JPH01301142A - Semiconductor decomposing device - Google Patents

Semiconductor decomposing device

Info

Publication number
JPH01301142A
JPH01301142A JP63064544A JP6454488A JPH01301142A JP H01301142 A JPH01301142 A JP H01301142A JP 63064544 A JP63064544 A JP 63064544A JP 6454488 A JP6454488 A JP 6454488A JP H01301142 A JPH01301142 A JP H01301142A
Authority
JP
Japan
Prior art keywords
vessel
liquid
decomposition
acid
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63064544A
Other languages
Japanese (ja)
Other versions
JPH0795021B2 (en
Inventor
Yoshiaki Matsushita
松下 嘉明
Rie Aono
青野 理恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP63064544A priority Critical patent/JPH0795021B2/en
Publication of JPH01301142A publication Critical patent/JPH01301142A/en
Publication of JPH0795021B2 publication Critical patent/JPH0795021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To exactly, accurately and rapidly obtain a sample for measuring the impurity quantity of a semiconductor by heating a decomposing liquid from the outside of a vessel and simultaneously reducing the pressure in the vessel, thereby thickening the decomposing liquid. CONSTITUTION:A silicon wafer is dissolved by an acid mixture composed of hydrofluoric acid and nitric acid in the hermetically closed decomposing vessel 1 having a pure water injecting port 4 and an aspirator connecting port 5. The aspirator connecting port 5 is connected to the aspirator 3 when the wafer is completely dissolved. The water is then heated by a heater 2 for heating provided to the decomposition vessel 1 and is rested for a prescribed period of time while the pressure in the vessel is reduced. The acid concn. at which fuming takes place in the beginning lowers down to the azeotropic compsn. and further, the acids evaporate with the azeotropic compsn. A prescribed volume of pure water is injected into the vessel from the pure water injecting port 4 to form the dilute liquid which is drastically lowered in the acid concn. from the azeotropic compsn. when the decomposing liquid 9 evaporates and thickens. The dilute liquid is taken by a micropipette and the impurity quantity is measured by a direct flameless atomic absorption device.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体の分解装置に関するもので、特にシリ
コンウェハ中の微量不純物分析に使用されるものである
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor decomposition apparatus, and is particularly used for analyzing trace impurities in silicon wafers.

(従来技術) よく知られているように、半導体基板材料として用いら
れるシリコン結晶中にNa 、に、Fe等の不純物が存
在すると、その量が極めて微量であっても半導体素子の
電気的特性は大きな影響を受ける。 そこで、これら不
純物量を低減して素子の特性を高めるためには、まずそ
の不純物含有量を正確に把握する必要がある。 ところ
がシリコン結晶中の不純物は極微量であるため機器分析
では十分なデータが得られず、化学分析がなされること
が多かった。 シリコンウェハ中の不純物測定用の試料
をつくるには、弗化水素酸と硝酸の混酸中でシリコンウ
ェハを溶解する液相分解法が用いられている。
(Prior Art) As is well known, if impurities such as Na, Fe, etc. are present in silicon crystal used as a semiconductor substrate material, the electrical characteristics of the semiconductor device will be affected even if the amount is extremely small. be greatly affected. Therefore, in order to reduce the amount of these impurities and improve the characteristics of the element, it is first necessary to accurately understand the impurity content. However, since the amount of impurities in silicon crystals is extremely small, it is not possible to obtain sufficient data through instrumental analysis, and chemical analysis has often been performed. To prepare samples for measuring impurities in silicon wafers, a liquid phase decomposition method is used in which the silicon wafer is dissolved in a mixed acid of hydrofluoric acid and nitric acid.

