JPS5892423A - Hydrophobic semi-permeable membrane and module using same - Google Patents

Hydrophobic semi-permeable membrane and module using same

Info

Publication number
JPS5892423A
JPS5892423A JP19067781A JP19067781A JPS5892423A JP S5892423 A JPS5892423 A JP S5892423A JP 19067781 A JP19067781 A JP 19067781A JP 19067781 A JP19067781 A JP 19067781A JP S5892423 A JPS5892423 A JP S5892423A
Authority
JP
Japan
Prior art keywords
membrane
water
module
hydrophobic
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19067781A
Other languages
Japanese (ja)
Inventor
Shunjiro Kasai
河西 俊二郎
Yasunori Suma
須磨 靖徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP19067781A priority Critical patent/JPS5892423A/en
Publication of JPS5892423A publication Critical patent/JPS5892423A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To enhance the removal ratio of a low molecular substance such as urea or creatinine, by using a hydrophobic semi-permeable membrane to which specific coefficient of mass transfer and water permeability are imparted by water containing treatment in a module form. CONSTITUTION:A membrane comprising hydrophobic material is immersed in a solution with low surface tension to penetrate the same into the fine structure of said membrane and the penetrated solution is replaced with water to hydrate said membrane. In this water containing state, the membrane has coefficient of mass transfer of urea of 4X10<-4>cm/sec or more and the water permeability thereof is brought to 50m/m<2>.hr.mm.Hg or more. Thus obtained membrane is accommodated in a cylindrical container 7 having an inlet 3 and an outlet 4 in a hollow yarn like form and, after both terminal ends thereof are subjected to centrifugal molding by using an adhesive such as polyurethane resin, the adhered terminal ends are cut to form a module having opening parts at both terminal ends thereof.

Description

【発明の詳細な説明】 本発明は疎水性素材からなる半透膜に関し、更に詳しく
は透析又は濾過透析によって溶質を除去するに際し、高
い限外濾過性能並びに透析性能を保持し得る疎水性半透
膜並びに該半透膜が収容されてなるモジューI%!に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semipermeable membrane made of a hydrophobic material, and more specifically to a hydrophobic semipermeable membrane that can maintain high ultrafiltration performance and dialysis performance when removing solutes by dialysis or dialysis. The membrane and the module containing the semipermeable membrane I%! Regarding.

溶液中の物質を効率よく簡単且つ短時間に分離除去する
手段として、半透膜による物質の拡散原理に基づく透析
や、膜の孔径の大きさによる篩分は原理に基づく限外濾
過が用いられている。その−例として例えば腎不全患者
に対する血液透析療法や、更には血液透析では除去困難
ないわゆる分子量i、ooo〜to、oooと推定され
る中高分子量毒素物質の除去を目的とした限外P過膜に
よる濾過型人工腎臓によろ治療が行われている。
Dialysis, which is based on the principle of diffusion of substances using semipermeable membranes, and ultrafiltration, which is based on the principle of sieving based on the pore size of the membrane, are used as means to efficiently separate and remove substances in a solution easily and in a short time. ing. Examples include hemodialysis therapy for renal failure patients, and ultra-P membranes for the purpose of removing medium-high molecular weight toxins estimated to have so-called molecular weights i, ooo to to, ooo, which are difficult to remove by hemodialysis. Treatment is being performed using a filtration type artificial kidney.

しかるKかかる濾過型人工腎臓に於いては、これら中高
分子量毒素物質の除去には優れているが。
However, such a filtration type artificial kidney is excellent in removing these medium and high molecular weight toxins.

尿素やクレアチニンの如自透析によって効率よく除去さ
れる低分子量毒素物質の除去に劣り、tた大量の無菌禎
充液を必要とするなどの問題がある。
This method has problems such as being inferior to the efficient removal of low-molecular-weight toxins that can be removed by spontaneous dialysis of urea or creatinine, and requiring a large amount of sterile fluid.

ところでかかる透析療法に対する問題を解決する新しい
手段として中高分子量物質並びに低分子量物質の除去を
同時に行う濾過透析療法が盛んに取入れられつつある。
By the way, filtration dialysis therapy, which simultaneously removes medium- and high-molecular weight substances as well as low-molecular weight substances, is being widely adopted as a new means to solve the problems with dialysis therapy.

このような濾過透析療法に用いられる半透膜は、膜の透
析性能、並びに限外P膜性能のみならず、更には血液と
接触して血液中、の血漿蛋白質が膜責面に@着しなり吸
着蛋白の変性や血小板粘着、凝集が起りに〈〈、よって
膜性能の劣化の小さ−ものや、膜面に接触した槽体の活
性化などによる白血球低下現象や凝固因子の活性化、赤
血球膜破壊を引起しにくいいわゆる生体適合性の優れた
素材が好ましい。かかる生体適合性の優れた膜としては
9例えば、〆リスルホン。
Semipermeable membranes used in such filtration dialysis therapy not only have high dialysis performance and ultra-P membrane performance, but also have the ability to prevent plasma proteins in the blood from depositing on the membrane surface when they come into contact with blood. This may result in denaturation of adsorbed proteins, platelet adhesion, and aggregation, resulting in a small deterioration of membrane performance, a decrease in leukocytes due to activation of the tank body in contact with the membrane surface, activation of coagulation factors, and red blood cells. It is preferable to use a material that is so-called excellent in biocompatibility and does not easily cause membrane destruction. Examples of such membranes with excellent biocompatibility include Risulfone.

