JPH01300960A - Preparation of membrane type medical filter device - Google Patents

Preparation of membrane type medical filter device

Info

Publication number
JPH01300960A
JPH01300960A JP63132265A JP13226588A JPH01300960A JP H01300960 A JPH01300960 A JP H01300960A JP 63132265 A JP63132265 A JP 63132265A JP 13226588 A JP13226588 A JP 13226588A JP H01300960 A JPH01300960 A JP H01300960A
Authority
JP
Japan
Prior art keywords
water
porous membrane
membrane
pressure
filtration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63132265A
Other languages
Japanese (ja)
Other versions
JPH07106221B2 (en
Inventor
Yasushi Shimomura
下村 泰志
Kenji Takeshita
健次 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63132265A priority Critical patent/JPH07106221B2/en
Publication of JPH01300960A publication Critical patent/JPH01300960A/en
Publication of JPH07106221B2 publication Critical patent/JPH07106221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a device capable of being used simply and safely and excellent in water permeability and filterability, by allowing aseptic water to fill and subsequently performing high pressure steam sterilization. CONSTITUTION:A membrane type medical filter apparatus having a porous membrane, which is composed of a hydrophobic polymer and provided with pores having an average pore size of 0.01-10mum, mounted therein and also having a blood introducing port, a blood lead-out port and a filtrate lead-out port is prepared. Each of the spaces partitioned by the porous membrane of this apparatus a filled with aseptic water and, subsequently, the introducing port and the lead-out ports are closed. Thereafter, high pressure steam sterilization is performed and aseptic water is allowed to penetrate in the pores of the porous membrane simultaneously with sterilization.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は膜型医用濾過装置の製造方法に関するものであ
り、更に詳しくは使用に際して簡便で安全に用いること
かできる疎水性ポリマーよりなる多孔質膜を内蔵した医
用濾過装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a membrane-type medical filtration device, and more specifically, to a method for manufacturing a membrane-type medical filtration device. The present invention relates to a method of manufacturing a medical filtration device incorporating a membrane.

尚、ここでいう膜型医用濾過装置とは、血液より血球成
分と血漿成分を分離する血漿分離器、血漿成分を更に分
子量により分画する血漿成分分離器、血液より水分のみ
を分離する血液濃縮器、ドナーからの血液より血漿成分
を献血・採取するための血漿成分採取器等である。
The membrane-type medical filtration devices mentioned here include plasma separators that separate blood cell components and plasma components from blood, plasma component separators that further fractionate plasma components based on molecular weight, and hemoconcentrators that separate only water from blood. A blood vessel, a plasma component collector for donating and collecting plasma components from blood from a donor, etc.

[従来の技術] 疎水性ポリマーよりなる多孔質膜においては、血液のよ
うな水性液体は疎水性ポリマーを濡らさないため、多孔
質膜の微細孔への水性液体浸透が困難であり、このよう
な疎水性ポリマーからなる多孔質膜を内蔵する医用濾過
装置はそのままては使用することかできない。そのため
、疎水性ポリマーよりなる多孔質膜を予め親木化処理す
ることが提案されており、これら親水化処理方法として
は、 ■水に可溶な低界面張力有機溶剤を微細孔内に浸透させ
た後、水と置換する方法(特公昭61−13824号公
報参照)、 ■界面活性剤で多孔質膜を処理する方法、■多孔質膜表
面に親水性基を化学的に導入する方法、 ■親水性ポリマーを多孔質膜表面にコーティングする方
法、また ■水を5 kg/cm2以上の圧力て微細孔内に浸入さ
せる方法(特開昭61−92675号、同61−946
62号、同61−109573号各公報参照)が知られ
ている。
[Prior art] In porous membranes made of hydrophobic polymers, aqueous liquids such as blood do not wet the hydrophobic polymers, so it is difficult for aqueous liquids to penetrate into the micropores of the porous membrane. Medical filtration devices incorporating porous membranes made of hydrophobic polymers cannot be used as is. Therefore, it has been proposed to preliminarily treat porous membranes made of hydrophobic polymers, and these hydrophilic treatment methods include: ■ Infiltrating water-soluble, low interfacial tension organic solvents into the micropores. (Refer to Japanese Patent Publication No. 61-13824), (1) treating the porous membrane with a surfactant, (2) chemically introducing hydrophilic groups onto the surface of the porous membrane, (2) A method of coating the surface of a porous membrane with a hydrophilic polymer, and a method of infiltrating water into micropores under a pressure of 5 kg/cm2 or more (Japanese Patent Application Laid-open Nos. 61-92675 and 61-946).
No. 62 and No. 61-109573) are known.