従来このために用いられる分解容器は、第2図の斜視図
に示すような本体6と益7で構成され、その本体6内の
溶解状態を示す第3図の平面図のように、分解容器内に
シリコンウェハ8を入れて、超高純度の弗化水素酸と硝
酸の混酸9を注ぎ、第2図のように蓋7を密閉して常温
で所定時間放置する。 所定時間が経過すると、シリコ
ンウエハは混酸により完全に分解され、その分解液中の
不純物量を測定することになる。 不純物量の測定には
フレームレス原子吸光法によるのが背通であるが、分解
液は希釈せず、濃い酸のまま試料とする。
Conventionally, the decomposition vessel used for this purpose is composed of a main body 6 and a pipe 7 as shown in the perspective view of FIG. 2, and as shown in the plan view of FIG. A silicon wafer 8 is placed in the container, and a mixed acid 9 of ultra-high purity hydrofluoric acid and nitric acid is poured into the container.The lid 7 is sealed as shown in FIG. 2, and the container is left at room temperature for a predetermined period of time. After a predetermined period of time has elapsed, the silicon wafer is completely decomposed by the mixed acid, and the amount of impurities in the decomposed solution is measured. Frameless atomic absorption spectrometry is the best way to measure the amount of impurities, but the decomposition solution is not diluted and is used as a sample as a concentrated acid.

しかしたがら前述の方法では、フレームレス原子吸光装
置で測定するときに、濃い酸の分解液を該装置のサンプ
ル注入口に注入するなめに、試料加熱用のグラファイト
チューブ及び周辺の部品が酸により劣化し、頻繁に部品
を交換したければいけない。 また交換ができない部分
からの発錆等により試料の正確な不純物量の測定ができ
ない。
However, in the above-mentioned method, when measuring with a flameless atomic absorption spectrometer, the graphite tube for heating the sample and surrounding parts deteriorate due to the acid because a concentrated acid decomposition solution is injected into the sample injection port of the device. However, parts must be replaced frequently. Furthermore, it is not possible to accurately measure the amount of impurities in the sample due to rust, etc. from parts that cannot be replaced.

そこでフレームレス原子吸光装置が劣化したい酸濃度レ
ベルまで分解液を希釈すると、分解液中の不純物量はも
ともと非常に少なく(例えばNa濃度は10I6ato
lls/cm’以下)これがさらに希釈されるなめ、不
純物が検知できなくなるという問題点があった。 また
、分解液をあらかじめヒーターで加熱し、濃縮してから
純水で希釈するという方法では、濃縮するのに時間を要
し、その間に分解液が外部から汚染されてしまうという
問題点があった。
Therefore, when the decomposition solution is diluted to the acid concentration level at which the flameless atomic absorption spectrometer wants to deteriorate, the amount of impurities in the decomposition solution is originally very small (for example, the Na concentration is 10I6ato
lls/cm' or less) is further diluted, which poses a problem in that impurities cannot be detected. In addition, the method of heating the decomposed liquid in advance with a heater, concentrating it, and then diluting it with pure water has the problem that it takes time to concentrate, and during that time the decomposed liquid becomes contaminated from the outside. .

(発明が解決しようとする課題) 本発明は、これらのことに鑑みてなされたもので、半導
体不純物量の測定用試料を正確かつ精度よく、また迅速
に得ることのできる、半導体分解装置を提供することを
目的とする。 また、フレームレス原子吸光装置のよう
な測定装置の劣化を防ぐ試料作成の分解装置を提供する
ことも目的としている。
(Problems to be Solved by the Invention) The present invention has been made in view of the above, and provides a semiconductor decomposition device that can accurately and precisely obtain a sample for measuring the amount of semiconductor impurities and quickly. The purpose is to Another object of the present invention is to provide a decomposition device for sample preparation that prevents deterioration of measurement devices such as frameless atomic absorption spectrometers.