ポリカーボネート、lリプロピレン、ポリエチレン、ポ
リエチレンテレフタレート、ポリ7ツ化ビニリデン、四
弗化エチレン、メリアクリロニトリルー塩化ビニリデン
共重合体、エチレン−酢酸ビニル共重合体など、−わゆ
る血液に対して濡れにくい疎水性゛素材からなるものが
好ましいと云うことが種々の研究結果から明らかとなっ
て来つつある。しかるに本発明者らは、かかる疎水性素
材からなる膜について種々検討の結果1例えば透析型又
は濾過型人工腎臓用として必要な特性である例えば限外
濾過性能は有して−るにも拘らず、*素やクレアチニン
など低分子量物質を効率よく除去する透析性能即ち、低
分子量物質の物質移動係数の点に劣や、従って透析並び
Kl’l透過用の膜としては不充分なものであることが
判って来た。かかる理由によって残念ながらこれら疎水
性素材から成る膜は、その優れ危血液適合性を有するに
もかかわらず、血液透析、濾過透析など拡散原理を一部
に利用した物質分離用途には実用化されないと云う大き
な間igt有し、かかる分針での応用実用化からは遠い
存在であった。それにもかかわらず本発明者らはかかる
疎水性素材を用いた膜の透析性能を向上させるべく鋭意
研究の結果、従来からの多くの研究者が試みて来た方法
、即ち膜構成ポリマーに親水基を導入して膜素材自身を
親水化したり、またはポリマーの立体構造を変えること
によって、更にはかかるポリマーの溶剤を含めた成膜条
件を種々検討することで膜の微細構造を変化させ、膜が
濡れやすく低分子量物質が拡散し易いものにするなど極
めて複雑な手段を用いることなく、#もが予想もしなか
った極めて簡単な手段によってその膜の透析性能を飛躍
的に向上させ得ることを見出しな◇ 即ち本発明者らは、従来のかかる疎水性素材からなる膜
を単に含水処理するだけで、きわめて驚くべtlことに
従来不可能と考えられていたこれら疎水性素材からなる
膜の低分子量物質の物質移動係数が着しく向上すること
を見出した。更にまた。
Polycarbonate, l-propylene, polyethylene, polyethylene terephthalate, polyvinylidene heptadide, ethylene tetrafluoride, meliacrylonitrile-vinylidene chloride copolymer, ethylene-vinyl acetate copolymer, etc. - Hydrophobic materials that are difficult to wet with blood It is becoming clear from various research results that materials made of flexible materials are preferable. However, as a result of various studies on membranes made of such hydrophobic materials, the present inventors found that although they have properties necessary for use in, for example, dialysis-type or filtration-type artificial kidneys, such as ultrafiltration performance. , *Dialysis performance to efficiently remove low molecular weight substances such as creatinine and creatinine, that is, the mass transfer coefficient of low molecular weight substances is inferior, and therefore it is insufficient as a membrane for dialysis and Kl'l permeation. I came to understand. Unfortunately, for these reasons, membranes made of these hydrophobic materials, despite their excellent compatibility with blood, cannot be put to practical use in substance separation applications that partially utilize the diffusion principle, such as hemodialysis and filtration dialysis. It had a long time difference, and was far from being put into practical use as a minute hand. Nevertheless, the present inventors have conducted intensive research to improve the dialysis performance of membranes using such hydrophobic materials, and as a result, we have developed a method that has been tried by many researchers in the past, namely, adding hydrophilic groups to membrane-constituting polymers. The fine structure of the film can be changed by making the film material itself hydrophilic or by changing the three-dimensional structure of the polymer, and by examining various film-forming conditions including the solvent for the polymer. It was discovered that the dialysis performance of the membrane could be dramatically improved by an unexpectedly simple method, without using extremely complicated measures such as making it wettable and easy for low-molecular-weight substances to diffuse. ◇ That is, the present inventors have succeeded in producing low-molecular-weight substances in membranes made of these hydrophobic materials, which was thought to be impossible in the past, by simply subjecting conventional membranes made of such hydrophobic materials to a hydrous treatment. It was found that the mass transfer coefficient of Yet again.