[発明が解決しようとする課題] しかしながら、上記■の低界面張力有機溶剤を微細孔内
に浸透させた抜水と置換する方法では、低界面張力有機
溶剤を洗浄除去するのに大量の水を必要とする欠点があ
る。また、■の界面活性剤で処理する方法では、血液中
および血漿中に界面活性剤か溶出し、安全上問題がある
[Problems to be Solved by the Invention] However, in the method (2) above, in which the low interfacial tension organic solvent is infiltrated into micropores and replaced with water removal, a large amount of water is required to wash and remove the low interfacial tension organic solvent. There are drawbacks that require it. In addition, in the method (3) of treatment with a surfactant, the surfactant is eluted into the blood and plasma, which poses a safety problem.

又、■の多孔質膜表面に親木性基を化学的に導入する方
法も、反応残香、溶媒等が残留しやすく安全上に問題が
あり、■の親水性ポリマーをコーティングする方法も、
コーチインタに使用した溶媒か残留しやすく、安全上問
題があるばかりでなく、一般に、疎水性多孔質膜か有す
る生体適合性、補体および血小板等の活性化が低い等の
血液への良適合性か、疎水性膜の表面を別のポリマーで
コーティングすることにより失われてしまうという欠点
かある。
In addition, the method (2) of chemically introducing lignophilic groups onto the surface of the porous membrane has safety problems as it tends to leave reaction residue, solvent, etc., and the method (2) of coating with a hydrophilic polymer also
Not only does the solvent used in Coach Inter easily remain, which poses a safety problem, but also the hydrophobic porous membrane generally has good biocompatibility and low compatibility with blood, such as low activation of complement and platelets. The drawback is that the hydrophobic properties are lost by coating the surface of the hydrophobic membrane with another polymer.

更に、上記■の水を5 kg/cm2以上の圧力で微細
孔内に浸入させる方法では、上記のかかる問題はないが
、5 kg/cm2以上という高い圧力をかけると膜や
容器が破損する確率が大きくなるという欠点があった。
Furthermore, the above method of injecting water into the micropores at a pressure of 5 kg/cm2 or more does not have the above problem, but if a high pressure of 5 kg/cm2 or more is applied, there is a possibility that the membrane or container will be damaged. The disadvantage was that it became large.

[課題を解決するための手段] そこで、本発明者らはこれら疎水性ポリマーよりなる多
孔質膜を内蔵する医用濾過装置の欠点を解決すべく鋭意
検討した結果、本発明に達した。
[Means for Solving the Problems] Therefore, the present inventors conducted extensive studies to solve the drawbacks of medical filtration devices incorporating porous membranes made of these hydrophobic polymers, and as a result, they arrived at the present invention.

すなわち、本発明は、疎水性ポリマーよりなり、微細孔
の平均孔径か0.01〜10ミクロンである多孔質膜を
内蔵し、血液の導入口および導出口ならびに濾液の導出
口を有する模型医用濾過装置を用意し、前記多孔質膜て
隔てられる各空間を無菌水で充填し、次いで前記各導入
口及び導出口を封鎖した後、高圧蒸気滅菌を行い、滅菌
と同時に該無菌水を前記多孔質膜の微細孔内に浸入させ
ることを特徴とする模型医用濾過装置の製造方法、を提
供するものである。
That is, the present invention provides a model medical filtration system that is made of a hydrophobic polymer, has a built-in porous membrane with an average pore diameter of 0.01 to 10 microns, and has a blood inlet and outlet and a filtrate outlet. After preparing an apparatus and filling each space separated by the porous membrane with sterile water, then sealing each of the inlets and outlets, high-pressure steam sterilization is performed, and at the same time, the sterile water is poured into the porous membrane. The present invention provides a method for manufacturing a model medical filtration device, which is characterized by infiltrating into the micropores of a membrane.

