Link
JP (1) JPH01301502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059921A1 (en) * 1998-05-21 1999-11-25 Sakai Chemical Industries, Ltd. Method for producing fine spherical particles of carbonate or hydroxide of nickel, cobalt or copper
JP2007007625A (en) * 2005-07-04 2007-01-18 National Institute Of Advanced Industrial & Technology Liposome-manufacturing device and method by plural ultrasonic irradiation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059921A1 (en) * 1998-05-21 1999-11-25 Sakai Chemical Industries, Ltd. Method for producing fine spherical particles of carbonate or hydroxide of nickel, cobalt or copper
US6197273B1 (en) 1998-05-21 2001-03-06 Sakai Chemical Industry Co., Ltd. Method for producing fine spherical particles of carbonate or hydroxide of nickel, cobalt or copper
JP2007007625A (en) * 2005-07-04 2007-01-18 National Institute Of Advanced Industrial & Technology Liposome-manufacturing device and method by plural ultrasonic irradiation
JP4543202B2 (en) * 2005-07-04 2010-09-15 独立行政法人産業技術総合研究所 Liposome production apparatus and production method using multiple ultrasonic irradiation

Also Published As

Publication number Publication date
JPH0478562B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US5071635A (en) Method of preparing ceramic microspheres
Friend et al. Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization
EP1216958B1 (en) Method for production of aqueous dispersion and use thereof
CN106986989A (en) A kind of preparation method of polyamide hollow nanospheres
EP1912898B1 (en) Method for concentrating nanosuspensions
JPH0441176B2 (en)
EP0804952B1 (en) Process for the preparation of finely devided crystallisation products
JPH01301502A (en) Production of ceramic microsphere
JPS63158154A (en) Method and device for manufacturing liquid droplet having narrow grain size distribution
JPH021798A (en) Lubricant-containing microcapsule and production thereof
JP3235283B2 (en) Method for producing spherical chitosan fine particles
JPH0517111A (en) Hydroxyapatite ultra-fine particle
JPH09327501A (en) Production of seamless capsuled particle
CN110054227A (en) The method that Pickering miniemulsion prepares composite shell nano-hollow ball
JP2004231760A (en) Biodegradable resin powder and its production method
JPH02303537A (en) Production of ceramics microball
KR100837859B1 (en) Preparation method of colloidal clusters from emulsions using droplets comprising binary or bi-disperse colloidal dispersions
JP2005023417A (en) Production method of ultra-fine copper powder
JP2818328B2 (en) Method for producing porous spherical apatite particles
JPS63229140A (en) Production of mineral hollow spherical particle
JP2017178637A (en) Method for producing porous silica-based particle
Nazarzadeh et al. Controlling the size of nebulised droplets by pinning surface waves for precise delivery of aerosolised medicine
JP3991100B2 (en) Method and apparatus for generating and dispersing aerosol particles
JPH02102730A (en) Production of multiple fine powdery material
JP2002096328A (en) Ultrafine frp powder with hydrophilic property and manufacturing method therefor