かかる含水疎水性膜を熱交換器型モジュールに組込むこ
とで透析並びに濾過域は濾過透析型人工腎臓として充分
な機能を発揮するものが得られることも見出した。この
ようにかかる点を更に詳細に研究の結果9次の発明を生
みだすに到った。KJち本発明は疎水性素材からなり、
尿素の物質移動係数が4 X 10−’cm/s@e以
上でかつ透水率が50−/♂・ば・MlIH9以上であ
ることを特徴とする含水疎水性膜遇膜に関するものでT
oり、更にはかかる含水さ111疎水性半透膜が容易に
収容されてなることを特徴とするモジュールに関するも
のである。かかる本発明の含水疎水性膜の尿素の物質移
動係数は4 x 10−’cs+/s@e以上であり、
ごの値以下では充分な尿素、クレアチニンのIEI暑低
分子量物質の透析除去を行うことは困難である。また透
水率は50d/ll−町・顛HP以上であり、これ以下
のものは充分な中高分子量物質の除去及び4〜S時間の
透析時間内での大量除水を行うむとは困難である。
It has also been found that by incorporating such a water-containing hydrophobic membrane into a heat exchanger type module, a dialysis and filtration area capable of fully functioning as a dialysis type artificial kidney can be obtained. As a result of further detailed research into this point, we have created the ninth invention. KJchi The present invention is made of hydrophobic material,
This invention relates to a water-containing hydrophobic membrane having a urea mass transfer coefficient of 4 x 10-'cm/s@e or more and a water permeability of 50-/♂・Ba・MlIH9 or more.
The present invention also relates to a module characterized in that such a hydrophobic semipermeable membrane can be easily accommodated. The mass transfer coefficient of urea of the hydrophobic hydrophobic membrane of the present invention is 4 x 10-'cs+/s@e or more,
Below this value, it is difficult to perform sufficient dialysis removal of low molecular weight substances such as urea and creatinine. In addition, the water permeability is 50 d/l-machi/home HP or more, and if it is lower than this, it is difficult to sufficiently remove medium and high molecular weight substances and remove a large amount of water within a dialysis time of 4 to S hours.

ところでかかる疎水性膜とは、これらの膜を構成する重
合体が25℃及び100%相対湿度で約10重量−以下
の含水率の吸水性をもつもので。
By the way, such hydrophobic membranes are those in which the polymers constituting these membranes have a water absorption rate of about 10% by weight or less at 25° C. and 100% relative humidity.

一般に水及び血液に対し濡れにくい特性をもち。In general, it has the property of not being easily wetted by water and blood.

従って前述の素材からなる膜のみにfil定されるもの
ではない。かかる疎水性膜は当然含水性が極めて低く、
従来一般的に行われている膜の含水処理。
Therefore, the filtration is not limited only to the film made of the above-mentioned materials. Such hydrophobic membranes naturally have extremely low water content;
Hydrous treatment of membranes that has been commonly performed in the past.

即ち水中に浸漬したり、グリセリンなど水と親和性の高
−物質で膜を処理するなどの手段では優れ念物質移動係
数をもつ膜とすることはできな−。
That is, it is not possible to create a membrane with an excellent mass transfer coefficient by immersing it in water or treating it with a substance that has a high affinity for water, such as glycerin.

ところが、かかる疎水性素材からなる膜は一般によく知
られているように表面張力の低17A溶液に対しては膜
表面が濡れ易い。従ってこれらの溶液を用いると膜の微
細構造内部に溶液の浸透が起り。
However, as is generally well known, the surface of a membrane made of such a hydrophobic material is easily wetted by a 17A solution having a low surface tension. Therefore, when these solutions are used, penetration of the solution into the microstructure of the membrane occurs.

次いでかかる溶液を水と置換することで含水化可能とな
る。一般に疎水性樹脂の表面張力は小さいが1例えばポ
リエチレン及び〆リプロピレンなど、ポリオレフィン系
樹脂の表面張力は、樹脂の分子量によって異るが22〜
26dyn・/側近辺であり、また四弗化エチレン樹脂
の場合18.5dyn・/1である。
Then, by replacing this solution with water, it becomes possible to make it hydrated. In general, the surface tension of hydrophobic resins is small, but the surface tension of polyolefin resins, such as polyethylene and polypropylene, varies depending on the molecular weight of the resin, but 22 -
It is around 26 dyn·/1, and in the case of tetrafluoroethylene resin, it is 18.5 dyn·/1.

これらの樹脂を使って限外濾過膜とした場合、膜の表面
溝a即ち表面の凹凸や微細多孔膜化などによってこれら
の値は若干大吉〈なり1例えば四弗化エチレン樹脂から
なる多孔膜の場合、多孔膜の表面構造によって微妙に異
るが、a昇表面張力が約28.5 dyn・/(mKt
で大吉くなる。かかる膜を漏らすことのできる溶液は1
表面張力がこれらの膜の限−界表面張力の値に近い水と
よく混合する液体物質が好ましく、これらには例えばメ
タノール、エタノール、ブタノール、イソプロピルアル
コール。
When an ultrafiltration membrane is made using these resins, these values are slightly different from those of a porous membrane made of tetrafluoroethylene resin, for example, due to the surface grooves a of the membrane, that is, the unevenness of the surface, and the formation of a microporous membrane. In this case, the a-rising surface tension is approximately 28.5 dyn/(mKt), although it varies slightly depending on the surface structure of the porous membrane.
It will bring you great luck. The solution that can leak such a membrane is 1
Liquid substances that mix well with water, the surface tension of which is close to the value of the critical surface tension of these membranes, are preferred, such as methanol, ethanol, butanol, isopropyl alcohol.