本発明では、装置内を無菌水を充填した後、高圧蒸気滅
菌を行なうことに特徴としている。前記した特公昭61
−13,824号公報(従来の■の方法)には、水と置
換した後高圧蒸気滅菌を行なう旨の記載もあるが、この
方法はあくまで低界面張力有機溶剤を使用することを前
提としているものである。従って、有機溶剤の洗浄除去
は必須であり、その手間、工程の複雑化に問題を有する
ことに変わりはないのである。
The present invention is characterized in that high-pressure steam sterilization is performed after filling the inside of the device with sterile water. The above-mentioned special public service 1986
Publication No. 13,824 (conventional method (2)) also states that high-pressure steam sterilization is performed after replacing the water with water, but this method is based on the premise that a low interfacial tension organic solvent is used. It is something. Therefore, it is essential to wash and remove the organic solvent, which still poses problems in terms of labor and complication of the process.

一方、本発明者は種々の角度から実験、検討を行なった
ところ、意外なことに、有機溶剤を使用しないで無菌水
を充填し、次いで高圧蒸気滅菌を行うことにより、低圧
で無菌水を多孔質膜の微細孔内に浸入させ得ることを見
出したのである。
On the other hand, the present inventor conducted experiments and studies from various angles, and surprisingly found that by filling sterile water without using an organic solvent and then performing high-pressure steam sterilization, sterile water could be made into porous pores at low pressure. They discovered that it is possible to penetrate into the fine pores of the membrane.

本発明で製造される模型医用濾過装置は、親木化処理剤
としての有機溶剤、界面活性剤を用いず、多孔質膜の微
細孔に水が充填されているので、濾過装置内に親木化剤
が残留することがなく安全であるとともに、濾過装置が
高圧蒸気滅菌されているので、従来のエチレンオキサイ
ドガス(EOG)滅菌に起因して生じる残留ガスによる
安全上の問題、またγ線滅菌による多孔質膜およびハウ
ジング、ボッティング材等の使用部材の分解生成物の毒
性の問題もなく、非常に安全性の高い医用濾過装置とな
る。また本発明の医用濾過装置は、使用前にすでに無菌
水が充填されているので、使用時に非常に低い圧力(例
えば、50 mmHg以下の圧力)で水、血漿等が多孔
質膜を流出入することができるほか、濾過装置内の脱気
が容易であり、また大量の生理食塩水による洗浄を必要
とせず、使用時に簡便に利用することができる。
The model medical filtration device manufactured by the present invention does not use organic solvents or surfactants as wood-filtering treatment agents, and the fine pores of the porous membrane are filled with water. In addition to being safe as there is no residual sterilization agent, the filtration device is sterilized using high-pressure steam, eliminating the safety issues caused by residual gas caused by conventional ethylene oxide gas (EOG) sterilization, as well as gamma ray sterilization. There is no problem of toxicity due to decomposition products of the porous membrane, housing, botting material, etc., resulting in a very safe medical filtration device. Furthermore, since the medical filtration device of the present invention is already filled with sterile water before use, water, plasma, etc. can flow in and out of the porous membrane at very low pressure (for example, a pressure of 50 mmHg or less) during use. In addition, it is easy to degas the inside of the filtration device, and it does not require washing with large amounts of physiological saline, making it easy to use.