[発明の構成J (課題を解決するための手段と作用) 本発明の半導体分解装置は、半導体を溶解して微量不純
物分析用の試料液を得るなめのものであって、雰囲気か
ら遮断した状態で半導体を溶解・処理する密閉容器と、
該容器外から容器内の分解液を加熱する加熱手段と、該
加熱手段により分解液を加熱すると同時に該容器内を減
圧にして分解液を′a縮するアスピレータ−のような減
圧手段と、2容器内の濃縮した分解液を希釈して前記試
料液を調製する純水の注入口とを具備することを特徴と
する。
[Structure of the Invention J (Means and Effects for Solving the Problems) The semiconductor decomposition apparatus of the present invention is for dissolving a semiconductor to obtain a sample liquid for trace impurity analysis, and is in a state where it is shielded from the atmosphere. A sealed container for melting and processing semiconductors,
a heating means for heating the decomposition liquid in the container from outside the container; and a decompression means such as an aspirator for heating the decomposition liquid by the heating means and at the same time reducing the pressure in the container to condense the decomposition liquid; It is characterized by comprising a pure water inlet for diluting the concentrated decomposition liquid in the container to prepare the sample liquid.

上記本発明装置では、ウェハ分解液をアスピレータ−に
連結し、容器内を減圧にし同時に容器を加熱用ヒーター
で加熱したから、分解液が外部から汚染されずに迅速に
濃縮される。 また、その分解液を希釈することにより
もとの不純物量を変えることなく希釈液ができ、その希
釈液をフレームレス原子吸光装置で測定するから、サン
プル注入口のグラファイトチューブ及び周辺部品の劣化
を防ぎ、測定装置の寿命が伸び、さらに不純物測定には
正確なかつ精度のよい数値が得られる。
In the apparatus of the present invention, the wafer decomposition liquid is connected to the aspirator, the pressure inside the container is reduced, and the container is simultaneously heated with a heating heater, so that the decomposition liquid is rapidly concentrated without being contaminated from the outside. In addition, by diluting the decomposed solution, a diluted solution is created without changing the original amount of impurities, and the diluted solution is measured with a flameless atomic absorption spectrometer, so deterioration of the graphite tube of the sample injection port and surrounding parts can be prevented. This prolongs the life of the measuring device and provides accurate and accurate values for impurity measurements.

(実施例) 第1図は本発明の一実施例にかかわる分解装置のm遺を
示す。
(Embodiment) FIG. 1 shows the structure of a disassembly apparatus according to an embodiment of the present invention.

純水注入口4とアスピレータ−接続口5をもつ密閉され
る分解容器1内で、あらかじめシリコンウェハを弗化水
素酸と硝酸の混酸で溶解し、完全に溶解したら、アスピ
レータ−接続口5をアスピレータ−3に接続し、容器内
を減圧にしたがら、分解容器lに具備した加熱用ヒータ
ー2で加熱し、所定時間放置する。 当初発煙した酸濃
度は共沸組成まで低下しさらに共沸組成で揮散してゆく
In a sealed decomposition container 1 having a pure water inlet 4 and an aspirator connection port 5, silicon wafers are dissolved in advance with a mixed acid of hydrofluoric acid and nitric acid, and once completely dissolved, the aspirator connection port 5 is connected to the aspirator connection port 5. -3, and while reducing the pressure inside the vessel, it is heated with the heating heater 2 provided in the decomposition vessel 1, and left for a predetermined period of time. The acid concentration that initially produced smoke decreases to an azeotropic composition, and further volatilizes at the azeotropic composition.

分解液9が揮散し、濃縮したら、純水注入口4から純水
を所定量注入し、酸濃度が共沸組成より格段に低下した
希釈液をつくる。 その希釈液をマイクロピペットで採
取し、直接フレームレス原子吸光装置で不純物量を測定
する。
After the decomposition liquid 9 is volatilized and concentrated, a predetermined amount of pure water is injected from the pure water inlet 4 to create a diluted liquid whose acid concentration is much lower than the azeotropic composition. The diluted solution is collected with a micropipette, and the amount of impurities is directly measured using a flameless atomic absorption spectrometer.

[発明の効果コ 本発明によれば、分解液を減圧下で加熱することにより
短時間で容易に濃縮でき、また雰囲気中の汚染を最少限
に抑えることができて、分析精度を向上させることがで
きた。
[Effects of the Invention] According to the present invention, by heating the decomposition liquid under reduced pressure, it can be easily concentrated in a short time, and contamination in the atmosphere can be minimized, thereby improving analytical accuracy. was completed.

また、その分解液を希釈し、希釈液をフレームレス原子
吸光装置で測定することにより、サンプル注入口の劣化
を防ぎ、部品の寿命が長くなり、またサンプル注入口の
発錆による汚染の影響を受けることがなくなった。
In addition, by diluting the decomposed solution and measuring the diluted solution with a flameless atomic absorption spectrometer, we can prevent deterioration of the sample inlet, extend the life of parts, and reduce the effects of contamination due to rust in the sample inlet. I no longer receive it.

第4図は従来の濃縮法と、本発明の濃縮法によりシリコ
ンウェハ中のNa量を測定した結果である、 同一ロッ
トのシリコンウェハがらそれぞれ2枚のウェハをサング
ルとし、各サンプルにつき測定用試料を得た。 各試料
につきフレームレス原子吸光装置で3回の測定をしたと
ころ、従来法では濃縮中に不純物の混入あるいは離脱が
あってNo、 1とNO3の一致すべき平均が一致せず
、まな混酸の測定装置への影響があって精度も悪いのに
対して、本発明法では極めて正確かつ精度の高いことが
わかる。
Figure 4 shows the results of measuring the amount of Na in silicon wafers using the conventional concentration method and the concentration method of the present invention. Two wafers from the same lot were used as samples, and a measurement sample was prepared for each sample. I got it. When each sample was measured three times using a flameless atomic absorption spectrometer, it was found that in the conventional method, impurities were mixed in or removed during concentration, and the averages of No. 1 and No. 3, which should match, did not match. It can be seen that the method of the present invention is extremely accurate and accurate, whereas the method of the present invention has an effect on the equipment and has poor accuracy.

その結果、半導体基板中の微量不純物量は正確かつ迅速
に把握され、半導体装置の品質向上に寄与することがで
きた。
As a result, the amount of trace impurities in the semiconductor substrate could be accurately and quickly determined, contributing to improving the quality of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体分解装置の概念図、第2図は従
来の分解容器の斜視図、第3図は第2図容器の使用状態
を示す平面図、第4図は本発明の詳細な説明するグラフ
である。 1・・・分解容器、 2・・・加熱用ヒーター、 3・
・・アスピレータ−54・・・純水注入口、 5・・・
アスピレータ−接続口、 9・・・分解液。 第1図 第3図
Fig. 1 is a conceptual diagram of the semiconductor decomposition apparatus of the present invention, Fig. 2 is a perspective view of a conventional decomposition container, Fig. 3 is a plan view showing the usage state of the container shown in Fig. 2, and Fig. 4 is a detailed diagram of the present invention. This is a graph that explains. 1... Decomposition container, 2... Heating heater, 3.
...Aspirator-54...Pure water inlet, 5...
Aspirator connection port, 9... Decomposition liquid. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 半導体を溶解して微量不純物分析用の試料液を得る
ための半導体分解装置であって、雰囲気から遮断した状
態で半導体を溶解・処理する容器と、該容器外から容器
内の分解液を加熱する加熱手段と、該加熱手段により分
解液を加熱すると同時に該容器内を減圧にして分解液を
濃縮する減圧手段と、容器内の濃縮した分解液を希釈し
て前記試料液を調製する純水の注入口とを具備すること
を特徴とする半導体分解装置。
1 A semiconductor decomposition device for dissolving a semiconductor to obtain a sample solution for trace impurity analysis, which includes a container for dissolving and processing the semiconductor in a state cut off from the atmosphere, and a device for heating the decomposition liquid inside the container from outside the container. a heating means for heating the decomposition liquid by the heating means and at the same time reducing the pressure in the container to concentrate the decomposition liquid; and pure water for diluting the concentrated decomposition liquid in the container to prepare the sample liquid. A semiconductor decomposition device characterized by comprising an injection port.
JP63064544A 1988-03-17 1988-03-17 Semiconductor disassembly device Expired - Lifetime JPH0795021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064544A JPH0795021B2 (en) 1988-03-17 1988-03-17 Semiconductor disassembly device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064544A JPH0795021B2 (en) 1988-03-17 1988-03-17 Semiconductor disassembly device

Publications (2)

Publication Number Publication Date
JPH01301142A true JPH01301142A (en) 1989-12-05
JPH0795021B2 JPH0795021B2 (en) 1995-10-11

Family

ID=13261272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064544A Expired - Lifetime JPH0795021B2 (en) 1988-03-17 1988-03-17 Semiconductor disassembly device

Country Status (1)

Country Link
JP (1) JPH0795021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526803A (en) * 1991-07-23 1993-02-02 Shin Etsu Handotai Co Ltd Method for analyzing silicon crystal for impurity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112846U (en) * 1978-01-27 1979-08-08
JPS5973001A (en) * 1982-10-16 1984-04-25 Yamato Scient Co Ltd Control system of rotary evaporator
JPS61144545A (en) * 1984-12-18 1986-07-02 Toshiba Corp Device for dissolving thin film or thin sheet
JPS6273137A (en) * 1985-09-27 1987-04-03 Toshiba Corp Sample decomposing apparatus and sample decomposing method using said apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112846U (en) * 1978-01-27 1979-08-08
JPS5973001A (en) * 1982-10-16 1984-04-25 Yamato Scient Co Ltd Control system of rotary evaporator
JPS61144545A (en) * 1984-12-18 1986-07-02 Toshiba Corp Device for dissolving thin film or thin sheet
JPS6273137A (en) * 1985-09-27 1987-04-03 Toshiba Corp Sample decomposing apparatus and sample decomposing method using said apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526803A (en) * 1991-07-23 1993-02-02 Shin Etsu Handotai Co Ltd Method for analyzing silicon crystal for impurity
JP2604924B2 (en) * 1991-07-23 1997-04-30 信越半導体株式会社 Method for analyzing impurities in silicon crystal

Also Published As

Publication number Publication date
JPH0795021B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
JP6189380B2 (en) Analysis of silicon concentration in etchant solution
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
EP0137409A2 (en) Resolution device for semiconductor thin films
KR100923860B1 (en) Method of making portable analysis kit for rapid measurement of HF concentration in mixed solution
JPH01301142A (en) Semiconductor decomposing device
Langmyhr et al. Atomic absorption spectrometric determination of aluminium in whole blood
JP3331106B2 (en) Method for analyzing impurities in semiconductor thin film or semiconductor substrate
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
JP3414976B2 (en) Impurity analysis sample container and sample storage member used therein
JP2002184828A (en) Method of analyzing metallic impurities in semiconductor substrate
Phelan et al. Combined reagent purification and sample dissolution (CORPAD) applied to the trace analysis of silicon, silica and quartz
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
JP2002267634A (en) Method of analyzing impurity in silicon material
JPS61144545A (en) Device for dissolving thin film or thin sheet
JPS622259B2 (en)
JPH05149847A (en) Analysis of impurity in graphite
JPH1137992A (en) Method for analyzing surface layer of silicon wafer
Balaram et al. Analysis of sub-boil distilled water, hydrochloric and nitric acid for trace element impurities by ICP-MS
JPH0534288A (en) Inorganic substance treatment
US5882504A (en) Method of measuring impurities
Liu et al. Spectrophotometric and polarographic methods for the determination of silicon at ng/g levels in gallium arsenide
JPS62245940A (en) Surface analysis of si semiconductor substrate
JPH06213805A (en) Etching method in ultramicroanalysis of metal on surface of silicon wafer
JPH03277971A (en) Quantitative analysis method for inorganic matter
JPH0317552A (en) Method and device for analyzing trace silicon in iron oxide for ferrite

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 13