ア七トン、酢醗などが挙げられ、特に人工前1llff
1途の膜に用いる場合は、毒性の低いかつ水とよく混合
置換し易い液体物質が好ましい。これらの液体物質を用
いて膜を充分濶らし次いで水と置換することによって含
水化することが好ましい。重た本発明の含水された疎水
性半透膜は、一旦乾燥して得た膜を上述の含水処理法を
用いて含水処理してもよ<、また湿式成膜法で作る場合
はそのままの含水状態を使用時まで保持させたものでも
よい。
Examples include ashatsuton, vinegar, etc., especially 1llff before artificial production.
When used in a single-use membrane, a liquid substance that has low toxicity and is easily mixed and replaced with water is preferred. It is preferable to hydrate the membrane by thoroughly soaking the membrane with these liquid substances and then replacing the membrane with water. The hydrated hydrophobic semipermeable membrane of the present invention may be obtained by drying the membrane and treating it with water using the above-mentioned hydration treatment method, or if it is made by a wet film formation method, it can be used as it is. It may be kept in a water-containing state until use.

また膜の形態は平膜、チューブラ−膜、中空糸のいずれ
でもよ−。かかる含水処理された膜は最終的に七ジュー
ルの形態で使用することによって最大の効果を発揮する
。かかるモジュールは1例えば第1図の如<m波透析、
血液f過透析に用いられる熱交換器モジュールの如鳶も
のであるが、必ずしも第1図の形のものに限定されたも
のではないが嬉1図についてその構造を説明すると、血
液は入口1から入り出口2かもモジュールの外へ出て行
く。透析液は入口3から入り出口4かも外へ出て行<o
 5t!本発明の含水された疎水性半透膜で中空糸の場
合であり、この中空部を血液は流れはこれら接着剤と中
空糸を固定する円筒容器であり、8は血液が流入、或は
流出する中空糸の開口部、9は血液を中空糸に導くノズ
ル、 10は ノズルを容器に@定するキャップである
。かかるモジュールは図の如く円筒容器7に中空糸を収
納し。
The form of the membrane may be flat membrane, tubular membrane, or hollow fiber. Such a hydrous-treated membrane exhibits its maximum effect when used in the final 7 joule form. Such a module may be used for example as shown in FIG.
This is a typical example of a heat exchanger module used in blood hyperdialysis, but it is not necessarily limited to the shape shown in Figure 1. To explain its structure with reference to Figure 1, blood flows from inlet 1. Entry/Exit 2 also goes out of the module. The dialysate enters through inlet 3 and exits through outlet 4 <o
5t! The water-containing hydrophobic semipermeable membrane of the present invention is a hollow fiber, and the blood flows through the hollow part of the cylindrical container that fixes the adhesive and the hollow fibers. 9 is a nozzle that guides the blood into the hollow fiber, and 10 is a cap that fixes the nozzle to the container. In this module, hollow fibers are housed in a cylindrical container 7 as shown in the figure.

両末端をメリウレタン樹脂の如き接着剤で遠心成型し、
該接着末端を切断することkよって両末端に開口部9を
もつモジュールとする仁とかで禽る。
Centrifugally mold both ends with an adhesive such as meliurethane resin,
By cutting the glued ends, a module having openings 9 at both ends is made into a module.

但し1本発明のモジュールは含水されだ疎水性半透膜を
含むものであれば上述のモジュールに11!されない。
However, if the module of the present invention contains a water-containing hydrophobic semipermeable membrane, then the above-mentioned module can be used. Not done.

かかる含水された疎水性半透膜を含もモジュールを用い
・て血液透析又はr過透析することにより生体適合性が
優れかつ着しい治療効果を発揮させることがで會る。な
お1本発明モジュールに収納された疎水性中空糸#i製
膜時から含水された状態のものを組立てたものでもよく
、モジュール組立後に含水処理をほどこしたものでもよ
い。
By performing hemodialysis or hyperdialysis using such a hydrophobic semipermeable membrane containing water, it is possible to achieve excellent biocompatibility and to exert a significant therapeutic effect. Note that the hydrophobic hollow fiber #i housed in the module of the present invention may be assembled in a state where it is hydrated from the time of membrane formation, or it may be one that is subjected to hydration treatment after the module is assembled.

またモジュール組立後の状態ではそのままlll0Gガ
ス、高圧蒸気、放射線などで滅菌したのち膜中の含水水
分が蒸発しないように密封して保存してもより。またモ
ジュールの血液及び透析液の両側をホルマリン水溶液で
充填するか又は生理食塩水。
In addition, in the assembled state of the module, it is better to sterilize it with Ill0G gas, high-pressure steam, radiation, etc., and then store it in a sealed state to prevent the water content in the membrane from evaporating. Also, fill both sides of the module for blood and dialysate with formalin aqueous solution or saline.

純水などを封入して14IIIII薗や高圧蒸気滅菌に
て含水状態を保存してもよい。かかる含水状態では疎水
性素材からなる半透膜は尿素の物質移動係数が4 X 
10−’cm/s@a以上でかつ透水率が501/d−
)tr−uH9以上のものが モジュールにかかる含水
疎水性半透膜を組込むと優れた性能と血液適合性をもつ
透析及び濾過透析漏人工腎臓となることがで自る。以上
上として血液の透析及び限外濾過用途について主に述べ
て来たが、かかる本発明は、血液を対象としたものに限
定することなく他の工業用。
The water-containing state may be preserved by enclosing pure water or the like and performing sterilization using 14III or high-pressure steam sterilization. In such a water-containing state, a semipermeable membrane made of a hydrophobic material has a mass transfer coefficient of urea of 4
10-'cm/s@a or more and water permeability is 501/d-
) tr-uH9 or higher If a hydrophobic semipermeable membrane is incorporated into the module, a dialysis and filtration artificial kidney with excellent performance and blood compatibility can be obtained. Although the above description has mainly focused on blood dialysis and ultrafiltration applications, the present invention is not limited to blood applications, but can be applied to other industrial applications as well.

製薬用用途にも応用可能である。It can also be applied to pharmaceutical applications.

以下本発明の効果を実施例をもって説明する。The effects of the present invention will be explained below using examples.

4、 実施例 実施例−1 i 9スルホン(ユニオンカーバイnkllip −1
700) 23重量襲、ジメチルアセトアセト72 重
量襲、トリエチレングリコール5重量襲からなる原液を
中空糸m速用の環状紡口から押出し、中空部及び凝固浴
を水として中空糸の内部及び外部から凝固さ姥、内径2
00μ、膜厚50μの中空糸を・得た。かかる中空糸を
充分水洗後、30℃ SOSグリセリン水溶液中に3時
間浸漬し、遠心脱水して常温48時間の真空乾燥を行っ
た。このようにして得た中空糸10,000本からなる
束を有効長160諺のホ″リカーメネート製円崎容17
!IK収納し、ポリウレタン樹脂接着剤で両末端を遠心
接着し、有効膜面横1iの第1図に示す熱交換器型モジ
ュールを作った。かかるモジュールの一本を純水1tで
血液側及び透析液側をプライーングしてこれをブランク
とした0他2*は各々18℃ 40%及び100 %メ
タノール水溶液500−をSOd/分の流量で下方の血
液入口から透析液側Kl!l外濾過させながらモジュー
ルの血液及び透析液内部を満し、10分間放置後引続き
11純水でメタノールを洗浄置換して中空糸を含水化処
理し、かかるモジュールを各々A、Bとした。次に尿素
10011F/d!、ビタ之ンIl+t10岬/dlの
水溶液を作り、かかるモジュールの血液側から200m
/分の条件で流し、一方透析液側に純水を500d/分
の流量で流し、37℃条件で透析を行った。次式から尿
素及びビタ識ンBllのクリアランスを求めた。つぎに
かかるモジュールの血液側に圧力を掛け、透水率を求め
た。
4. Examples Example-1 i9 sulfone (union carbide nkllip-1
700) A stock solution consisting of 23% by weight, dimethylacetoacetate by 72% by weight, and triethylene glycol by 5% by weight is extruded from an annular spinneret for hollow fiber m speed, and water is used in the hollow part and coagulation bath from the inside and outside of the hollow fiber. Solidification, inner diameter 2
A hollow fiber with a membrane thickness of 50μ and a thickness of 50μ was obtained. After sufficiently washing the hollow fiber with water, it was immersed in a 30° C. SOS glycerin aqueous solution for 3 hours, centrifugally dehydrated, and vacuum-dried at room temperature for 48 hours. A bundle of 10,000 hollow fibers thus obtained was made of polycarbonate resin with an effective length of 160 mm.
! It was housed in an IK, and both ends were centrifugally glued with a polyurethane resin adhesive to create a heat exchanger type module shown in Fig. 1 with an effective membrane surface of 1i horizontally. One of the modules was pried with 1 ton of pure water on the blood side and the dialysate side, and this was used as a blank. 0 and 2* were respectively heated to 18°C, and 40% and 100% methanol aqueous solutions 500 - were poured downward at a flow rate of SOd/min. From the blood inlet to the dialysate side Kl! The inside of the module was filled with blood and dialysate while being filtered, and after being left for 10 minutes, the methanol was subsequently washed and replaced with 11 pure water to hydrate the hollow fibers, and these modules were designated as A and B, respectively. Next is urea 10011F/d! , prepare an aqueous solution of Vitanon Il+t10 cape/dl, and place it 200 m from the blood side of the module.
On the other hand, pure water was flowed on the dialysate side at a flow rate of 500 d/min, and dialysis was performed at 37°C. The clearance of urea and vitamin Bll was determined from the following formula. Next, pressure was applied to the blood side of the module to determine the water permeability.