本発明において使用される疎水性ポリマーよりなる多孔
質膜としては、高圧蒸気滅菌に耐え得る材質のもので、
例えばポリプロピレン、ポリ4−メチルペンテン−1、
ポリスルフォン、ポリエーテルスルフォン、ポリフッ化
ヒ′ニリデン、ポリテ1〜ラフルオロエチレン、ポリジ
メチルシロキサン、ポリエチレンテレフタレート、ナイ
ロンなどが好ましいものとして挙げられる。
The porous membrane made of a hydrophobic polymer used in the present invention is made of a material that can withstand high-pressure steam sterilization.
For example, polypropylene, poly4-methylpentene-1,
Preferred examples include polysulfone, polyethersulfone, polyhynylidene fluoride, polytetrafluoroethylene, polydimethylsiloxane, polyethylene terephthalate, and nylon.

本発明において使用される多孔質膜の形態は特に限定さ
れるものではなく、例えば中空糸状、平膜状のものか用
いられる。
The form of the porous membrane used in the present invention is not particularly limited, and for example, a hollow fiber or a flat membrane may be used.

また、多孔質膜の製造法についても特に制限はなく、延
伸法、湿式相分敲法、溶融相分離法、溶媒抽出法等、公
知の製造法か採用される。
Further, there are no particular limitations on the method for producing the porous membrane, and any known production method such as a stretching method, a wet phase separation method, a melt phase separation method, a solvent extraction method, etc. may be employed.

本発明において用いられる無菌水としては、通常の無菌
処理を施された水か用いられるか、また水を主成分とし
医用目的にとって有害でない溶質を含むものてあっても
用いることができる。これには注射用蒸留水、パイロジ
エンフリー水、生理食塩水などが挙げられる。
The sterile water used in the present invention may be water that has been subjected to normal sterilization treatment, or water that is mainly composed of water and contains solutes that are not harmful for medical purposes. These include distilled water for injection, pyrogen-free water, physiological saline, and the like.

また、本発明においては、平均孔径が0.01〜10ミ
クロン(gm)(バブルポイント法による゛測定)の多
孔質膜を対象としている。0.01ミクロンより小さい
平均孔径の多孔質膜では微細孔内に無菌水か浸入し難く
、10ミクロンより大きい平均孔径の多孔質膜ては、通
常の方法で多孔質膜の微細孔に水を流入させることがで
きるからである。
Further, the present invention targets porous membranes having an average pore diameter of 0.01 to 10 microns (gm) (measured by bubble point method). In porous membranes with an average pore size smaller than 0.01 microns, sterile water does not easily penetrate into the micropores, and in porous membranes with an average pore diameter larger than 10 microns, water can be poured into the micropores of the porous membrane using a normal method. This is because it can be caused to flow in.

本発明の方法を、従来公知である5 kg/cm2以上
の圧力をかけて多孔質膜の微細孔に水を浸入させる方法
と比較して述べると、従来公知の方法は、多孔質膜の孔
径測定等に用いられる水銀圧入法のやり方を水に応用し
たちのであるが、本発明は、高圧蒸気滅菌条件下で無菌
水を微細孔内に浸入させるもので、高圧蒸気滅菌に起因
する水の温度上昇に伴なう水の界面張力の低下を積極的
に利用するたけでなく、微細孔内への水蒸気の流入を利
用しているため、多孔質膜およびボッティング部(接着
部)等に対し、5 kg/cm2以上の過酷な圧力をか
けることなく、多孔質膜の微細孔内へ水を侵入させるこ
とか可能となるのである。
The method of the present invention will be compared with the conventionally known method of infiltrating water into the micropores of a porous membrane by applying a pressure of 5 kg/cm2 or more. The method of mercury porosimetry used for measurements, etc. is applied to water, but in the present invention, sterile water is infiltrated into micropores under high-pressure steam sterilization conditions. Not only does it actively utilize the decrease in interfacial tension of water that accompanies a rise in temperature, but it also utilizes the flow of water vapor into the micropores, making it ideal for use in porous membranes, botting areas (adhesive areas), etc. On the other hand, it becomes possible for water to penetrate into the micropores of the porous membrane without applying a severe pressure of 5 kg/cm2 or more.

