JPH01300227A - Display element - Google Patents

Display element

Info

Publication number
JPH01300227A
JPH01300227A JP13014888A JP13014888A JPH01300227A JP H01300227 A JPH01300227 A JP H01300227A JP 13014888 A JP13014888 A JP 13014888A JP 13014888 A JP13014888 A JP 13014888A JP H01300227 A JPH01300227 A JP H01300227A
Authority
JP
Japan
Prior art keywords
mim
film
substrate
display element
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13014888A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yanagisawa
芳浩 柳沢
Harunori Kawada
河田 春紀
Kunihiro Sakai
酒井 邦裕
Hiroshi Matsuda
宏 松田
Kiyoshi Takimoto
瀧本 清
Isaaki Kawade
一佐哲 河出
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13014888A priority Critical patent/JPH01300227A/en
Publication of JPH01300227A publication Critical patent/JPH01300227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent display information from being lost owing to an unexpected power failure without requiring any external electric power by arranging an MIM and a heat generating resistance body electrically in series and providing memory performance for the switching characteristics of the MIM. CONSTITUTION:A couple of electrodes 15 and 17 are arranged on a substrate 11 and there is an organic insulating layer(MIM) 16 which has periodic layer structure of an organic insulator between the electrodes 15 and 17; and the heat generating resistance body 14 is arranged in contact with one end of an upper electrode 15, an optical modulation body 13 is provided on this heat generating resistance body 14, and an optical modulation body protection plate 12 is provided on the optical modulation body 13. Further, the MIM 16 and heat generating resistance body 14 are arranged electrically in series, and the MIM 16 has the memory performance for the switching characteristics. Consequently, memory requires no electric power, so no external electric power is required to store the display information and the states of the display information and switching characteristics of the MIM 16 are invariably united, so the display information is not lost owing to the unexpected power failure.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機絶縁層を有するに■にのスイッチング特
性におけるメモリー性を用いたメモリー性を有すること
を特徴とした表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a display element characterized by having an organic insulating layer and having a memory property using a memory property in switching characteristics.

[従来の技術] 近年、オフィスオートメーション(OA)の進展には、
めざましいものがあり、高度な機能をもつ事務機器の開
発が望まれている。事務器として代表的なものにはワー
ドプロセッサ(wp)があるが、現在のWPは表示素子
とメモリ一部を独立に必要としているため構造が複雑と
なり小型化を図る際にも問題があった。また現在のWP
は、AC電源を用いている場合には、停電が起こった際
に、作成した文書を喪失するという重大な問題があった
。このため、外部から電力を加えなくても素子自体が表
示情報を保存できる表示素子への要求があった。こうい
った表示素子には、強誘電性液晶を用いたものがあるが
、液晶表示素子は、視野角が狭いという欠点があった。
[Conventional technology] In recent years, advances in office automation (OA) include
There are many amazing things, and the development of office equipment with advanced functions is desired. A typical office device is a word processor (WP), but the current WP requires a display element and a portion of memory independently, resulting in a complicated structure, which poses a problem when attempting to miniaturize. Also the current WP
When using an AC power source, there was a serious problem in that created documents would be lost in the event of a power outage. For this reason, there has been a demand for display elements that can store display information within themselves without applying external power. Some of these display elements use ferroelectric liquid crystals, but liquid crystal display elements have the disadvantage of a narrow viewing angle.

[発明が解決しようとする課題] すなわち、本発明は、MIMにおけるスイッチング特性
のメモリー性を利用し、表示素子自体にメモリー性をも
たせた表示素子を提供するものである。
[Problems to be Solved by the Invention] That is, the present invention provides a display element in which the display element itself has a memory property by utilizing the memory property of switching characteristics in MIM.

第1図は、本発明の表示素子の概略図である。FIG. 1 is a schematic diagram of a display element of the present invention.

第1図に示す表示素子は、基板11の−Lに一対の電極
と該電極15と17の間に有機絶縁体の周期的な層構造
を持つ有機絶縁層16があり、さらに上部電極15の一
端に接するように配置された発熱抵抗体14が設けられ
、該発熱抵抗体14の上に光変調体13゜該光変調体1
3の上に光変調体保護板12が設けられた構成となって
いる。
The display element shown in FIG. 1 has a pair of electrodes on -L of the substrate 11 and an organic insulating layer 16 having a periodic layer structure of an organic insulator between the electrodes 15 and 17. A heating resistor 14 is disposed so as to be in contact with one end of the heating resistor 14.
A light modulator protection plate 12 is provided on top of the light modulator 3.

本発明の表示素子を構成する光変調体保護板としては、
ガラス類、プラスチック類、誘電体等の従来公知の透明
材料がいずれも使用でき、これらの透明保護板は約10
0μ−〜2+a+wの厚さの材料を使用するのが好適で
ある。
The light modulator protection plate constituting the display element of the present invention includes:
Any conventionally known transparent materials such as glasses, plastics, dielectrics, etc. can be used, and these transparent protective plates have a thickness of about 10
It is preferred to use materials with a thickness of 0μ- to 2+a+w.

本発明における光変調体は、ポリマー溶液または表面活
性剤を含む液体からなり、加熱されることにより光散乱
性を示し、冷却されることにより透光性を示すものであ
る。
The light modulator in the present invention is made of a polymer solution or a liquid containing a surfactant, and exhibits light scattering properties when heated, and exhibits translucency when cooled.

ここで用いられるポリで−としては、ポリプロピレン、
ポリイソブチ7等のポリアルケン類、ポリブタジェン、
ポリイソプレン等のポリジエン類、ポリ酢酸ビニル、ポ
リ(メタ)アクリル酸エステル、ポリ(メタ)アクリル
アミド等のポリビニル類、ポリエチレンオキサイF等の
ポリエーテル類、ポリエチレンイミン等のポリイミン類
、ポリオキシエチレンアジボイル等のポリエステル類、
ポリグリシン等のポリアミド類、あるいはこれらと他の
共重合可能なモノマーとからなる共重合体、その他従来
公知の鎖状ポリマー、または、そのポリマー鎖を適度に
架橋させた、三次元網目構造のポリマーが挙げられる。
The poly used here includes polypropylene,
Polyalkenes such as polyisobuty7, polybutadiene,
Polydienes such as polyisoprene, polyvinyls such as polyvinyl acetate, poly(meth)acrylate, poly(meth)acrylamide, polyethers such as polyethylene oxy-F, polyimines such as polyethyleneimine, polyoxyethylene azide, etc. Polyesters such as voile,
Polyamides such as polyglycine, copolymers made of these and other copolymerizable monomers, other conventionally known chain polymers, or polymers with a three-dimensional network structure in which the polymer chains are moderately crosslinked. can be mentioned.