0組 但し、OL:クリアランス  −/分 Qs++Ih液側溶液流量 −/分 C組;血液入口溶質濃度 f17d 1OB0;血液出
口溶質濃度 9/d 1尿素溶液の濃度はジアセチルモ
ノオキシム直接法、ビタミン”I* Fl 382 m
μの吸光度で測定した。
0 set However, OL: Clearance -/min Qs++ Ih Liquid side solution flow rate -/min C group: Blood inlet solute concentration f17d 1OB0; Blood outlet solute concentration 9/d 1The concentration of urea solution is determined by diacetyl monooxime direct method, vitamin "I" * Fl 382 m
The absorbance was measured in μ.

これと別にかかる中空糸を50本束ね両末端を接着し有
効長181.有効膜面積的34−で糸の中空部と連通ず
る血液出入口をもつ褌の1ニモジユールを作つ危。その
内の1本はそのまま、他2本は上述の含水処理、11ち
40’l及び100%メタノール水溶液処理を行い、同
様KA、Bとした。かかるミニモジュールを直径8備、
高さ13aiの容積S+SO−の円*mプラスチック容
器内にU字型に収納し。
Separately, 50 such hollow fibers were bundled together and both ends were glued together to make the effective length 181. It is dangerous to make a loincloth with an effective membrane area of 34 mm and a blood inlet/outlet communicating with the hollow part of the thread. One of them was left as is, and the other two were subjected to the above-mentioned water treatment, 11-40'l and 100% methanol aqueous solution treatment, and were designated as KA and B in the same manner. 8 such mini modules in diameter,
Stored in a U-shape in a plastic container with a height of 13ai and a volume of S+SO- of circles*m.

次いで水を満して上蓋を締め密閉状態とし念。このとき
モジュールの血液出入口が容器の1壷を遥して外部と連
通可能な形にセットした。鋏Ilモジュールの血液入口
から上述の尿素及びクレアチニン水溶液を100−の密
閉型リザーバーから9−7分の流量で流し、一方円*m
プラスチック容−内の水溶液を透析液側として密閉状態
で37℃に保ち。
Next, fill it with water and close the top lid to make sure it is sealed. At this time, the blood inlet and outlet of the module was set in such a way that it could communicate with the outside through one jar of the container. The above-mentioned aqueous urea and creatinine solution was flowed from the blood inlet of the scissors Il module at a flow rate of 9-7 min from a sealed reservoir of 100-m, while
The aqueous solution inside the plastic container is kept at 37°C in a sealed state as the dialysate side.

マグネチックスターラーで攪拌しながら限外濾過が起ら
ない状纏で1時間の透析を行い5次式から尿素、ビタミ
ンBltの物質移動係数を求めた。
Dialysis was performed for 1 hour while stirring with a magnetic stirrer without ultrafiltration, and the mass transfer coefficients of urea and vitamin Blt were determined from the quintic equation.

8 (1/VB + 1/VD ) x 3600但し
、Kl物質移動係Wk     備/ s@eSatニ
モジュール有効膜面積 − vB +血液側溶液容積   − ■D:透析液側水溶液容積 d t :透析時間      8・C C,+血液側溶質濃度   97d IQD+透析液側
溶質濃度  97d 1添字はその時刻での濃度を示す 得られた結果を第11IK示す。この結果から明らかな
如く、ブランクの尿素及びビタ鷹ンB1mのクリアラン
ス、物質移動係数は低く、S析又t!濾過透析には適さ
な−が1本発明の含水化処理を行ったものはいずれも高
い値な示してお9.透析及び濾過透析用中空糸として優
れた性能を示している0 第1表
8 (1/VB + 1/VD) x 3600 However, Kl mass transfer section Wk / s@eSat two module effective membrane area - vB + blood side solution volume - ■ D: dialysate side aqueous solution volume d t: dialysis time 8.C C,+Solute concentration on the blood side 97d IQD+Solute concentration on the dialysate side 97d The 1st subscript indicates the obtained result indicating the concentration at that time. As is clear from these results, the clearance and mass transfer coefficient of blank urea and Vitataka B1m are low, and the S analysis and t! All of the products subjected to the hydration treatment of the present invention showed high values, although they were not suitable for dialysis. Showing excellent performance as a hollow fiber for dialysis and dialysis 0 Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の含水された疎水性半逃膜が容器に収納
されてなるモジュールである。 1・・・・・・・・血液入口  2・・・・・・・・血
液出口  3・・・・・・・・透析液入口  4・・・
・・・・・透析液出口  5・・・・・・・・含水され
た疎水性半透@6・・・・・・・・接着剤  7・・・
・・・・・円筒容器  訃・・・・・・・中空糸開口部
  9・・・・・・・・ノズル10・・・・…−キャッ
プ 図面 手続補正書 昭和57年5月27日 %許斤長官 島田春樹 殿 1 事件の表示 特願昭56−190677号 2 発明の名称 疎水性半透膜及びそれを用いたモジュール5 補正をす
る者 事件との関係・特許出願人 旭メディカル株式会社 4代理人 東京都港区虎ノ門−丁目2番29号虎ノ門産業ビル5階
明細書の特許請求の範囲の欄、 発明の詳細な説明の橢、明aSの 図面の簡単な説明の橢 6 補正の内容 明細書の記載を次のとおシ補正する。 ms!許請求の範囲の記載を次のとおり補正する。 1 (11疎水性素材からなり、尿素の物質移動係数が
4 X 10−’01/sec以上でかつ透水率が50
−レ’7jlLl(y*WIHg以上である含水された
疎水性半透膜。 (21疎水性素材からなり、尿素の物質移動係数が4 
x 10−’011/式以上でかつ透水率が50−廓”
−Hr・lllHg以上である含水された疎水性半透膜
が液体のれてなるモジュール。」 121、第5頁12行の 「疎水性半透膜が容易に収容」を下記のとおり補正する
。 「疎水性半透膜が液体の入口と出口をもち、且つ該半透
膜によって液密に隔てられる他方に流体連通口金もつ容
器に収納」 (31、第5頁17行の 「困難である。」のつぎに下記の記載を挿入する。 1また、かかる含水疎水性半透膜に尿素物質移動体91
4 X 1 「’61a/w以上を与えルア21)Kf
i含水率90%以上、好ましく扛95〜100チが必要
である。こ\でいう含水率とは、膜の内部空隙領域に対
して含水された水が浸透する容積の割合であり、以下の
式で示される。 vo:膜の単位体積当りの空隙容積(−)vW:膜の単
位体積当りの含水容積(−)かかるVo、Vvはポリマ
ー比重および膜容積と重量測足により求めることができ
る。」(41、第6頁S行の 「@水性をもつもので、」を r9BL水性をもち、20Cにおける膜構成樹脂の表面
張力が約40 dyn・/傷以下のもので、」と補正す
る。 (51,第8頁7行の 、「説明すると、」のつぎに 「処理液体1例えば」を挿入する。 (61、第8頁9行の 「て行く。」のつぎに「他方の液体1例えば」を挿入す
る。 (7)、第10頁7行の「4.実施例」を削除する。 (8)、第15頁下から8行と7行の間に下記の記載を
挿入する。 「また、か\る同様な3株のミニモジュールの中空糸管
取出し、重量法によって含水率を求めた。」 (9)、″第14頁の第1表を次のとお・シ補正する。 「   第1表 Xl(1、第14負下から8行の 「50図面の簡単な説明」を 「4、図面の簡単な説明」 と補正する。
FIG. 1 shows a module in which the hydrated hydrophobic semi-escape membrane of the present invention is housed in a container. 1...Blood inlet 2...Blood outlet 3...Dysate inlet 4...
... Dialysate outlet 5 ... Hydrophobic semipermeable @6 ... Adhesive 7 ...
...Cylindrical container End ...Hollow fiber opening 9 ...Nozzle 10 ... - Cap drawing procedure amendment May 27, 1980% approval Director Haruki Shimada 1 Indication of the case Patent application No. 190677/1983 2 Name of the invention Hydrophobic semipermeable membrane and module using the same 5 Person making the amendment Relationship with the case / Patent applicant Asahi Medical Co., Ltd. 4 Agent 5th Floor, Toranomon Industrial Building, 2-29 Toranomon, Minato-ku, Tokyo The description in the document will be amended as follows. ms! The statement of the scope of claims is amended as follows. 1 (made of 11 hydrophobic materials, with a urea mass transfer coefficient of 4 x 10-'01/sec or more and a water permeability of 50
-Re'7jlLl (y
x 10-'011/equation or more, and the water permeability is 50-'
- A module in which a hydrophobic semipermeable membrane containing water with a temperature of Hr·lllHg or more is poured into a liquid. 121, page 5, line 12, "Hydrophobic semipermeable membrane is easily accommodated" is amended as follows. "Stored in a container with a hydrophobic semipermeable membrane having a liquid inlet and an outlet, and a fluid communication cap on the other side that is liquid-tightly separated by the semipermeable membrane" (31, page 5, line 17, "It is difficult. Insert the following description after "1. Also, the urea substance transfer body 91 is added to the hydrophobic semipermeable membrane.
4
The water content must be 90% or more, preferably 95 to 100%. The water content referred to herein is the ratio of the volume of water that permeates into the internal void area of the membrane, and is expressed by the following formula. vo: void volume per unit volume of membrane (-) vW: water-containing volume per unit volume of membrane (-) Vo and Vv can be determined by polymer specific gravity, membrane volume, and weight measurement. (41, page 6, line S, ``@water-based'' is corrected to ``r9BL water-based, and the surface tension of the membrane-constituting resin at 20C is about 40 dyn·/wound or less.''). (51, On page 8, line 7, insert ``For example, processing liquid 1'' after ``To explain.''). (61, On page 8, line 9, insert ``Processing liquid 1, for example.'' (7) Delete "4. Examples" on page 10, line 7. (8) Insert the following statement between lines 8 and 7 from the bottom of page 15. ``Also, the hollow fiber tubes of three similar mini-modules were taken out, and the moisture content was determined by gravimetric method.'' (9), ``Table 1 on page 14 has been amended as follows. ``Table 1 Xl (1. ``50 Brief explanation of the drawings'' in the 8th line from the bottom of the 14th negative is corrected to ``4. Brief explanation of the drawings.''