本発明の高圧蒸気滅菌は、好ましくはゲージ圧で0 、
7 kg/cm2以に、特に好ましくは1.0〜1 、
4 kg/c+m”の範囲の圧力下で行なわれる。高圧
蒸気滅菌がゲージ圧で0 、7 kg/cI112以下
で行なわれる場合には多孔質膜の微細孔内への水の浸入
か十分でない。
The autoclave sterilization of the present invention is preferably carried out at a gauge pressure of 0,
7 kg/cm2 or more, particularly preferably 1.0 to 1,
4 kg/c+m''. If autoclaving is carried out at a gauge pressure of 0.7 kg/cI112 or less, water penetration into the micropores of the porous membrane is insufficient.

さらに本発明では同時に膜型医用濾過装置を滅菌するこ
とができ、製造工程上も、汚染に対lノて安全であるば
かりでなく効率的になるものである。
Further, according to the present invention, the membrane type medical filtration device can be sterilized at the same time, and the manufacturing process is not only safe against contamination but also efficient.

なお多孔質膜の孔径によっては、高圧蒸気滅菌の圧力の
ほかに、不活性ガス(例えば、窒素ガス)によって高圧
蒸気減菌槽内を更に加圧することにより1.血液の導入
口、導出口ならびに濾液の導出11に設けた封鎖用キV
ツブ又は栓を押しつける等により、無菌水の微細孔内へ
の浸入を確実にする方法も採用することができる。この
場合、その圧力も」二記した従来の方法より低くてよく
、1 、0 kg/cm2〜5 、0 kg/cm2の
圧力範囲、好ましくは1 、6 kg/cm2〜3 、
0 kg/c+m2の圧力範囲で使用することかできる
Depending on the pore size of the porous membrane, in addition to the pressure of high-pressure steam sterilization, the inside of the high-pressure steam sterilization tank may be further pressurized with an inert gas (for example, nitrogen gas). Closing gates provided at the blood inlet and outlet as well as the filtrate outlet 11
It is also possible to adopt a method of ensuring that sterile water enters the micropores, such as by pressing a knob or plug. In this case, the pressure may also be lower than the conventional method mentioned above, in the pressure range of 1.0 kg/cm2 to 5.0 kg/cm2, preferably 1.6 kg/cm2 to 3.
It can be used in a pressure range of 0 kg/c+m2.

又、本発明におい゛〔は、減圧下て脱型濾過装置内の多
孔質膜て隔てられる各空間の空気を排除I)、次いて該
空間に無菌水を充填することが好ましく、さらに、脱型
濾過装置内の多孔質膜で隔てられる各空間を炭酸ガスに
て充満させた後、該空間に無菌水を充填すると、炭酸ガ
スは無菌水に対して溶解度が高いことから、無菌水との
交換か容易で、しかも気泡を残さず、好ましいものであ
る。
Further, in the present invention, it is preferable to remove air from each space separated by a porous membrane in the demolding filtration device under reduced pressure, and then fill the space with sterile water. After each space separated by a porous membrane in the mold filtration device is filled with carbon dioxide gas, when the spaces are filled with sterile water, carbon dioxide gas has a high solubility in sterile water, so It is easy to replace and does not leave bubbles, which is preferable.

[実施例] 以下、本発明を実施例に基いて更に詳細に説明するが、
本発明はこれら実施例に限られるものではない。
[Examples] The present invention will be explained in more detail based on Examples below.
The present invention is not limited to these examples.