一方、ポリマーの溶媒としては、水、各種の有機溶媒ま
たはこれらの混合物が使用でき、例えば、水;メタノー
ル、エタノール等のアルコール類;アセトン、メチルエ
チルケトン等のケトン類;ペンタン、シクロヘキサン、
ベンゼン簿の炭化水素類;テトラクロロエタン、ジクロ
ルベンゼン等のハロゲン化炭化水素類;ギ酸エチル、酢
酸エチル、酢酸イソアミル等の類;ジオキサン、シクリ
シム等のエーテル類、ジメチルホルムアミド、ジメチル
アセトアミド等のアミド類;ジメチルスルホキシド等の
含硫溶媒:あるいはこれらの混合溶媒、更にはこれらの
溶媒中に過塩素酸リチウム、プロピオン酸アンモニウム
、尿素、クリコース等の各種の溶質を溶解した溶液等が
あげられる。
On the other hand, as a solvent for the polymer, water, various organic solvents, or mixtures thereof can be used, such as water; alcohols such as methanol and ethanol; ketones such as acetone and methyl ethyl ketone; pentane, cyclohexane,
Hydrocarbons in the benzene list; halogenated hydrocarbons such as tetrachloroethane and dichlorobenzene; ethyl formate, ethyl acetate, and isoamyl acetate; ethers such as dioxane and cyclisime; amides such as dimethylformamide and dimethylacetamide Sulfur-containing solvents such as dimethyl sulfoxide; or mixed solvents thereof; and solutions in which various solutes such as lithium perchlorate, ammonium propionate, urea, and cricose are dissolved in these solvents.

本発明で光変調体として使用するポリマー溶液は、上記
のようなポリマーと溶媒とから形成されるが、特に重要
な点は、ポリマーと溶媒との組合せであって、あまり高
くない温度、好ましくは10−100℃程度の温度範囲
において吸熱によって白濁を生じ、光散乱性を示すよう
に選択して使用することが好ましい。
The polymer solution used as a light modulator in the present invention is formed from the above-mentioned polymer and solvent, but a particularly important point is the combination of the polymer and the solvent, and the temperature is preferably not too high. It is preferable to select and use a material so that it becomes cloudy due to heat absorption in a temperature range of about 10 to 100° C. and exhibits light scattering properties.

また、本発明の光変調体を構成する別の材料である曇点
を含む界面活性剤としては、例えばポリオキシエチレン
系非イオン活性剤、すなわち、ポリオキシエチレンラウ
リン酸エステル等のエステル類、ポリオキシエチレンオ
クチルフェノールエーテル等のエーテル類、ポリオキシ
エチレンステアリルアミン等のアミン類、ポリオキシエ
チレンラウリルアミド等のアミド類が好適である。
In addition, examples of the cloud point-containing surfactant, which is another material constituting the light modulator of the present invention, include polyoxyethylene-based nonionic surfactants, esters such as polyoxyethylene laurate, and polyoxyethylene-based nonionic surfactants. Ethers such as oxyethylene octylphenol ether, amines such as polyoxyethylene stearylamine, and amides such as polyoxyethylene laurylamide are suitable.

一方、この界面活性剤を構成する溶媒としては、水、ま
たは水とメタノール、エタノール、エチレングリコール
等のアルコール類、テトラヒドロフラン、ジオキサン等
のエーテル類、アセトン、メチルエチルケトン等のケト
ン類、ピリジン、トリエチルアミン等のアミン類、ジメ
チルホルムアミド等のアミド類などの有機溶媒との混合
溶媒、あるいはそれらの溶媒に塩化カリウム、過塩素酸
リチウム等の塩類、尿J等の有機溶質などを添加した溶
液等が好適である。
On the other hand, solvents constituting this surfactant include water, or water and alcohols such as methanol, ethanol, and ethylene glycol, ethers such as tetrahydrofuran and dioxane, ketones such as acetone and methyl ethyl ketone, and pyridine and triethylamine. Mixed solvents with organic solvents such as amines and amides such as dimethylformamide, or solutions in which salts such as potassium chloride, lithium perchlorate, organic solutes such as urine J, etc. are added to these solvents are suitable. .

以トの本発明の光変調体として用いられるポリマー溶液
、または曇点を含む表面活性剤を含む液層は、厚さとし
ては、l IL+a −1000ILsが適当であり、
好ましくはlμra−100μJが最適な範囲である。
The suitable thickness of the polymer solution used as the light modulator of the present invention or the liquid layer containing the surfactant having a cloud point is 1 IL+a -1000 ILs,
Preferably, lμra - 100μJ is the optimal range.

本発明で用いられる発熱抵抗体14の素材とじては、硼
化ハフニウム、窒化タンタル等の金属化合物、ニクロム
等の合金、またはITO(Indium Tin0xi
de)等の透明酸化物等が用いられ、膜厚としては50
0〜5000Aの範囲が最適である。また、この発熱抵
抗体14の表面には、光変調体13との間に絶縁層(保
護膜)が形成される。
The material of the heating resistor 14 used in the present invention includes metal compounds such as hafnium boride and tantalum nitride, alloys such as nichrome, or ITO (Indium TinOxi).
A transparent oxide such as de) is used, and the film thickness is 50
A range of 0-5000A is optimal. Further, an insulating layer (protective film) is formed on the surface of the heating resistor 14 and between it and the light modulator 13.

有機絶縁層の形成に関しては、具体的には蒸着法やクラ
スターイオンビーム法等の適用も可能であるが、制御性
、容易性そして再現性から公知の従来技術の中ではLB
法が極めて好適である。
Regarding the formation of the organic insulating layer, it is possible to specifically apply the vapor deposition method and the cluster ion beam method, but among the known conventional techniques, LB is preferred due to its controllability, ease, and reproducibility
The method is highly preferred.

このLB法によれば、1分子中に疎水性部位と親木性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ、分子オーダの厚み
を有し、かつ大面積にわたって均一、均質な有機超薄膜
を安定に供給することができる。
According to this LB method, it is possible to easily form a monomolecular film of an organic compound having a hydrophobic site and a lignophilic site in one molecule or a cumulative film thereof on a substrate, and the thickness is on the order of a molecule. Moreover, it is possible to stably supply a uniform and homogeneous ultra-thin organic film over a large area.

LB法は1分子内に親木性部位と疎水性部位とを有する
構造の分子において、両者のバランス(両親媒性のバラ
ンス)が適度に保たれている時、分子は水面上で親木性
基を下に向けて単分子の層になることを利用して単分子
膜またはその累積膜を作成する方法である。
The LB method is based on the LB method, in which a molecule has a structure that has a lymophilic site and a hydrophobic site within one molecule, and when the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule has a lignophilic site on the water surface. This is a method of creating a monomolecular film or a cumulative film thereof by utilizing the fact that the monomolecular layer is formed with the group facing downward.

疎水性部位を構成する基としては、一般に広く知られて
いる飽和及び不飽和炭化水素基や縮合多環芳香族基及び
鎖状多項フェニル基等の各種疎水基が挙げられる。これ
らは各々単独又はその複数が組み合わされて疎水性部分
を構成する。一方親木性部分の構成要素として最も代表
的なものは、例えばカルボキシル基、エステル基、酸ア
ミド基、イミド基、ヒドロキシル基、スルホニル基、リ
ン酸基、アミノ基(1,2,3及び4級)等の親木基を
挙げることができる。
Examples of the group constituting the hydrophobic moiety include various hydrophobic groups such as generally widely known saturated and unsaturated hydrocarbon groups, fused polycyclic aromatic groups, and chain polycyclic phenyl groups. Each of these constitutes a hydrophobic portion singly or in combination. On the other hand, the most typical constituent elements of the wood-philic moiety are, for example, carboxyl groups, ester groups, acid amide groups, imide groups, hydroxyl groups, sulfonyl groups, phosphoric acid groups, and amino groups (1, 2, 3, and 4 Examples include parent tree groups such as class).

これらの疎水性基と親水性基をバランスよ〈併有する分
子であれば、水面上で単分子膜を形成することが回走で
ある。一般的にはこれらの分子は絶縁性の単分子膜を形
成し、よって単分子累積膜も絶縁性を示すことから本発
明に対し極めて好適な材料といえる。−例としては下記
の如き分子を挙げることができる。
If the molecule has a balance of these hydrophobic groups and hydrophilic groups, migration is the formation of a monomolecular film on the water surface. Generally, these molecules form an insulating monomolecular film, and the monomolecular cumulative film also exhibits insulating properties, so it can be said to be an extremely suitable material for the present invention. - By way of example, the following molecules may be mentioned:

(+)π電子準位を有する分子; フタロシアニン、テトラフェニルポルフィリン等のポル
フィリン骨格を有する色素、スクアリリウム基及びクロ
コニックメチン基を結合鎖としてもつアズレン系色素及
びキノリン、ベンゾチアゾール、ベンゾオキサゾール等
の2ケの含窒素複素環、スクアリリウム基及びクロコニ
ックメチン基により結合したシアニン系類似の色素、又
はシアニン色素、アントラセン、ピレン等の縮合多環芳
香族及び芳香環乃至複素環化合物が縮合した鎖状化合物
など。
Molecules with a (+)π electron level; Dyes with a porphyrin skeleton such as phthalocyanine and tetraphenylporphyrin, azulene dyes with a squarylium group and croconic methine group as bonding chains, and 2 such as quinoline, benzothiazole, benzoxazole, etc. Cyanine-based similar dyes bonded by nitrogen-containing heterocycles, squarylium groups, and croconic methine groups, or chain compounds in which cyanine dyes, condensed polycyclic aromatics such as anthracene, pyrene, and aromatic rings to heterocyclic compounds are condensed. Such.

(2)高分子化合物 ポリイミド誘導体、ポリアミック酸誘導体、ポリアミド
誘導体、各種フマル酸共重合体、各種マレイン酸共重合
体、ポリアクリル酸誘導体、各種アクリル酸共重合体、
ポリジアセチレン誘導体、各種ビニル化合物、合成ポリ
ペプチド類、バクテリオロドプシンやチトクロームCの
如き生体高分子化合物など。
(2) High molecular compounds polyimide derivatives, polyamic acid derivatives, polyamide derivatives, various fumaric acid copolymers, various maleic acid copolymers, polyacrylic acid derivatives, various acrylic acid copolymers,
Polydiacetylene derivatives, various vinyl compounds, synthetic polypeptides, biopolymer compounds such as bacteriorhodopsin and cytochrome C, etc.

(3)脂肪酸類 長鎖アルキル基を有するカルボン酸及びカルボン酸塩乃
至はこれらのフッ素置換体、少なくとも一本の長鎖アル
キル基を有するエステル、スルホン酸及びこれの塩、リ
ン酸及びこれの塩乃至はこれらのフッ素置換体など。
(3) Fatty acids Carboxylic acids and carboxylic acid salts having long-chain alkyl groups, or fluorine-substituted products thereof, esters having at least one long-chain alkyl group, sulfonic acids and salts thereof, phosphoric acids and salts thereof or fluorine-substituted products of these.

これらの化合物の内、特に耐熱性の観点からは高分子化
合物の利用或はフタロシアニン等の大田状化合物の使用
が望ましく、殊にポリイミド類、ポリアクリル酸類、各
種フマル酸共重合体、或は各種マレイン酸共重合体等の
高分子材料を使用すれば係る耐熱性に優れるばかりでな
く1層当りの膜厚を5A程度にできる。
Among these compounds, from the viewpoint of heat resistance, it is desirable to use polymeric compounds or Ota-like compounds such as phthalocyanine, and in particular polyimides, polyacrylic acids, various fumaric acid copolymers, or various If a polymeric material such as a maleic acid copolymer is used, not only the heat resistance is excellent, but also the film thickness per layer can be about 5A.

本発明では、上記以外でもLB法に適している材料であ
れば本発明に好適なのは言うまでもない。
In the present invention, it goes without saying that materials other than those mentioned above are also suitable as long as they are suitable for the LB method.

係る両親媒性の分子は水面上で親木基を下に向けて単分
子の層を形成する。この時、水面上の単分子層は二次元
系の特徴を有し、分子がまばらに散開している時は一分
子当り面積Aと表面圧πとの間に二次元理想気体の式、 πA=kT が成り立ち、゛°気体膜′°となる。ここにkはポルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相互作用が強まり、二次元固体の°“凝縮膜(ま
たは固体膜)パになる。凝縮膜はガラスや樹脂の如き種
々の材質や形状を有する任意の物体の表面へ一層ずつ移
すことができる。この方法を用いて単分子膜またはその
累積膜を形成し、これを本発明におけるMIM部分の有
機絶縁層として使用することができる。
Such amphiphilic molecules form a monomolecular layer on the water surface with the parent group facing downward. At this time, the monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely dispersed, the two-dimensional ideal gas equation, πA, is expressed between the area per molecule A and the surface pressure π. =kT holds true, resulting in a ``gas film''. Here, k is Portzmann's constant and T is absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes strong, resulting in a two-dimensional solid condensation film (or solid film).A condensation film can be formed on the surface of any object with various materials and shapes, such as glass or resin. This method can be used to form a monomolecular film or a cumulative film thereof, which can be used as an organic insulating layer in the MIM portion of the present invention.

具体的な製法としては、例えば以下に示す方法を挙げる
ことができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の有機化合物をクロロホルム、ベンゼン。Chloroform and benzene for the desired organic compound.

アセトニトリル等の溶剤に溶解させる0次に添付図面の
第2図に示す如き適当な装置を用いて、係る溶液を水相
21上に展開させて有機化合物の展開層22を膜状に形
成させる。
The solution is dissolved in a solvent such as acetonitrile, and then the solution is spread on the aqueous phase 21 using a suitable apparatus as shown in FIG. 2 of the attached drawings to form a spread layer 22 of the organic compound in the form of a film.

次にこの展開層22が水相21上を自由に拡散して広が
りすぎないように仕切板(または浮子)23を設け、展
開層22の面端を制限して膜物質の集合状態を制御し、
その集合状態に比例した表面圧πを得る。この仕切板2
3を動かし、展開層22の面積を縮小して膜物質の集合
状態を制御し、表面圧を徐々に上昇させ、膜の製造に適
する表面圧πを設定することができる。この表面圧を維
持しながら、静かに清浄な基板24を垂直に上昇または
下降させることにより有機化合物の単分子膜が基板24
上に移し取られる。このような単分子膜は第3図(a)
または第3図(b)に模式的に示す如く分子が秩序正し
く配列した膜である。
Next, a partition plate (or float) 23 is provided to prevent this spread layer 22 from spreading freely on the aqueous phase 21 and spreading too much, and by restricting the surface edges of the spread layer 22, the state of aggregation of the film substance is controlled. ,
Obtain the surface pressure π proportional to the collective state. This partition plate 2
3, the area of the spreading layer 22 can be reduced to control the aggregation state of the film material, and the surface pressure can be gradually increased to set the surface pressure π suitable for film production. By gently raising or lowering the clean substrate 24 vertically while maintaining this surface pressure, a monomolecular film of an organic compound is formed on the substrate 24.
transferred to the top. Such a monomolecular film is shown in Figure 3(a).
Alternatively, it is a film in which molecules are arranged in an orderly manner, as schematically shown in FIG. 3(b).

単分子膜31は以上で製造されるが、前記の操作を繰り
返すことにより所望の累積数の累積膜が形成される。単
分子膜を基板上に移すには、上述した垂直浸漬法の他、
水平付着法1回転円筒法等の方法でも可能である。
The monomolecular film 31 is manufactured as described above, and by repeating the above operations, a desired number of cumulative films can be formed. To transfer the monolayer onto the substrate, in addition to the vertical dipping method described above,
Methods such as the horizontal adhesion method and the one-turn cylinder method are also possible.

前述した垂直浸漬法では、表面が親木性である基板を水
面を横切る方向に水中から引き上げると有機化合物の親
木性部位32が基板24側に向いた有機化合物の単分子
膜31が基板24上に形成される(第3図(b))、前
述のように基板24を上下させると1各行程ごとに一枚
ずつ単分子膜31が積み重なって累積膜41が形成され
る。成膜分子の向きが引上行程と浸漬行程で逆になるの
で、この方法によると単分子膜の各層間は有機化合物の
疎水性部位33aと33bが向かいあうY型膜が形成さ
れる(第4図(a))。これに対し、水平付着法は、有
機化合物の疎水性部位33が基板24偏に向いた単分子
膜31が基板24上に形成される(第3図(a))、こ
の方法では、単分子膜31を累積しても成膜分子の向き
の交代はなく全ての層において、疎水性の部位33aと
33bが基板24側に向いたX型膜が形成される(第4
図(b))。反対に全ての層において親木性部位32a
、 32bが基板24側に向いた累81膜41はZ型膜
と呼ばれる(第4図(c))。
In the above-mentioned vertical immersion method, when a substrate with a wood-loving surface is lifted out of water in a direction across the water surface, a monomolecular film 31 of an organic compound with the wood-loving parts 32 of the organic compound facing the substrate 24 is formed on the substrate 24. When the substrate 24 is moved up and down as described above (FIG. 3(b)), the monomolecular films 31 are stacked one by one in each step, forming a cumulative film 41. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, this method forms a Y-shaped film in which the hydrophobic parts 33a and 33b of the organic compound face each other between each layer of the monomolecular film (the fourth Figure (a)). On the other hand, in the horizontal deposition method, a monomolecular film 31 is formed on the substrate 24 in which the hydrophobic sites 33 of the organic compound are oriented toward the substrate 24 (FIG. 3(a)). Even if the films 31 are accumulated, there is no change in the orientation of the film-forming molecules, and an X-shaped film is formed in which the hydrophobic parts 33a and 33b face the substrate 24 in all layers (the fourth
Figure (b)). On the contrary, in all layers, the woody part 32a
, 32b facing the substrate 24 side is called a Z-type film (FIG. 4(c)).

単分子1931を基板24上に移す方法は、上記方法に
限定されるわけではなく、大面積基板を用いる時にはロ
ールから水相中に基板を押し出していく方法なども採り
得る。また、前述した親水性基および疎水性基の基板へ
の向きは原則であり、基板の表面処理等によって変える
こともできる。
The method of transferring the single molecules 1931 onto the substrate 24 is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate from a roll into an aqueous phase may also be adopted. Further, the directions of the hydrophilic groups and hydrophobic groups described above toward the substrate are in principle, and can be changed by surface treatment of the substrate, etc.

以上の如くして有機化合物の単分子膜31またはその累
ggatが基板24上に形成される。
As described above, the monomolecular film 31 of the organic compound or its ggat is formed on the substrate 24.

上記の如き有機材料が積層された薄膜を支持するための
基板24は、金属、ガラス、セラミックス、プラスチッ
クス材料等いずれの材料でもよく、更に耐熱性の著しく
低い生体材料も使用できる。
The substrate 24 for supporting the thin film on which organic materials are laminated as described above may be made of any material such as metal, glass, ceramics, or plastic materials, and biomaterials with extremely low heat resistance may also be used.

上記の如き基板24は任意の形状でよく平板状であるの
が好ましいが、平板に何ら限定されない。
The substrate 24 as described above may have any shape and is preferably flat, but is not limited to a flat plate.

すなわち前記成膜法においては、基板の表面がいかなる
形状であってもその形状通りに膜を形成し得る利点を有
するからである。
That is, the above film forming method has the advantage that a film can be formed in accordance with the shape of the surface of the substrate, no matter what shape it is.

以上のように本発明におけるMIMの有機絶縁層は、比
較的大きいπ(パイ)準位をもつ群とσ(シグマ)電子
準位をもつ群とを有する分子を周期的に積層し、電気的
ポテンシャルの周期構造を有する有機絶縁体であり、そ
れに周期方向と平行な方向に電流を流すことにより、従
来公知のMIM素子にはみられないスイッチングメモリ
ー機能を実現した。
As described above, the organic insulating layer of the MIM in the present invention is made by periodically stacking molecules having a group with a relatively large π (pi) level and a group with a σ (sigma) electronic level. It is an organic insulator with a periodic potential structure, and by passing a current in a direction parallel to the periodic direction, it has achieved a switching memory function not found in conventional MIM elements.

スイッチングメモリー特性は、MIM部分の上・下電極
間に電圧を印加したときの電流特性(Vl特性)におい
てfi fllllされた(第5図)、更に第6図に示
すような安定なON状態(抵抗値数十Ω)とOFF状態
(抵抗値MΩ以−ト)をつくることができ、ON→OF
Fへのスイッチングは一定のシキイ値電圧(1〜2v程
度/20層)を示L、OFF →ONへのスイッチング
は−2〜−5v程度でおこり、またスイッチング速度は
i p、sec以下で0N10FF比(ON状態とOF
F状態の抵抗値の比)が5桁以上であった。
The switching memory characteristics are fi fullll in the current characteristics (Vl characteristics) when a voltage is applied between the upper and lower electrodes of the MIM part (Fig. 5), and the stable ON state as shown in Fig. 6 ( It is possible to create a resistance value of several tens of Ω) and an OFF state (resistance value of more than MΩ), and the ON→OFF state
Switching to F shows a certain threshold voltage (about 1 to 2 V/20 layers) L, switching from OFF to ON occurs at about -2 to -5 V, and the switching speed is 0N10FF below i p, sec. Ratio (ON state and OF
The ratio of resistance values in the F state) was 5 digits or more.

本発明は、このような有機絶縁層を含むMIMのスイッ
チングメモリー特性を用いてメモリー性のある表示素子
を実現したものである。
The present invention realizes a display element with memory properties by using the switching memory characteristics of MIM including such an organic insulating layer.

一方、係るLBH’Uを挟持する電極材料としては、高
い伝導性を有するものであれば良く、例えばAu、 P
t、 Ag、 Pd、 A+?、 In、 Sn、 P
bなどの金属やこれらの合金、さらにはグラファイトや
シリサイド、またさらにはITOなどの導電性酸化物を
始めとして数多くの材料が挙げられ、これらの本発明へ
の適用が考えられる。係る材料を用いた電極形成法とし
ても従来公知の薄膜技術で充分である。
On the other hand, the electrode material for sandwiching the LBH'U may be any material as long as it has high conductivity, such as Au, P
t, Ag, Pd, A+? , In, Sn, P
There are many materials including metals such as B, alloys thereof, graphite, silicide, and even conductive oxides such as ITO, and these materials can be considered to be applied to the present invention. As a method for forming electrodes using such materials, conventionally known thin film techniques are sufficient.

但し、ここで注意を要するのは本発明におけるMIMの
作成において該LB膜上に設け、電極形成の際、LB層
に損傷を与えてはならず、そのためには高温(>100
℃)を要する製造成いは処理工程を避ける。また基板上
に直接形成される電極材料はその電極表面がLE膜形成
の際、絶縁性の酸化膜をつくらない導電材料、例えば貴
金属やITOなどの酸化物導電体を用いることが好まし
い。
However, care must be taken here to avoid damaging the LB layer when forming electrodes on the LB film in the production of the MIM of the present invention.
Avoid processing steps in manufacturing processes that require temperatures (°C). Further, as for the electrode material directly formed on the substrate, it is preferable to use a conductive material such as a noble metal or an oxide conductor such as ITO that does not form an insulating oxide film on the electrode surface when forming the LE film.

[作 用] 次に、この表示素子の動作原理を、第1図を用いて説明
する。なお初めは、Ml、MはOFF状態であるとする
[Function] Next, the principle of operation of this display element will be explained using FIG. 1. It is assumed that Ml and M are initially in the OFF state.

(1)光変調体を不透明化する操作 スイー2チ19をMにして、電源18からMIMに電圧
を加えMIXをON状態にする。次にスイッチ19をH
にして発熱抵抗体14及びMIMに電圧を加え、発熱抵
抗層を発熱させて、光変調体13を加熱し、該光変調体
を不透明化させる。このとき光変調体をほどよく加熱で
き、かつMIXをONに保てるように、印加電圧及び発
熱抵抗体の抵抗値を設定する。
(1) Set the operation switch 19 for making the light modulator opaque to M, and apply voltage to the MIM from the power source 18 to turn the MIX ON. Next, turn switch 19 to H.
A voltage is applied to the heat generating resistor 14 and the MIM to cause the heat generating resistor layer to generate heat, thereby heating the light modulator 13 and making the light modulator opaque. At this time, the applied voltage and the resistance value of the heating resistor are set so that the light modulator can be appropriately heated and the MIX can be kept ON.

(2)光変調体を透明化する操作 前記(1)の状態からスイッチ19をMにして、電J1
8からMIMに電圧を加え、INをOFF状態にする。
(2) Operation to make the light modulator transparent From the state of (1) above, set the switch 19 to M and
Apply voltage to MIM from 8 and turn IN to OFF state.

ここでスイッチ19をHにして、光変調体13を不透明
化する操作においてMIM発熱抵抗体14の直列に印加
したのと同じ電圧を加えても、阿IMが高抵抗状態であ
るOFF状態のため発熱抵抗体14にはほとんど電流が
流れず、発熱抵抗体】4は発熱しないので、光変調体1
3は透明状態となる。
Here, even if the switch 19 is set to H and the same voltage applied in series to the MIM heating resistor 14 is applied in the operation of making the light modulator 13 opaque, the IM is in the OFF state where the resistance is high. Almost no current flows through the heating resistor 14, and the heating resistor 4 does not generate heat, so the light modulator 1
3 becomes a transparent state.

(3)メモリーの読み出し 前記、(1)、(2)のいずれの状態から、スイッチを
ニュートラルにするか、または電源18を切ったとして
もMIMにおけるOFF、 ON状態はメモリーされて
いるので再びスイッチをHにもどすか、電源を入れれば
、もとの状態が再現される。
(3) Reading the memory Even if you set the switch to neutral or turn off the power supply 18 from either state (1) or (2) above, the OFF and ON states in the MIM are stored in memory, so you cannot switch it again. If you return it to H or turn on the power, the original state will be restored.

以上述べたように、本発明は、有機材料を含むHIHの
メモリー性のあるスイッチング特性に着目し、該MIM
を表示素子の中にメモリーとして組み込めば従来技術の
種々の欠点が解決された表示素子が得られるとの知見に
基づき完成したものである。
As described above, the present invention focuses on the memory-like switching characteristics of HIH containing organic materials, and
The invention was completed based on the knowledge that if incorporated into a display element as a memory, a display element could be obtained that solved the various drawbacks of the prior art.

[実施例] 以下、より具体的な実施例に従い、本発明を更に詳細に
説明する。
[Examples] Hereinafter, the present invention will be described in more detail according to more specific examples.

実施例1 以下に示す手順で第1図に示す素子を作製した。Example 1 The device shown in FIG. 1 was manufactured by the procedure shown below.

ガラス基板(コーニング社製0059)上に下引き層と
してCrを真空蒸着法により厚さ500A堆積させ、更
にAuを同法により蒸着(膜厚1000A) L、幅l
履■のストライプ状の下地電極を形成した。このように
作製した電極基板なヘキサメチルジシラン(HMDS)
の飽和蒸気中に一昼夜放置して疎水処理を行った後、L
B法を用いてポリイミド単分子膜の10層累積膜(膜厚
的4OA)を形成し、絶縁薄膜16とした。
Cr was deposited to a thickness of 500A as an undercoat layer on a glass substrate (0059 manufactured by Corning) by vacuum evaporation method, and Au was further deposited by the same method (film thickness 1000A) L, width l
A striped base electrode was formed. The electrode substrate made in this way is hexamethyldisilane (HMDS).
After hydrophobic treatment by leaving it in saturated steam for a day and night, L
A 10-layer cumulative film (4OA in film thickness) of a polyimide monomolecular film was formed using method B, and an insulating thin film 16 was formed.

以下ポリイミド単分子累積膜の作成方法の詳細を記す。The details of the method for producing the polyimide monomolecular cumulative film are described below.

(1)式に示すポリアミド酸をN、N’−ジメチルアセ
トアミド−ベンゼン混合溶媒(1:IV/’V)に溶解
させた(単量体換算濃度IXIO−3M)後、別途調整
したN、N−ジメチルオクタデシルアミンの周溶奴ニヨ
るI X 10−3M溶液とを1 : 2 (V/V)
 4.:混合して(2)式に示すポリアミド酸オクタデ
シルアミン塩溶液を調製した。
After dissolving the polyamic acid shown in formula (1) in a mixed solvent of N,N'-dimethylacetamide-benzene (1:IV/'V) (concentration in terms of monomer IXIO-3M), separately prepared N,N - 1:2 (V/V) of a 10-3M solution of dimethyloctadecylamine
4. : By mixing, a polyamic acid octadecylamine salt solution shown in formula (2) was prepared.

′11HN(CH3)2 (CH2)+ 7 CH3 係る溶液を水温20°Cの純水から成る水相21(第2
図)上に展開し、水面上に単分子膜を形成した。゛゛溶
媒蒸発除去後、仕切板23として浮子を動かして展開面
積を縮小せしめ、表面圧を25mN/aに迄高めた。表
面圧を一定に保ち乍ら上述下部電極付き基板を水面を横
切る方向に速度5 am/l1inで静かに浸漬した後
、続いて5 am/winで静かに引き上げて2層のY
型単分子累積膜を作成した。係る操作を繰り返して10
層のポリイミド酸オクタデシルアミン塩の単分子累積膜
を形成した0次に係る基板を無水酢酸、ピリジン及びベ
ンゼンの混合溶液(1:l:3)に12時間浸漬し、ポ
リイミド酸オクタデシルアミン塩をイミド化しく式3)
、@HN(CH3)2 ■ (CH2)170H3 1層層のポリイミド単分子累積膜を得た。
'11HN(CH3)2 (CH2)+ 7 CH3 The solution was added to the aqueous phase 21 (second phase) consisting of pure water at a water temperature of 20°C.
(Figure), and a monomolecular film was formed on the water surface. After evaporating and removing the solvent, a float was moved as a partition plate 23 to reduce the developed area and the surface pressure was increased to 25 mN/a. While keeping the surface pressure constant, the substrate with the lower electrode was gently immersed in a direction across the water surface at a speed of 5 am/l1in, and then gently pulled up at a rate of 5 am/win to form two layers of Y.
A type monomolecular cumulative film was created. Repeat this operation 10 times
The zero-order substrate on which a monomolecular cumulative film of polyimide acid octadecylamine salt was formed was immersed in a mixed solution of acetic anhydride, pyridine, and benzene (1:1:3) for 12 hours, and the polyimide acid octadecylamine salt was added to the imide layer. 3)
, @HN(CH3)2 (CH2)170H3 A single-layer polyimide monomolecular cumulative film was obtained.

次に係るポリイミド単分子累積膜面上に下部電極17と
直交するように幅1雪層のストライプ状にAI)を真空
蒸着(膜厚1000A) L、上部電極15を形成した
Next, on the surface of the polyimide monomolecular cumulative film, an upper electrode 15 was formed by vacuum evaporation (film thickness 1000 Å) of AI) in a stripe shape with a width of 1 snow layer so as to be perpendicular to the lower electrode 17.

次に、第1図のようにAR主電極一端にかぶさるように
厚さ100OAの窒化タンタル膜をスパッタリング法に
より幅0.9I1mのストライプ上に蒸着し、発熱抵抗
体14とした。さらにその上に絶縁層として厚さ2p、
tsの5102Mをスパッタリング法により積層した(
不図示)、ただし、発熱抵抗層のAi)に接していない
端部は、後でリード線をつけるために、S i02膜が
つかないように遮蔽して行った。この発熱抵抗層と、透
明保護板とをマイラーフィルムをスペーサーとして用い
て10終履の間隙で向い合わせて接着した。
Next, as shown in FIG. 1, a tantalum nitride film having a thickness of 100 OA was deposited on a stripe having a width of 0.9I1m by sputtering so as to cover one end of the AR main electrode, thereby forming a heating resistor 14. Furthermore, an insulating layer with a thickness of 2p,
TS 5102M was laminated by sputtering method (
However, in order to attach a lead wire later, the end of the heat generating resistor layer not in contact with Ai) was shielded so as not to be covered with the Si02 film. This heating resistor layer and a transparent protection plate were bonded to each other with a Mylar film as a spacer, facing each other with a gap of 10 layers.

光変調体は、以下のように作成した。まず、あらかじめ
、以下のA液、B液を用意した。
The light modulator was created as follows. First, the following solutions A and B were prepared in advance.

窒素雰囲気下において、A液、B液を混合し、発熱抵抗
体と透明保護板との隙間に充填・封入してゲル層を形成
し、光変調体を作製した。
A light modulator was produced by mixing liquids A and B in a nitrogen atmosphere and filling and sealing the mixture into the gap between the heat generating resistor and the transparent protective plate to form a gel layer.

このようにして得られたメモリー性のある光変調素子に
ついて前記した[作用1における操作を行なうと、再現
性よく表示におけるメモリー性が確認され、実用上十分
であることが判明した。
When the above-described operation 1 was carried out on the thus obtained light modulation element with memory properties, memory properties in display were confirmed with good reproducibility, and it was found that the light modulation element had sufficient practicality.

実施例2 実施例1で述べた素子構成において、下部電極をビ0で
形成し、 LB層としてルテチウム・ジフタロシアニン
[LuH(Pc) 2]を以下の方法によって形成し々
、また基板の疎水処理を行なわないこと以外は、実施例
1と同様の素子構成である表示素子を作製した。
Example 2 In the device configuration described in Example 1, the lower electrode was formed of BiO, lutetium diphthalocyanine [LuH(Pc) 2] was formed as the LB layer by the following method, and the substrate was subjected to hydrophobic treatment. A display element having the same element configuration as in Example 1 was manufactured except that .

LB層の形成は、まずLuH(Pc)zを濃度0.5+
wg/mJllで溶かした溶液(溶媒:クロロホルム/
トリメチルベンゼン/アセトンの1/l/2 i合溶媒
)を水温20℃の前記基板をあらかじめ浸漬しである純
水上に展開し、水面上の単分子膜を形成した。溶媒の蒸
発除去を待って係る単分子膜の表面圧を20+sN/閣
まで高め、更にこれを一定に保ちながらあらかじめ浸漬
しておいた前記基板を水面を横切る方向に速度3 mt
a1分で静かに引き上げ、1層の単分子膜を電極基板上
に累積した。続いて上下速度が同じく3■/分で静かに
水面を横切るように浸漬・引き上げを繰り返し行なう事
によりITO上に11層。
To form the LB layer, first, LuH(Pc)z is added at a concentration of 0.5+.
Solution dissolved in wg/mJll (solvent: chloroform/
The substrate was previously immersed in a mixture of trimethylbenzene/acetone (1/l/2 i) at a water temperature of 20° C., and then spread on pure water to form a monomolecular film on the water surface. After waiting for the solvent to evaporate and be removed, the surface pressure of the monomolecular film was increased to 20+sN/cm, and while keeping this pressure constant, the previously immersed substrate was moved at a speed of 3 mt in the direction across the water surface.
It was gently pulled up after 1 minute, and one monolayer of monolayer was accumulated on the electrode substrate. Subsequently, 11 layers were deposited on the ITO by repeatedly dipping and pulling the material gently across the water surface at the same vertical speed of 3/min.

21、31層の累積膜を形成した。A cumulative film of 21 and 31 layers was formed.

以上のように作成した表示素子は、実施例1と同様に〔
作用]に述べた操作を行なうと、再現性よく表示におけ
るメモリー性が確認された。
The display element produced as described above was prepared in the same manner as in Example 1.
When the operation described in [Effect] was performed, the memorability of the display was confirmed with good reproducibility.

実施例3 実施例1で述べた素子構成において下部電極をA11(
30QA )で形成し、LBiとしてスクアリリュムビ
スー6〜オクチルアズレン(SOAZ)の単分子膜の累
積を以下の方法で行なった以外は実施例1と同様の素子
構成である表示素子を作製した。
Example 3 In the element configuration described in Example 1, the lower electrode was A11 (
A display element was fabricated with the same element configuration as in Example 1, except that a monomolecular film of squarylum bis-6-octyl azulene (SOAZ) was formed as LBi in the following manner. .

LB層の形成は、まず5OAZを濃度0.2mg/mj
)で溶かしたクロロホルム溶液をKHC(h でpH8
,7に調整したCdC1)2濃度5 X 10−’mo
j)/j’ 、水温20°Cの水相上に展開し、水面上
に単分子膜を形成した。溶媒の蒸発除去を待って係る単
分子膜の表面圧を20mN/mまで高め、更にこれを一
定に保ちながら前記基板を水面を横切る方向に速度10
m+s/分で静かに浸漬した後、続いて5111Z分で
静かに引き上げ2層のY型単分子膜の累積を行なった。
To form the LB layer, first 5OAZ was added at a concentration of 0.2 mg/mj.
) to pH 8 with KHC (h).
, 7 CdC1)2 concentration 5 × 10−'mo
j)/j' was developed on an aqueous phase at a water temperature of 20°C to form a monomolecular film on the water surface. After waiting for the solvent to evaporate, the surface pressure of the monomolecular film was increased to 20 mN/m, and while keeping this pressure constant, the substrate was moved at a speed of 10 mN/m in the direction across the water surface.
After gentle immersion at m+s/min, the film was then gently pulled up at 5111 Z min to accumulate two layers of Y-type monomolecular film.

係る操作を適当回数繰り返することによって前記基板上
に2゜4 、8 、12.20.30.40. EiO
層の8種類の累積膜を形成した0次に係る膜面上に下地
電極と直交するように幅1層温のストライプ状のAj)
電極(膜厚150OA )を基板温度を室温以下に保持
し真空蒸着し上部電極とした。
By repeating this operation an appropriate number of times, 2°4, 8, 12.20.30.40. EiO
On the film surface of the 0th-order film on which 8 types of cumulative films of layers were formed, a stripe shape Aj) with a width of 1 layer is perpendicular to the base electrode.
An electrode (thickness: 150 OA) was vacuum deposited while keeping the substrate temperature below room temperature to form the upper electrode.

以上のように作成した表示素子は、実施例1と同様に[
作用]に述べた操作を行なうと、再現性よく表示におけ
るメモリー性が確認された。
The display element produced as described above was prepared in the same manner as in Example 1.
When the operation described in [Effect] was performed, the memorability of the display was confirmed with good reproducibility.

実施例4〜11 表1に示した電極材料と絶縁材料及びその暦数を用いて
実施例1と同様の素子構造を有する試料を作製した。金
属電極は抵抗加熱法による真空蒸着により行なった。
Examples 4 to 11 Samples having the same element structure as Example 1 were prepared using the electrode materials and insulating materials shown in Table 1, and their calendar numbers. The metal electrode was formed by vacuum deposition using a resistance heating method.

これらの試料は、いずれも、実施例1と同様に表示にお
けるメモリー性が確認された。
All of these samples were confirmed to have memory properties in display as in Example 1.

(以下余白) R= OC:H(COOH)C2oH4+(CH2)2 COOH 以上述へてきた実施例中では絶縁層の形成にLB法を使
用してきたが、極めて薄く均一な絶縁性の有機薄膜が作
成できる成膜法であればLH法に限らず使用可能である
。具体的には真空蒸着法や電解重合法、CVD法等が挙
げられ使用可能な有機材料の範囲が広がる。
(Left below) R= OC:H(COOH)C2oH4+(CH2)2COOH In the examples described above, the LB method was used to form the insulating layer, but it is difficult to form an extremely thin and uniform insulating organic thin film. Any film forming method that can be used is not limited to the LH method. Specifically, vacuum evaporation methods, electrolytic polymerization methods, CVD methods, etc. can be mentioned, and the range of usable organic materials is expanded.

電極の形成に関しても既に述べている様に、有機薄膜層
上に均一な薄膜を作成しうる成膜法であれば使用可能で
あり、真空蒸着法やスパッタ法に限られるものではない
Regarding the formation of the electrode, as already mentioned, any film forming method that can form a uniform thin film on the organic thin film layer can be used, and is not limited to vacuum evaporation or sputtering.

また、光変調体に用いられる材料としても、温度によっ
て可逆に透明;不透明になるものであれば使用可能であ
り、ポリマー溶液や界面活性剤に限られるものではない
Further, the material used for the light modulator can be any material that becomes reversibly transparent or opaque depending on the temperature, and is not limited to polymer solutions and surfactants.

更に基板材料やその形状も本発明は何ら限定するもので
はない。
Furthermore, the present invention does not limit the substrate material or its shape in any way.

[発明の効果] 以上説明したように、本発明による表示素子は、MIM
におけるスイッチング特性のメモリーが電力を必要とし
ないため、表示情報の保存において、外部からの電力を
必要とせず、また表示情報とMIMのスイッチング特性
における状態が常に一体となっているので不意の停電に
よって表示情報が失われることもない。
[Effects of the Invention] As explained above, the display element according to the present invention has MIM
Since the memory of the switching characteristics of the MIM does not require power, no external power is required to save the display information, and since the display information and the state of the switching characteristics of the MIM are always integrated, it will not be affected by an unexpected power outage. No display information is lost.

また本発明で使用する光変調体は、散乱特性に優れてい
るため、コントラストの高い明瞭かつ高解像の画像を得
ることができ、視野角の制限もない。
Furthermore, since the light modulator used in the present invention has excellent scattering properties, it is possible to obtain clear and high-resolution images with high contrast, and there is no restriction on viewing angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の表示素子の具体例の構成概略図であ
る。第2図は1本発明の有機色素絶縁層をLH法によっ
て形成する方法を図解的に示す説明図である。第3a図
と第3b図は単分子膜の模式図であり、第4a図、第4
b図、第4C図は累積膜の模式図である。第5図は係る
素子に於いて得られた電気的特性(Vl特性)を示す特
性図で、第6図は係る素子に於いて確認されたON状態
及びOFF状態の電気的特性図を示すものである。 11・・・基板      12・・・光変調体保護板
13・・・光変調体    14・・・発熱抵抗体15
・・・上部電極    16・・・有機絶縁層17・・
・下部電極    18・・・電極19・・・スイッチ
    21・・・水相22・・・展開層     2
3・・・仕切板24・・・基板      31・・・
単分子膜32、32a、 32b−・・親木性部位33
、33a、 33b・・・疎水性部位41・・単分子累
積膜
FIG. 1 is a schematic configuration diagram of a specific example of a display element of the present invention. FIG. 2 is an explanatory view schematically showing a method of forming an organic dye insulating layer according to the present invention by the LH method. Figures 3a and 3b are schematic diagrams of monomolecular films, and Figures 4a and 4
Figure b and Figure 4C are schematic diagrams of the cumulative film. Fig. 5 is a characteristic diagram showing the electrical characteristics (Vl characteristics) obtained in the device, and Fig. 6 is a diagram showing the electrical characteristics in the ON state and OFF state confirmed in the device. It is. 11... Substrate 12... Light modulator protection plate 13... Light modulator 14... Heat generating resistor 15
...Top electrode 16...Organic insulating layer 17...
・Lower electrode 18...Electrode 19...Switch 21...Aqueous phase 22...Development layer 2
3... Partition plate 24... Board 31...
Monomolecular film 32, 32a, 32b--woodophilic site 33
, 33a, 33b... Hydrophobic site 41... Monomolecular cumulative film

Claims (3)

【特許請求の範囲】[Claims] (1)一対の電極と該電極に挟持された有機絶縁層から
構成される部分(MIM)及び発熱抵抗体と該発熱抵抗
体の上に光変調体を配置した構成をとる部分からなり、
一対の電極のうちの上部電極の一端と発熱抵抗体の一端
が接し、MIMと発熱抵抗体が電気的に直列になるよう
に配置された構成を持つ表示素子であって、MIMがス
イッチング特性に対してメモリー性を有することを特徴
とする表示素子。
(1) Consisting of a part (MIM) consisting of a pair of electrodes and an organic insulating layer sandwiched between the electrodes, a heating resistor and a light modulator arranged on the heating resistor,
A display element having a configuration in which one end of an upper electrode of a pair of electrodes is in contact with one end of a heating resistor, and the MIM and the heating resistor are arranged so as to be electrically in series, and the MIM has switching characteristics. A display element characterized by having a memory property.
(2)前記有機絶縁層が、π電子準位のみを持つ群とσ
電子準位のみを持つ群とを有する請求項1記載の表示素
子。
(2) The organic insulating layer has a group having only π electron level and σ
2. The display element according to claim 1, further comprising a group having only electronic levels.
(3)前記光変調体が、ポリマー溶液または表面活性剤
溶液である請求項1記載の表示素子。
(3) The display element according to claim 1, wherein the light modulator is a polymer solution or a surfactant solution.
JP13014888A 1988-05-30 1988-05-30 Display element Pending JPH01300227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13014888A JPH01300227A (en) 1988-05-30 1988-05-30 Display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13014888A JPH01300227A (en) 1988-05-30 1988-05-30 Display element

Publications (1)

Publication Number Publication Date
JPH01300227A true JPH01300227A (en) 1989-12-04

Family

ID=15027123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13014888A Pending JPH01300227A (en) 1988-05-30 1988-05-30 Display element

Country Status (1)

Country Link
JP (1) JPH01300227A (en)

Similar Documents

Publication Publication Date Title
Liu et al. Optoelectronic properties and memories based on organic single-crystal thin films
US5140398A (en) Switching device
Lee et al. Programmable digital memory characteristics of nanoscale thin films of a fully conjugated polymer
KR100642113B1 (en) Organic electronic device and its manufacturing method
JPH02209931A (en) Composite polymer of polyaniline containing metal phthalocyanine and polyaniline containing organic sulfonic acid and nafion
EP0330395B1 (en) Switching element
JPH01189633A (en) Light modulating element
US6124963A (en) Supramolecular opto-electronic architecture of tautomeric compositions
Donley et al. Thin films of polymerized rodlike phthalocyanine aggregates
JPH01300227A (en) Display element
JP2694531B2 (en) Driving method of MIM type element
Hann Molecules for Langmuir—Blodgett film formation
US5270965A (en) Method of driving device having metal-insulator-metal(mim)structure
JPH0777272B2 (en) Switching element and driving method thereof
Cea et al. Langmuir and Langmuir− Blodgett films of amphiphilic and nonamphiphilic TTF derivatives and their mixtures
JP2719359B2 (en) Non-linear electric conduction element
CA2026702C (en) Ultrathin membrane of polymethacrylate or polycrotonate and device provided with ultrathin membrane
JPH0620074A (en) Electronic element for neurocomputer
JPH01245575A (en) Switching element
JPH0435066A (en) Organic compound semiconductor electric element and manufacture thereof
JPH02201978A (en) Switching device
JPH04145664A (en) Driving method for organic electronic element
JPH01166579A (en) Organic thin film pressure sensitive device
JPH03262639A (en) Thin phthalocyanine film and polarizing film used thereof
JPS63296273A (en) Switching device