Claims (1)

【特許請求の範囲】[Claims] (1)  疎水性素材からなり、尿素の物質移動係数が
4 X 10−’C1l/I@(1以上でかつ透水率が
50d/I/・)tr−11JIHf以上である含水さ
れた疎水性半透膜。 (21疎水性素材からなり、尿素の物質移動係数が4 
X 10−’m/s@a以上でかつ透水率が50d/l
/・七・MH9以上である含水された疎水性半透膜が容
器に収納されてなるそジエール。
(1) A hydrated hydrophobic half made of a hydrophobic material and having a urea mass transfer coefficient of 4 X 10-'C1l/I@(1 or more and a water permeability of 50d/I/·)tr-11JIHf or more. Permeable membrane. (It is made of 21 hydrophobic material, and the mass transfer coefficient of urea is 4.
X 10-'m/s@a or more and water permeability is 50d/l
/・7・A gel made of a hydrophobic semipermeable membrane containing water with an MH of 9 or more housed in a container.
JP19067781A 1981-11-30 1981-11-30 Hydrophobic semi-permeable membrane and module using same Pending JPS5892423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19067781A JPS5892423A (en) 1981-11-30 1981-11-30 Hydrophobic semi-permeable membrane and module using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19067781A JPS5892423A (en) 1981-11-30 1981-11-30 Hydrophobic semi-permeable membrane and module using same

Publications (1)

Publication Number Publication Date
JPS5892423A true JPS5892423A (en) 1983-06-01

Family

ID=16262043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19067781A Pending JPS5892423A (en) 1981-11-30 1981-11-30 Hydrophobic semi-permeable membrane and module using same

Country Status (1)

Country Link
JP (1) JPS5892423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397205A (en) * 1986-10-15 1988-04-27 Toray Ind Inc Treatment of polysulfone resin semipermeable membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397205A (en) * 1986-10-15 1988-04-27 Toray Ind Inc Treatment of polysulfone resin semipermeable membrane
JPH053331B2 (en) * 1986-10-15 1993-01-14 Toray Industries

Similar Documents

Publication Publication Date Title
US4402940A (en) Method for treating blood plasma employing a hollow fiber membrane
KR100432463B1 (en) Polysulfone Hollow Fiber Membrane
JPH0364544B2 (en)
JP6196686B2 (en) Hollow fiber membrane blood purification device
JP6497318B2 (en) Hollow fiber membrane module for washing platelet suspension
JP5110645B2 (en) Hollow fiber membrane blood purification device
RU2108144C1 (en) Cellulose acetate semipermeable diaphragm in the form of hollow fibre, method of manufacture of hollow-fibre semipermeable cellulose acetate diaphragm, hemodialyzer and apparatus for treatment of extracorporeal blood
JP2010233999A (en) Blood purifier
JP4352709B2 (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JPS5892423A (en) Hydrophobic semi-permeable membrane and module using same
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JPS6160165B2 (en)
JP4003982B2 (en) Polysulfone-based selectively permeable separation membrane
JP3651121B2 (en) Permselective separation membrane
JP3770145B2 (en) Method for producing semipermeable membrane and dialyzer using the semipermeable membrane
JP2000325763A (en) Production of hollow-fiber membrane for hemocatheresis, and hollow-fiber membrane thereof
JPS58169458A (en) Abdominal membrane dialytic liquid containing absorbent
JP6502111B2 (en) Hollow fiber type blood purifier and method of manufacturing the same
JP2015116211A (en) Hollow-fiber membrane type blood purification device
JP5226587B2 (en) High performance blood purifier
JP2000210544A (en) Production of semipermeable membrane
JPH0143562B2 (en)
JPS61272057A (en) Dry serum separator
JPS6315861B2 (en)
JPH0362447B2 (en)