(実施例1) ポリプロピレン(UBE−PP−F 109K、商品名
:宇部興産■製、MF I = 9g/]、0分)を、
中空糸製造用ノズルを使用し、紡糸温度210’Cで紡
糸した。得られたポリプロピレン中空糸を145°Cの
加熱空気槽て30分間加熱処理し、次いで135°Cの
温度で初期長さに対し400%、歪速度8.33%/分
で延伸し、延伸状態を保ったまま145°Cの加熱空気
槽内て15分間熱処理を行ない多孔質ポリプロピレン中
空糸を製造した。得られた多孔質ポリプロピレンは内径
320gm、膜厚55ルmであった。また、ハツルボイ
ント法(エタノール使用)で測定した平均孔径は0.4
8gmて、空隙率は75%てあった。
(Example 1) Polypropylene (UBE-PP-F 109K, trade name: manufactured by Ube Industries, MFI = 9 g/], 0 minutes),
Spinning was performed at a spinning temperature of 210'C using a nozzle for producing hollow fibers. The obtained polypropylene hollow fibers were heat treated in a heated air bath at 145°C for 30 minutes, and then stretched at a temperature of 135°C to 400% of the initial length and at a strain rate of 8.33%/min. A heat treatment was performed for 15 minutes in a heated air tank at 145° C. to produce porous polypropylene hollow fibers. The porous polypropylene obtained had an inner diameter of 320 gm and a film thickness of 55 lm. In addition, the average pore diameter measured by the Hutzlboind method (using ethanol) was 0.4
The weight was 8 gm and the porosity was 75%.

この多孔質膜をポリカーボネート製ハウジングに収容し
、両端をポリウレタン接着剤て固定し、0.5m2の膜
面積を有するポリプロピレン多孔質膜濾過装置を作製し
た。この濾過装置の内部空間を真空ポンプで減圧にした
後、無菌水を濾過装置の各空間に充填し、各導出口、導
入口をシリコーン製キャップて密封し、121℃(蒸気
圧で1気圧(1,033kg/c+++2)  (ゲー
ジ圧)に相当)、20分間の高圧蒸気滅菌を行った。こ
の際窒素ガスにより高圧蒸気滅菌槽のゲージ圧か2 k
g7cm2になるようにした。
This porous membrane was housed in a polycarbonate housing, and both ends were fixed with a polyurethane adhesive to produce a polypropylene porous membrane filtration device having a membrane area of 0.5 m2. After reducing the pressure in the internal space of this filtration device with a vacuum pump, each space of the filtration device was filled with sterile water, each outlet and inlet were sealed with a silicone cap, and the temperature was 121°C (1 atm vapor pressure). 1,033 kg/c+++2) (equivalent to gauge pressure)) and high-pressure steam sterilization was performed for 20 minutes. At this time, nitrogen gas is used to reduce the gauge pressure of the high-pressure steam sterilization tank to 2 k
It was made to be g7cm2.

この濾過装置を用いて、水の透水量を測定したところ、
451 / min−m2・kg/cn+2の高透水量
を示した。
When we measured the water permeability using this filtration device, we found that
It showed a high water permeability of 451/min-m2・kg/cn+2.

また上記の濾過装置の無菌試験を実施したところ、菌は
全く認められなかった。
Furthermore, when the above filtration device was subjected to a sterility test, no bacteria were observed.

更に上記と同様に作製した脱型濾過装置を用いて、雑種
成犬(lo、1kg)を用いて血漿分離試験を実施した
結果、その血漿濾過量は120分値て4 、81 /h
r/m2であった。また膜間圧力差〔TMP= (モジ
ュール入ロ圧力+モジュール出口圧力)/2−濾過側圧
〕は血漿分離試験中(3時間)を通じ、30 mmt1
g以下であった。
Furthermore, a plasma separation test was conducted using a mongrel adult dog (lo, 1 kg) using a demolding filtration device prepared in the same manner as above, and the plasma filtration rate was 4.81/h in 120 minutes.
It was r/m2. In addition, the transmembrane pressure difference [TMP = (module inlet pressure + module outlet pressure) / 2 - filtration side pressure] was 30 mmt1 throughout the plasma separation test (3 hours).
g or less.

(実施例2) 実施例1と同様に作製した濾過装置の内部を真空ポンプ
で減圧にした後、無菌水を濾過装置の各空間に充填し、
各導入口、導出口を密封し、121°Cl2O分間の高
圧蒸気滅菌を行なった。
(Example 2) After reducing the pressure inside a filtration device produced in the same manner as in Example 1 using a vacuum pump, sterile water was filled into each space of the filtration device,
Each inlet and outlet were sealed, and high-pressure steam sterilization was performed for 121° C12O minutes.

次いでこの濾過装置を用いて、水の透水量を測定したと
ころ、 521 / min−m2・kg/cm2の透
水量を示した。
Next, when the amount of water permeated was measured using this filtration device, the amount of water permeated was 521/min-m2·kg/cm2.

(比較例) 実施例1と同様に作製した濾過装置の内部空間を真空ポ
ンプで減圧にした後、無菌水を濾過装置の各空間に充填
し、室温で水圧により濾過装置の各空間を4 kg/c
n2で加圧した。この濾過装置を用いて、水の透水量を
測定したところ、2.2×10−21 /win−m2
・kg/c+s2の透水量を示し、実用可能な透水量は
得られなかった。
(Comparative example) After reducing the pressure in the internal space of a filtration device produced in the same manner as in Example 1 using a vacuum pump, each space of the filtration device was filled with sterile water, and each space of the filtration device was filled with 4 kg at room temperature using water pressure. /c
Pressure was applied with n2. When the water permeability was measured using this filtration device, it was found to be 2.2 x 10-21/win-m2.
・It showed a water permeation amount of kg/c+s2, and a practically usable water permeation amount was not obtained.

この多孔質膜をエタノールで流通させた後、水に置換し
て透水量を測定したところ、52文/[Din−112
・kg/c112の透水量を示した。
After passing ethanol through this porous membrane, the water was replaced with water and the amount of water permeation was measured; 52 sentences/[Din-112
・It showed a water permeability of kg/c112.

以上の通り、実施例1及び2はエタノールを用いて親水
化するのと同程度以上の効果か認められ、且つエタノー
ルを除去するために大量の水を必要とせず、大きな効果
を有することかわかる。
As described above, it can be seen that Examples 1 and 2 are as effective as or more effective than using ethanol for hydrophilization, and do not require a large amount of water to remove ethanol, and have a large effect. .

[発明の効果コ 以上説明したように、本発明によれば、無菌水を充填し
、次いで高圧蒸気滅菌を行なうことにより膜型医用濾過
装置を製造するため、簡便且つ安全に使用することかで
き、しかも透水性、濾過性に優れたM型医用濾過装置を
得ることができる。
[Effects of the Invention] As explained above, according to the present invention, a membrane-type medical filtration device is manufactured by filling it with sterile water and then performing high-pressure steam sterilization, so it can be used easily and safely. Moreover, an M-type medical filtration device having excellent water permeability and filtration performance can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)疎水性ポリマーよりなり、微細孔の平均孔径が0
.01〜10ミクロンである多孔質膜を内蔵し、血液の
導入口および導出口ならびに濾液の導出口を有する膜型
医用濾過装置を用意し、前記多孔質膜で隔てられる各空
間を無菌水で充填し、次いで前記各導入口及び導出口を
封鎖した後、高圧蒸気滅菌を行い、滅菌と同時に該無菌
水を前記多孔質膜の微細孔内に浸入させることを特徴と
する膜型医用濾過装置の製造方法。
(1) Made of hydrophobic polymer, the average pore diameter of micropores is 0.
.. A membrane-type medical filtration device incorporating a porous membrane with a size of 0.01 to 10 microns and having an inlet and outlet for blood and an outlet for filtrate is prepared, and each space separated by the porous membrane is filled with sterile water. Then, after sealing each of the inlets and outlets, high-pressure steam sterilization is performed, and at the same time as sterilization, the sterile water is infiltrated into the micropores of the porous membrane. Production method.
JP63132265A 1988-05-30 1988-05-30 Membrane type medical filtration device manufacturing method Expired - Fee Related JPH07106221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132265A JPH07106221B2 (en) 1988-05-30 1988-05-30 Membrane type medical filtration device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132265A JPH07106221B2 (en) 1988-05-30 1988-05-30 Membrane type medical filtration device manufacturing method

Publications (2)

Publication Number Publication Date
JPH01300960A true JPH01300960A (en) 1989-12-05
JPH07106221B2 JPH07106221B2 (en) 1995-11-15

Family

ID=15077240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132265A Expired - Fee Related JPH07106221B2 (en) 1988-05-30 1988-05-30 Membrane type medical filtration device manufacturing method

Country Status (1)

Country Link
JP (1) JPH07106221B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722762A (en) * 1980-07-18 1982-02-05 Kawasumi Lab Inc High pressure vapor sterilizing method for filter or dialyzer using semipermeable membrane
JPS5982868A (en) * 1983-09-05 1984-05-14 テルモ株式会社 Heat pasturized hollow yarn type mass transfer apparatus
JPS6113824A (en) * 1984-06-29 1986-01-22 Niles Parts Co Ltd Transmission circuit of transmitter-receiver
JPS6194662A (en) * 1984-10-16 1986-05-13 旭メデイカル株式会社 Asceptic water filled serum separator and its production
JPS61170472A (en) * 1985-01-25 1986-08-01 宇部興産株式会社 High pressure steam sterilized artificial organ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722762A (en) * 1980-07-18 1982-02-05 Kawasumi Lab Inc High pressure vapor sterilizing method for filter or dialyzer using semipermeable membrane
JPS5982868A (en) * 1983-09-05 1984-05-14 テルモ株式会社 Heat pasturized hollow yarn type mass transfer apparatus
JPS6113824A (en) * 1984-06-29 1986-01-22 Niles Parts Co Ltd Transmission circuit of transmitter-receiver
JPS6194662A (en) * 1984-10-16 1986-05-13 旭メデイカル株式会社 Asceptic water filled serum separator and its production
JPS61170472A (en) * 1985-01-25 1986-08-01 宇部興産株式会社 High pressure steam sterilized artificial organ

Also Published As

Publication number Publication date
JPH07106221B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US4501785A (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
EP2253367B1 (en) Membranes having improved performance
EP0572274B1 (en) Novel high flux hollow fiber membrane
Pusch et al. Synthetic membranes—preparation, structure, and application
EP2253370B1 (en) Hollow fibre membranes having improved performance
EP2567750B1 (en) Hollow fiber membrane
EP2845641B1 (en) Permselective asymmetric membranes with high molecular weight polyvinylpyrrolidone, the preparation and use thereof
WO2013131848A1 (en) Low cut-off ultrafiltration membranes
JP5644328B2 (en) Hollow fiber membrane module and method for producing hollow fiber membrane module
JPH05317664A (en) Porous hollow fiber membrane
JPH01300960A (en) Preparation of membrane type medical filter device
GB2192149A (en) Hollow cellulose ester fibre and its use for plasma separation
JP4738728B2 (en) Hollow fiber blood processor and sterilization packaging method thereof
JPH0759250B2 (en) Membrane type filtration device manufacturing method
JP2000325763A (en) Production of hollow-fiber membrane for hemocatheresis, and hollow-fiber membrane thereof
JPS61272057A (en) Dry serum separator
JPH10165773A (en) Hollow yarn type blood treatment apparatus and its production
JPH07328112A (en) Sterilization method for blood purifier
JPS61101209A (en) Method for making porous membrane hydrophilic
JPS6194662A (en) Asceptic water filled serum separator and its production
JP2001061960A (en) Blood purifying film
JPH07328111A (en) Sterilization method of blood purifier
JPS6192675A (en) Imparting of hydrophilicity to body fluids filter apparatus
JPS5892423A (en) Hydrophobic semi-permeable membrane and module using same
JPH0838861A (en) Cartridge filter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees