JPH04145664A - Driving method for organic electronic element - Google Patents

Driving method for organic electronic element

Info

Publication number
JPH04145664A
JPH04145664A JP2268373A JP26837390A JPH04145664A JP H04145664 A JPH04145664 A JP H04145664A JP 2268373 A JP2268373 A JP 2268373A JP 26837390 A JP26837390 A JP 26837390A JP H04145664 A JPH04145664 A JP H04145664A
Authority
JP
Japan
Prior art keywords
continuously
electrodes
pulse height
resistance
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2268373A
Other languages
Japanese (ja)
Inventor
Toshihiko Takeda
俊彦 武田
Hiroshi Matsuda
宏 松田
Isaaki Kawade
一佐哲 河出
Yoshihiro Yanagisawa
芳浩 柳沢
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2268373A priority Critical patent/JPH04145664A/en
Publication of JPH04145664A publication Critical patent/JPH04145664A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5664Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using organic memory material storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To continuously vary conductivity between electrodes, to preserve the state and to perform a multi-level recording by continuously varying a voltage value to be applied between electrodes of an organic electronic element for holding an organic thin film between a pair of electrodes. CONSTITUTION:After a base electrode 3 is formed on a substrate 1, a single molecule accumulated film layer (Langmuir-Blodgett LB method) 4. Then an upper electrode 2 is so formed as to perpendicularly cross the electrode 3, a voltage to be applied between the electrodes 2 and 3 is continuously varied to continuously vary conductivity between the electrodes, and the state is preserved. That is, the absolute value of the voltage value is varied in a range of 1 to 12V, the thickness of the layer 4 (organic thin film 4) is varied in a range of 4Angstrom to 1,000Angstrom , and formed of organic compound containing at least one type of pi electrons. Thus, many memory states can be realized in one cell to record in a high packing density, and hence a multi-level recording (analog recording) can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機電子素子に多値(アナログ)記録性を発
揮させる駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a driving method for causing an organic electronic device to exhibit multilevel (analog) recording performance.

[従来の技術] 従来、メモリデバイスの大容量化に関し、St等の無機
物質を用いたデバイスにおいては、メモリセル構造及び
構成回路の工夫や構成素子数の減少等によって、メモリ
セルを高密度化することが検討されている。また、大容
量化を図るための別の手段としては、CCDディジタル
メモリやフォトケミカル・ホールバーニング効果を用い
たメモリによる多値記録がある。
[Prior Art] Conventionally, in order to increase the capacity of memory devices, in devices using inorganic materials such as St, it has been attempted to increase the density of memory cells by devising the memory cell structure and constituent circuits, reducing the number of constituent elements, etc. It is being considered to do so. Further, as another means for increasing the capacity, there is multi-value recording using a CCD digital memory or a memory using a photochemical hole burning effect.

[発明が解決しようとする課題] しかしながら、無機物質を用いたものには、もともと、
プロセスが複雑であり、プロセス内に高温過程が含まれ
るため、デバイスを形成する基板が限られてしまうとい
う問題がある。また、フォトケミカル・ホールバーニン
グ効果を用いたメモリーは、極低温を必要とするため、
実用化に際して大きな制限を受ける問題がある。
[Problems to be solved by the invention] However, inorganic substances originally have
Since the process is complicated and includes a high temperature process, there is a problem in that the number of substrates on which devices can be formed is limited. In addition, since memory using the photochemical hole-burning effect requires extremely low temperatures,
There is a problem that imposes major restrictions on practical application.

本発明は、上記問題点に鑑みてなされたもので、複雑な
製造プロセスを必要としたり、実用上の大きな制約を受
けることなく素子に多値記録性(アナログ記録性)を発
揮させることをその解決すべき課題とするものである。
The present invention was made in view of the above-mentioned problems, and it is an object of the present invention to enable a device to exhibit multi-level recording performance (analog recording performance) without requiring a complicated manufacturing process or being subject to major practical limitations. This is an issue that must be solved.

[課題を解決するための手段及び作用]本発明者等は、
上記課題を解決するために、簡単なプロセスで製造し得
る、有機薄膜を一対の電極で挟持した構造の素子に着目
し、当該素子の電気特性について鋭意研究の結果、本発
明を完成したものである。
[Means and effects for solving the problem] The present inventors,
In order to solve the above problems, we focused on an element with a structure in which an organic thin film is sandwiched between a pair of electrodes, which can be manufactured by a simple process, and completed the present invention as a result of intensive research on the electrical characteristics of the element. be.

即ち、本発明では、一対の電極間に有機薄膜を挟持する
有機電子素子の電極間に印加する電圧値を連続的に変化
させることにより、該電極間の導電率を連続的に変化さ
せ、なおかつその状態を保存させることを特徴とする有
機電子素子の駆動法により、前記課題を解決した。
That is, in the present invention, by continuously changing the voltage value applied between the electrodes of an organic electronic device in which an organic thin film is sandwiched between a pair of electrodes, the conductivity between the electrodes is continuously changed, and The above problem has been solved by a method for driving an organic electronic device, which is characterized by preserving its state.

つまり、本発明の有機電子素子の駆動法は、一対の電極
間に有機薄膜を挟持する有機電子素子に多値記録(アナ
ログ記録)を実現させるものである。
In other words, the method for driving an organic electronic device of the present invention enables multi-value recording (analog recording) to be realized in an organic electronic device in which an organic thin film is sandwiched between a pair of electrodes.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

一般に、有機材料のほとんどは絶縁性若しくは半絶縁性
を示し、本発明に用いる有機電子素子の有機薄膜として
適用可能な有機材料は著しく多岐にわたる。
In general, most organic materials exhibit insulating or semi-insulating properties, and there is a wide variety of organic materials that can be used as organic thin films of organic electronic devices used in the present invention.

本発明に用いる有機材料として好適な色素の構造として
は例えば、フタロシアニン、テトラフェニルポルフィリ
ン等のポルフィリン骨格を有する色素、スクアリリウム
基及びクロコニックメチン基を結合鎖としてもつアズレ
ン系色素及びキノリン、ベンゾチアゾール、ベンゾオキ
サゾール等の2ケの含窒素複素環をスクアリリウム基及
びクロコニックメチン基により結合したシアニン系類似
の色素、またはシアニン色素、アントラセン及びピレン
等の縮合多環芳香族、及び芳香環及び複素環化合物が重
合した鎖状化合物及びジアセチレン基の重合体、さらに
はテトラキノジメタンまたはテトラチアフルバレンの誘
導体およびその類縁体およびその電荷移動錯体また更に
はフェロセン、トリスビピリジンルテニウム錯体等の金
属錯体化合物等が挙げられる。
Examples of structures of dyes suitable as organic materials used in the present invention include phthalocyanine, dyes having a porphyrin skeleton such as tetraphenylporphyrin, azulene dyes having squarylium groups and croconic methine groups as bonding chains, quinoline, benzothiazole, Cyanine-based similar dyes, such as benzoxazole, in which two nitrogen-containing heterocycles are bonded by a squarylium group and a croconic methine group, or cyanine dyes, fused polycyclic aromatics such as anthracene and pyrene, and aromatic ring and heterocyclic compounds and polymers of diacetylene groups, derivatives of tetraquinodimethane or tetrathiafulvalene, analogs thereof, charge transfer complexes thereof, and metal complex compounds such as ferrocene and trisbipyridine ruthenium complexes, etc. can be mentioned.

また、本発明に用いる有機材料として好適な高分子材料
としては、例えばポリアクリル酸誘導体等の付加重合体
、ポリイミド等の縮合重合体、ナイロン等の開環重合体
、バクテリオロドプシン等の生体高分子等が挙げられる
Examples of polymeric materials suitable as organic materials used in the present invention include addition polymers such as polyacrylic acid derivatives, condensation polymers such as polyimide, ring-opening polymers such as nylon, and biopolymers such as bacteriorhodopsin. etc.

有機薄膜の形成に関しては、具体的には蒸着法やクラス
ターイオンビーム法等の適用も可能であるが、制御性、
容易性そして再現性から公知の従来技術の中ではラング
ミュア−ブロジェット法(LB法)が極めて有効である
Regarding the formation of organic thin films, it is possible to specifically apply vapor deposition methods, cluster ion beam methods, etc., but the controllability and
Among the known conventional techniques, the Langmuir-Blodgett method (LB method) is extremely effective due to its ease and reproducibility.

このLB法によれば、1分子中に疎水性部位と親木性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ、分子オーダの厚み
を有し、かつ大面積にわたって均一、均質な有機超薄膜
を安定に供給することができる。
According to this LB method, it is possible to easily form a monomolecular film of an organic compound having a hydrophobic site and a lignophilic site in one molecule or a cumulative film thereof on a substrate, and the thickness is on the order of a molecule. Moreover, it is possible to stably supply a uniform and homogeneous ultra-thin organic film over a large area.

LB法は、分子内に親水性部位と疎水性部位とを有する
構造の分子において、両者のバランス(両親媒性のバラ
ンス)が適度に保たれている時、分子は水面上で親水性
基を下に向けて単分子の膜になることを利用して単分子
膜またはその累積膜を作成する方法である。
The LB method is a molecule with a structure that has a hydrophilic site and a hydrophobic site, and when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule has a hydrophilic group on the water surface. This is a method of creating a monomolecular film or a cumulative film thereof by utilizing the fact that the film becomes a monomolecular film downward.

尚、上記以外でもLB法に適している有機材料であれば
、本発明に用いる素子に好適なのは言うまでもない。例
えば近年研究が盛んになりつつある生体材料(例えばバ
クテリオロドプシンやチトクロームC)や合成ポリペプ
チド(PBLGなと)等も適用が可能であるが、比較的
大きいπ電子準位を有する有機材料が好ましい。
It goes without saying that any organic material other than those mentioned above that is suitable for the LB method is also suitable for the element used in the present invention. For example, biomaterials (e.g. bacteriorhodopsin and cytochrome C) and synthetic polypeptides (PBLG), which have been actively researched in recent years, can also be applied, but organic materials with a relatively large π electron level are preferable. .

前記単分子膜はガラス樹脂の如き種々の材質や形状を有
する任意の基板の表面へ一層ずつ移すことができる。こ
の方法を用いて、単分子膜またはその累積膜を形成し、
これを本発明で用いる有機電子素子の有機薄膜として使
用することができる。
The monomolecular film can be transferred layer by layer onto the surface of arbitrary substrates having various materials and shapes, such as glass resin. Using this method, forming a monolayer or a cumulative film thereof,
This can be used as an organic thin film of an organic electronic device used in the present invention.

またLB膜によれば分子オーダーで有機薄膜の膜厚を自
由に制御できるが、本発明に於いては4人〜数1000
人の膜厚のものに記録機能すなわち、メモリー特性が発
現されやす(、メモリー特性上好ましくは10人〜10
00人、特に50人〜500人の範囲の膜厚を持つもの
が良い。また、LB法で累積膜を形成して有機薄膜とす
る場合、その積層数は1〜50程度が好ましい。以上の
暦数、膜厚において、メモリー特性上好ましい抵抗値と
しては、高抵抗状態において数MΩ以上が望ましい。
Furthermore, according to the LB film, the thickness of the organic thin film can be freely controlled on the molecular order, but in the present invention, the
The recording function, that is, the memory property is more likely to be expressed in the film thickness of human beings (preferably 10 to 10
It is preferable to have a film thickness in the range of 0.0000000000000000000000000000000000000000000000000000000000000000000. Further, when a cumulative film is formed by the LB method to form an organic thin film, the number of layers is preferably about 1 to 50. With the above-mentioned number of calendars and film thickness, the preferred resistance value in terms of memory characteristics is desirably several MΩ or more in a high resistance state.

一方、係るLB膜を挟持する電極材料も高い伝導性を有
するものであれば良く、例えばAu。
On the other hand, the electrode material for sandwiching the LB film may be any material as long as it has high conductivity, such as Au.

Pt、Ag、Pd、A9.In、Sn、Pbなとの金属
やこれらの合金、さらにはグラファイトやシリサイド、
またさらにはITOなどの導電性酸化物を始めとして数
多(の材料が挙げられ、これらの本発明における素子へ
の適用が考えられる。
Pt, Ag, Pd, A9. Metals such as In, Sn, and Pb and their alloys, as well as graphite and silicide,
Further, there are many other materials including conductive oxides such as ITO, and their application to the element of the present invention can be considered.

係る材料を用いた電極形成については従来公知の薄膜技
術で充分である。また基板上に直接形成される電極材料
は、表面が、LB膜形成の際、絶縁性の酸化膜をつ(ら
ない導電材料、例えば貴金属やITOなどの酸化物導電
体を用いることが好ましい。
Conventionally known thin film techniques are sufficient for forming electrodes using such materials. Further, as for the electrode material directly formed on the substrate, it is preferable to use a conductive material such as a noble metal or an oxide conductor such as ITO that does not leave an insulating oxide film on the surface when forming the LB film.

本発明では、以上のような構造の有機電子素子の電極間
に印加する電圧値を連続的に変化させることで、有機電
子素子の導電率を連続的に変化させ、さらにその状態(
導電率)を保持させる。
In the present invention, by continuously changing the voltage value applied between the electrodes of the organic electronic device having the above structure, the electrical conductivity of the organic electronic device is continuously changed, and the state (
conductivity).

印加電圧パターンは特に限定されるものではなく、例え
ば矩形波、三角波、のこぎり波等が挙げられる。例えば
、本発明に関する素子に矩形波を印加した場合、矩形波
の波高(パルス高)を増加させるに従い、矩形波印加後
の素子の抵抗値も増加させることができる。しかも、パ
ルス高に対して一義的に素子抵抗が決まり、その各抵抗
状態は矩形波印加後も保存されている。
The applied voltage pattern is not particularly limited, and includes, for example, a rectangular wave, a triangular wave, a sawtooth wave, and the like. For example, when a rectangular wave is applied to an element according to the present invention, as the wave height (pulse height) of the rectangular wave increases, the resistance value of the element after the rectangular wave is applied can also be increased. Moreover, the element resistance is uniquely determined by the pulse height, and each resistance state is preserved even after the rectangular wave is applied.

印加電圧の波高(パルス高)も特に限定されないが、2
v〜12Vの範囲で変化させることが本発明に関する素
子を安定に駆動させるためには好ましく、特に2V〜I
OVの範囲で変化させることがより好ましい。
The wave height (pulse height) of the applied voltage is also not particularly limited, but 2
In order to stably drive the element related to the present invention, it is preferable to change the voltage within the range of 2V to 12V.
It is more preferable to change it within the range of OV.

また、電圧掃引時間(パルス幅)も特に限定されない。Moreover, the voltage sweep time (pulse width) is also not particularly limited.

ここで、本発明に関する有機電子素子は低抵抗な状態(
103Ωオーダー)から高抵抗な状態(1o7Ω以上)
までとることが可能であるため、本発明による有機電子
素子の駆動法を行う場合、有機電子素子の初期状態を電
圧印加により低抵抗な状態か高抵抗な状態にしておくこ
とが望ましい。素子の特性上、アナログ記録させるため
には、初期状態が低抵抗の方がより好ましい。この時の
印加電圧パターン、波高、電圧掃引時間は、特に制限さ
れないが、低抵抗状態とする時は三角波、高抵抗状態と
する時は矩形波を印加するのが好適である。
Here, the organic electronic device according to the present invention is in a low resistance state (
103Ω order) to high resistance state (1o7Ω or more)
Therefore, when performing the method for driving an organic electronic device according to the present invention, it is desirable to set the initial state of the organic electronic device to a low resistance state or a high resistance state by applying a voltage. Due to the characteristics of the element, it is more preferable for the initial state to have a low resistance for analog recording. The applied voltage pattern, wave height, and voltage sweep time at this time are not particularly limited, but it is preferable to apply a triangular wave when creating a low resistance state, and a rectangular wave when creating a high resistance state.

[実施例] 実施例1 以下に示されるようにして、第1図に示されるような有
機電子素子を作製した。尚、第1図において、1は基板
、2は上部電極、3は下部(下地)電極、4は単分子累
積膜層(LB膜層)である。
[Example] Example 1 An organic electronic device as shown in FIG. 1 was produced as shown below. In FIG. 1, 1 is a substrate, 2 is an upper electrode, 3 is a lower (underlying) electrode, and 4 is a monomolecular cumulative film layer (LB film layer).

ヘキサメチルジシラザン(HMDS)の飽和蒸気中に一
昼夜放置して疎水処理したガラス基板1 (コーニング
社製#7059)上に、下引き層としてCrを真空蒸着
法により厚さ500人堆積させ、更にAuを同法により
蒸着(膜厚i ooo人)し、幅1mmのストライブ状
の下地電極3を形成した。係る基板を担体としポリイミ
ド単分子膜4を以下の如く形成した。
On a glass substrate 1 (#7059 manufactured by Corning) which had been hydrophobically treated by being left in saturated vapor of hexamethyldisilazane (HMDS) overnight, Cr was deposited as an undercoat layer to a thickness of 500 by vacuum evaporation, and then Au was deposited by the same method (to a film thickness of i ooo) to form a striped base electrode 3 with a width of 1 mm. Using such a substrate as a carrier, a polyimide monomolecular film 4 was formed as follows.

ポリアミック酸(分子量約20万)を濃度1×10−3
%(g/g)で溶かしたジメチルアセトアミド溶液を、
水温20℃の純水の水相上に展開し、水面上に単分子膜
を形成した。この単分子膜の表面圧を25 m N /
 mまで高め、更にこれを一定に保ちながら、前記基板
を水面を横切る方向に5mm/minで移動させて浸漬
、引き上げを行い、Y型単分子膜の累積を行った。係る
操作を繰り返すことにより、12層の累積膜を形成した
Polyamic acid (molecular weight approximately 200,000) at a concentration of 1 x 10-3
% (g/g) of dimethylacetamide solution,
It was spread on an aqueous phase of pure water at a water temperature of 20°C to form a monomolecular film on the water surface. The surface pressure of this monomolecular film was set to 25 mN/
m, and while keeping this constant, the substrate was moved across the water surface at a rate of 5 mm/min, immersed, and pulled up to accumulate a Y-type monomolecular film. By repeating this operation, a 12-layer cumulative film was formed.

更にこれらの膜を300℃で10分加熱を行うことによ
りポリイミドにした。
Further, these films were heated at 300° C. for 10 minutes to form polyimide.

次に係る膜面上に下地電極3と直交するよ1に幅1mm
のストライブ状のAJ2電極(膜月1500人)を基板
温度を室温以下に保持し真芭蒸着し上部電極2とした。
Next, a width of 1 mm is placed on the film surface perpendicular to the base electrode 3.
A strip-shaped AJ2 electrode (1,500 membranes) was deposited on the substrate to form the upper electrode 2 while keeping the substrate temperature below room temperature.

以上のように作製した有機電子素子の上下電躬間に第2
図のような電圧掃引時間Looms、 注高−7V(A
℃電極を生型とした)の三角波を印加して素子を低抵抗
状態にした。その後さらに第3図のようなパルス幅10
μs、パルス高■1(V+は負)[V]の矩形波を印加
した。
There was a second
Voltage sweep time Looms as shown in the figure, Note height -7V (A
A triangular wave of 0.3 °C was applied (using a green electrode) to bring the element into a low resistance state. After that, the pulse width is increased to 10 as shown in Figure 3.
A rectangular wave with a pulse height of 1 (V+ is negative) [V] was applied.

パルス高vIの異なる第3図のような矩形波印加後た後
の素子抵抗R,[Ω〕を測定したところ、パルス高vI
の絶対値IV11とパルス漕■1の矩形波印加後の素子
抵抗R1の関係が第4図のようになった。すなわち、パ
ルス高V、の紹対値1■、1を連続的に変化させるにし
たがい矩形波印加後の素子抵抗R1は、連続的に増加し
た。例えば、第3図に示した様に、パルス高が一4V程
度の矩形波を印加した時、矩形波印加後の素子抵抗はI
KΩのオーダーとなり、パルス高を一5V程度にすると
素子抵抗はIOKΩとなった。また、パルス高を−4〜
−5■間で変化させると矩形波印加後の素子抵抗はIK
Ω〜IOKΩまで連続的に変化した。さらにパルス高を
一6V、−7V、・・・と1■づつ変化させてい(と矩
形波印加後の素子抵抗はおよそ1桁づつ大きくなり、パ
ルス高を一10V程度にすると素子抵抗は100MΩの
オーダーになり、パルス高を一10Vまで連続的に変化
させると矩形波印加後の素子抵抗は100MΩまで連続
的に変化した。このようにパルス高を一4■がら一10
Vの間で変化させると、素子抵抗はIKΩ程度から10
0MΩ程度の間で連続的に変化させることができ、なお
かつパルス高に一対一に対応した素子抵抗をとらせるこ
とができる。また、その状態(導電率)はメモリー性を
有していた。
When we measured the element resistance R, [Ω] after applying a rectangular wave as shown in Fig. 3 with different pulse heights vI, we found that the pulse height vI
The relationship between the absolute value IV11 of IV11 and the element resistance R1 after application of the rectangular wave of pulse train 1 is as shown in FIG. That is, as the value 1 of the pulse height V was continuously changed, the element resistance R1 after application of the rectangular wave continuously increased. For example, as shown in Figure 3, when a rectangular wave with a pulse height of about 14 V is applied, the element resistance after applying the rectangular wave is I
The resistance was on the order of KΩ, and when the pulse height was set to about -5V, the element resistance became IOKΩ. Also, set the pulse height to -4~
-5■, the element resistance after applying a square wave is IK
It changed continuously from Ω to IOKΩ. Furthermore, by changing the pulse height in steps of -6V, -7V, etc., the element resistance increases by approximately one order of magnitude after applying the square wave.If the pulse height is set to about -10V, the element resistance increases to 100MΩ. When the pulse height was changed continuously from -10V to 100MΩ, the element resistance after applying the square wave changed continuously to 100MΩ.In this way, the pulse height was changed from -4 to -10V.
When varied between V, the element resistance varies from about IKΩ to 10
It is possible to continuously change the resistance between approximately 0 MΩ, and to have an element resistance that corresponds one-to-one to the pulse height. Moreover, the state (electrical conductivity) had memory properties.

以上のように素子に印加する電圧値を連続的に変化させ
ることにより、素子の抵抗値を連続的に変化させ、その
状態を保存しておくことができた。
By continuously changing the voltage value applied to the element as described above, it was possible to continuously change the resistance value of the element and maintain that state.

実施例2 本実施例は実施例1と同様の方法で作成した素子を用い
た。上下電極間に第5図のようなパルス幅10tLs、
パルス高−7V(Aj2電極を+側とした)の矩形波を
印加し、素子を高抵抗状態にした。その後、第3図のよ
うな矩形波を印加した。
Example 2 In this example, an element produced in the same manner as in Example 1 was used. Between the upper and lower electrodes, a pulse width of 10tLs as shown in Fig. 5,
A rectangular wave with a pulse height of −7 V (with the Aj2 electrode on the + side) was applied to bring the element into a high resistance state. Thereafter, a rectangular wave as shown in FIG. 3 was applied.

第3図のような矩形波を印加した後の素子抵抗R2を測
定したところ、パルス高■、の絶対値V+  l  [
V] とパルス高V、の矩形波印加後の素子抵抗Rg[
Ω]との関係が第6図のようになった。すなわち、パル
ス高vIの絶対値を1■より増加させるに従い、矩形波
印加後の素子抵抗R,は3vで非常に急激に低下し、3
■以上になると、抵抗値R2は、連続的に増加した。例
えば、第3図に示した様にパルス高が一3Vの矩形波を
印加すると、矩形波印加後の素子抵抗は1゜MΩ程度か
ら急激にIKΩ程度に変化する。パルス高を一4vにす
ると素子抵抗はさらに小さくなり最小(IKΩ程度)と
なる。またパルス高を一2Vから一4V間で変化させる
と、矩形波印加後の素子抵抗はIOKΩからIKΩまで
連続的に変化した。さらにパルス高を一4■より一5V
When we measured the element resistance R2 after applying a rectangular wave as shown in Fig. 3, we found that the absolute value of the pulse height ■, V+ l [
V] and pulse height V, the element resistance Rg[
Ω], as shown in Figure 6. That is, as the absolute value of the pulse height vI is increased from 1 to 1, the element resistance R after applying the square wave decreases very rapidly at 3V, and becomes 3V.
When the resistance value R2 exceeded (2), the resistance value R2 increased continuously. For example, when a rectangular wave with a pulse height of 13 V is applied as shown in FIG. 3, the element resistance after application of the rectangular wave rapidly changes from about 1.0 MΩ to about IKΩ. When the pulse height is set to -4V, the element resistance further decreases to the minimum (approximately IKΩ). Furthermore, when the pulse height was varied between 12 V and 14 V, the element resistance after application of the rectangular wave continuously varied from IOKΩ to IKΩ. Furthermore, increase the pulse height from 14■ to 15V.
.

−6V、・・・とIVづつ変化させると矩形波印加後の
素子抵抗は、実施例1と同様に、およそ1桁づつ太き(
なり、パルス高を一7v程度にすると素子抵抗はIMΩ
のオーダーになり、パルス高を一7Vまで連続的に変化
させると矩形波印加後の素子抵抗はIMΩまで連続的に
変化した。このようにパルス高を一2Vから一4■の間
で変化させると、素子抵抗は10MΩ程度からIKΩ程
度の間で連続的に、しかも急激に変化し、パルス高を一
4Vから一7■の間で変化させると、素子抵抗はIKΩ
程度からIMΩ程度の間で連続的に変化させることがで
き、なおかつパルス高に一対一に対応した素子抵抗をと
らせることができる。また、その状態(導電率)はメモ
リー性を有していた。
When changing IV increments to -6V, ..., the element resistance after applying the square wave becomes thicker by approximately one digit (
When the pulse height is set to about -7V, the element resistance becomes IMΩ.
When the pulse height was continuously changed to -7V, the element resistance after applying the square wave was continuously changed to IMΩ. When the pulse height is changed from 12V to 14cm in this way, the element resistance changes continuously and rapidly from about 10MΩ to about IKΩ, and when the pulse height is changed from 14V to 17cm. When the element resistance is changed between IKΩ
It is possible to continuously change the resistance between approximately 1.0 and IMΩ, and also to have an element resistance that corresponds one-to-one to the pulse height. Moreover, the state (electrical conductivity) had memory properties.

以上のように素子に印加する電圧値を連続的に変化させ
ることにより、素子の抵抗値を非常に急激に変化させた
り、素子の抵抗値を連続的に変化させ、かつ、その状態
を保存してお(ことができた。
By continuously changing the voltage value applied to the element as described above, you can change the resistance value of the element very rapidly, or change the resistance value of the element continuously and preserve its state. I was able to do it.

実施例3 本実施例は実施例1と同じ素子を用いた。素子を低抵抗
状態にするために上下電極間に第7図のような電圧掃引
時間Looms、波高7V (Aβ電極を+側とした)
の三角波を印加した。さらに第8図のようなパルス幅1
0μs、パルス高■2[V]  (V、は正)の矩形波
を印加した。この後素子抵抗R,[Ω]を測定した。パ
ルス高v2とパルス高■2の矩形波印加後の素子抵抗R
3の関係は第9図のようになった。
Example 3 In this example, the same element as in Example 1 was used. In order to bring the element into a low resistance state, a voltage sweep time Looms and a wave height of 7V were applied between the upper and lower electrodes as shown in Figure 7 (the Aβ electrode was set to the + side).
A triangular wave was applied. Furthermore, the pulse width 1 as shown in Figure 8
A rectangular wave of 0 μs and a pulse height of 2 [V] (V: positive) was applied. After that, the element resistance R, [Ω] was measured. Element resistance R after applying a square wave of pulse height v2 and pulse height ■2
The relationship between 3 is as shown in Figure 9.

すなわち、パルス高■2を増加させるにしたがい、矩形
波印加後の素子抵抗R3は連続的に増加した。例えば第
8図に示した様に、パルス高が+3V程度の矩形波を印
加すると矩形波印加後の素子抵抗はIOKΩのオーダー
となり、パルス高を4V、5V、・・・と1vづつ変化
させていくと素子抵抗は100にΩ程度となり、パルス
高をIOV程度にすると、素子抵抗はIOMΩ程度とな
る。また、パルス高を2vからIOVの間で変化させる
と、素子抵抗はIOKΩ程度からIOMΩ程度の間で連
続的に変化させることができた。このように、パルス高
を2vからIOVの間で変化させると、矩形波印加後の
素子抵抗はIOKΩ程度から10MΩ程度の間で連続的
に変化させることができ、なおかつパルス高に一対一に
対応した素子抵抗をとらせることができる。
That is, as the pulse height 2 was increased, the element resistance R3 after application of the rectangular wave continuously increased. For example, as shown in Figure 8, when a rectangular wave with a pulse height of about +3V is applied, the element resistance after applying the rectangular wave is on the order of IOKΩ, and when the pulse height is changed in 1v increments of 4V, 5V, etc. As the pulse height increases, the element resistance becomes approximately 100Ω, and when the pulse height is set to approximately IOV, the element resistance becomes approximately IOMΩ. Further, when the pulse height was varied between 2V and IOV, the element resistance could be continuously varied from about IOKΩ to about IOMΩ. In this way, by changing the pulse height between 2V and IOV, the element resistance after applying the square wave can be continuously changed from about IOKΩ to about 10MΩ, and it corresponds one-to-one to the pulse height. It is possible to obtain a certain element resistance.

また、その状態(導電率)はメモリー性を有していた。Moreover, the state (electrical conductivity) had memory properties.

以上のように素子に印加する電圧値を連続的に変化させ
ることにより、素子の抵抗値を連続的に変化させ、その
状態を保存しておくことができた。
By continuously changing the voltage value applied to the element as described above, it was possible to continuously change the resistance value of the element and maintain that state.

実施例4 本実施例は実施例1と同じ素子を用いた。素子を高抵抗
状態にするために上下電極間に第10図のようなパルス
幅101.LS、パルス高7V (A9電極を+側とし
た)の矩形波を印加した。さらに第8図のようなパルス
幅10μs、パルス高■2[V]の矩形波を印加した。
Example 4 In this example, the same element as in Example 1 was used. In order to bring the device into a high resistance state, a pulse width of 101.0 mm is applied between the upper and lower electrodes as shown in FIG. LS, a rectangular wave with a pulse height of 7 V (with the A9 electrode on the + side) was applied. Furthermore, a rectangular wave with a pulse width of 10 μs and a pulse height of 2 [V] as shown in FIG. 8 was applied.

その後素子抵抗R4[Ω]を測定した。パルス高■2と
パルス高■2の矩形波印加後の素子抵抗R4の関係は第
11図のようになった。
Thereafter, the element resistance R4 [Ω] was measured. The relationship between the pulse height 2 and the element resistance R4 after the application of the rectangular wave of pulse height 2 was as shown in FIG.

すなわち、パルス高■2を増加させるに従い矩形波印加
後の素子抵抗は一度非常に急激に減少しパルス高が4v
以上になると、連続的に増加した。第10図のように、
パルス高が2v程度の矩形波を印加すると矩形波印加後
の素子抵抗は10MΩのオーダーであるが、パルス高を
3■にすると素子抵抗は急激に減少し、パルス高が4V
になると素子抵抗は最小となり(100KΩのオーダー
)、パルス高を4v以上にすると、素子抵抗は急激に増
加し、パルス高が6v程度となると素子抵抗は再びIO
MΩのオーダーとなり、パルス高が9v程度になると素
子抵抗は100MΩのオーダーとなる。また、パルス高
を1vから9vの間で変化させると、素子抵抗は10’
Ωのオーダーから107Ωのオーダーの間で連続的に変
化させることができた。このように、パルス高を2Vか
ら4vの間で変化させると、素子抵抗は10MΩ程度か
ら10OKΩ程度の間で連続的に、しかも急激に変化し
、パルス高を4vから9vの間で変化させると素子抵抗
は100KΩ程度から10MΩ程度の間で連続的にしか
も急激に変化させることができ、なおかつパルス高に一
対一に対応した素子抵抗をとらせることができる。
In other words, as the pulse height 2 increases, the element resistance after applying the square wave once decreases very rapidly until the pulse height reaches 4V.
Above that, it increased continuously. As shown in Figure 10,
When a square wave with a pulse height of about 2V is applied, the element resistance after applying the square wave is on the order of 10MΩ, but when the pulse height is set to 3■, the element resistance decreases rapidly, and the pulse height is 4V.
When the pulse height reaches 4V, the element resistance becomes the minimum (on the order of 100KΩ), and when the pulse height is increased to 4V or more, the element resistance increases rapidly.When the pulse height becomes about 6V, the element resistance becomes IO again.
The resistance is on the order of MΩ, and when the pulse height becomes about 9V, the element resistance becomes on the order of 100MΩ. Also, when the pulse height is changed between 1v and 9v, the element resistance becomes 10'
It was possible to continuously change the resistance between the order of Ω and 10 7 Ω. In this way, when the pulse height is changed between 2V and 4V, the element resistance changes continuously and rapidly between about 10MΩ and 10OKΩ, and when the pulse height is changed between 4V and 9V, the element resistance changes continuously and rapidly between about 10MΩ and 10OKΩ. The element resistance can be changed continuously and rapidly from about 100KΩ to about 10MΩ, and the element resistance can be made to correspond one-to-one to the pulse height.

また、その状態(導電率)はメモリー性を有していた。Moreover, the state (electrical conductivity) had memory properties.

以上のように素子に印加する電圧値を連続的に変化させ
ることにより、素子の抵抗値を連続的に変化させ、その
状態を保存してお(ことができた。
By continuously changing the voltage value applied to the element as described above, it was possible to continuously change the resistance value of the element and preserve that state.

実施例5 実施例1と同様の方法で、基板1の処理、下地電極3の
形成を行なった基板に、以下の方法でスクアリリウムビ
ス−6−オクチルアズレン(SOAZ)の単分子膜の累
積を行なった。累積方法を次に記す。
Example 5 A monomolecular film of squarylium bis-6-octyl azulene (SOAZ) was accumulated on a substrate on which the substrate 1 was treated and the base electrode 3 was formed in the same manner as in Example 1, using the following method. Ta. The accumulation method is described below.

5OAZを濃度0.2mg/mj2で溶かしたりooホ
ルム溶液を、K HCOs テp H6、71i調整し
たCdCJ2.濃度5X10−’mo℃/I2、水温2
0℃の水相上に展開し、水面上に単分子用を形成した。
5OAZ was dissolved at a concentration of 0.2 mg/mj2 or an oo form solution was prepared with K HCOs tep H6, 71i adjusted CdCJ2. Concentration 5X10-'mo℃/I2, water temperature 2
It was developed on an aqueous phase at 0°C to form a single molecule on the water surface.

溶媒の蒸発除去を待って係る単分日膜の表面圧を20 
m N / mまで高め、更にこれ抱一定に保ちながら
、前記基板を水面を横切る方nに速度10mm/分で静
かに浸漬した後、続いて5mm/分で静かに引き上げ、
2層のY型単分9膜の累積を行なった。係る操作を適当
回数繰り適すことによって、前言己基板上に12層の累
積膜奄形成したものを作製した。
After waiting for the evaporation of the solvent, the surface pressure of the membrane was reduced to 20
mN/m, and while keeping this constant, the substrate was gently immersed in a direction across the water surface at a speed of 10 mm/min, and then gently pulled up at a rate of 5 mm/min.
A two-layer Y-type single-layer 9 film accumulation was performed. By repeating this operation an appropriate number of times, a 12-layer cumulative film was formed on the substrate.

次に、係る有機薄膜4上に実施例1と同様に上部電極2
としてAfiを蒸着した。
Next, an upper electrode 2 is placed on the organic thin film 4 as in Example 1.
Afi was deposited as a.

以上のように作成した有様電子素子について、実施例1
から実施例4で行ったのと同じ方法で電圧の絶対値と、
素子抵抗の関係について調べたところ、同じような結果
が得られた。
Example 1 Regarding the tangible electronic device created as described above
From , the absolute value of the voltage is calculated using the same method as in Example 4, and
When investigating the relationship between element resistance, similar results were obtained.

すなわち、電圧値の絶対値を増加させるに従い、素子抵
抗は連続的に増加−した。また、その状態(導電率)は
メモリー性を有していた。
That is, as the absolute value of the voltage value increased, the element resistance increased continuously. Moreover, the state (electrical conductivity) had memory properties.

以上述べてきた実施例中では有機薄膜の形成にLB法を
使用してきたが、前述の如(極めて薄(均一な絶縁性の
有機薄膜が作成できる成膜法であればLB法に限らず使
用可能である。具体的には真空蒸着法や電解重合法、C
VD法等が挙げられ使用可能な有機材料の範囲が広がる
In the examples described above, the LB method was used to form the organic thin film, but as mentioned above, any film formation method that can create an extremely thin (uniform insulating) organic thin film can be used other than the LB method. Possible.Specifically, vacuum evaporation method, electrolytic polymerization method, C
The range of usable organic materials is expanded, including the VD method.

電極の形成に関しても既に述べている様に、有機薄膜層
上に均一な薄膜を作成しうる成膜法であれば使用可能で
あり、真空蒸着法やスパッタ法に限られるものではない
Regarding the formation of the electrode, as already mentioned, any film forming method that can form a uniform thin film on the organic thin film layer can be used, and is not limited to vacuum evaporation or sputtering.

更に基板材料やその形状も本発明は何ら限定するもので
はない。
Furthermore, the present invention does not limit the substrate material or its shape in any way.

又、印加電圧パターンは矩形波について述べてきたが、
三角波やのこぎり波等でもよく、本発明は何ら限定する
ものではない。
Also, although we have described the applied voltage pattern as a rectangular wave,
A triangular wave, a sawtooth wave, etc. may be used, and the present invention is not limited to this in any way.

[発明の効果コ ■ 本発明の有機電子素子の駆動法により、素子の導電
率を連続的に変化させ、その状態にメモリー性を持たせ
ることが可能となった。そのため、1つの素子に非常に
多くのメモリー状態を実現することができ、高密度記録
が可能となった。その結果多値記録(アナログ記録)が
可能となった。
[Effects of the Invention (2) The method for driving an organic electronic device of the present invention makes it possible to continuously change the conductivity of the device and give the state memory properties. Therefore, a large number of memory states can be realized in one element, making high-density recording possible. As a result, multi-value recording (analog recording) became possible.

■ 本発明により A8分子オーダーで膜厚を制御できる。■ According to the present invention Film thickness can be controlled on the order of A8 molecules.

B、基板の材質に制約されない。B. Not restricted by the material of the substrate.

C9素子構成材料の自由度が高い。There is a high degree of freedom in selecting the C9 element constituent materials.

D、将来、分子エレクトロニクス、バイオエレクトロニ
クスとの親和性が高い。
D. Highly compatible with molecular electronics and bioelectronics in the future.

という優れた性質を有する有機電子素子を、多値記録(
アナログ記録)素子として利用できるようになった。
Multi-value recording (
It can now be used as an analog recording (analog recording) element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる有機電子素子の構成の概略を示
す図。第2図は実施例1で用いた印加電圧パターン、第
3図は実施例1および2で用いた印加電圧パターン、第
4図は実施例1での電圧値と素子抵抗の関係を示すグラ
フ、第5図は実施例2で用いた印加電圧パターン、第6
図は実施例2での電圧値と素子抵抗の関係を示すグラフ
、第7図は実施例3で用いた印加電圧パターン、第8図
は実施例3および4で用いた印加電圧パターン、第9図
は実施例3での電圧値と素子抵抗の関係を示すグラフ、
第10図は実施例4で用いた印加電圧パターン、第11
図は実施例4での電圧値と素子抵抗の関係を示すグラフ
である。
FIG. 1 is a diagram schematically showing the structure of an organic electronic device used in the present invention. FIG. 2 is an applied voltage pattern used in Example 1, FIG. 3 is an applied voltage pattern used in Examples 1 and 2, and FIG. 4 is a graph showing the relationship between voltage value and element resistance in Example 1. Figure 5 shows the applied voltage pattern used in Example 2;
The figure is a graph showing the relationship between voltage value and element resistance in Example 2, Figure 7 is the applied voltage pattern used in Example 3, Figure 8 is the applied voltage pattern used in Examples 3 and 4, and Figure 9 is the applied voltage pattern used in Examples 3 and 4. The figure is a graph showing the relationship between voltage value and element resistance in Example 3,
Figure 10 shows the applied voltage pattern used in Example 4;
The figure is a graph showing the relationship between voltage value and element resistance in Example 4.

Claims (4)

【特許請求の範囲】[Claims] (1)一対の電極間に有機薄膜を挟持する有機電子素子
の電極間に印加する電圧値を連続的に変化させることに
より、該電極間の導電率を連続的に変化させ、なおかつ
その状態を保存させることを特徴とする有機電子素子の
駆動法。
(1) By continuously changing the voltage value applied between the electrodes of an organic electronic device in which an organic thin film is sandwiched between a pair of electrodes, the conductivity between the electrodes can be continuously changed, and the state can be changed continuously. A method for driving an organic electronic device characterized by storage.
(2)前記電圧値の絶対値を2Vから12Vの範囲で変
化させることを特徴とする請求項1記載の有機電子素子
の駆動法。
(2) The method for driving an organic electronic device according to claim 1, characterized in that the absolute value of the voltage value is changed in the range of 2V to 12V.
(3)前記有機薄膜の膜厚が4Åから1000Åの範囲
であることを特徴とする素子の請求項1記載の有機電子
素子の駆動法。
(3) The method for driving an organic electronic device according to claim 1, wherein the organic thin film has a thickness in the range of 4 Å to 1000 Å.
(4)前記有機薄膜が少なくとも1種のπ電子系を有す
る有機化合物で構成されていることを特徴とする素子の
請求項1記載の有機電子素子の駆動法。
(4) The method for driving an organic electronic device according to claim 1, wherein the organic thin film is composed of an organic compound having at least one type of π-electron system.
JP2268373A 1990-10-08 1990-10-08 Driving method for organic electronic element Pending JPH04145664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268373A JPH04145664A (en) 1990-10-08 1990-10-08 Driving method for organic electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268373A JPH04145664A (en) 1990-10-08 1990-10-08 Driving method for organic electronic element

Publications (1)

Publication Number Publication Date
JPH04145664A true JPH04145664A (en) 1992-05-19

Family

ID=17457597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268373A Pending JPH04145664A (en) 1990-10-08 1990-10-08 Driving method for organic electronic element

Country Status (1)

Country Link
JP (1) JPH04145664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055180A (en) * 1997-06-17 2000-04-25 Thin Film Electronics Asa Electrically addressable passive device, method for electrical addressing of the same and uses of the device and the method
US6730930B2 (en) 2000-08-09 2004-05-04 Infineon Technologies, Ag Memory element and method for fabricating a memory element
WO2004102579A1 (en) * 2003-05-13 2004-11-25 Advanced Micro Devices, Inc. Erasing and programming an organic memory device and methods of operating and fabricating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055180A (en) * 1997-06-17 2000-04-25 Thin Film Electronics Asa Electrically addressable passive device, method for electrical addressing of the same and uses of the device and the method
US6730930B2 (en) 2000-08-09 2004-05-04 Infineon Technologies, Ag Memory element and method for fabricating a memory element
WO2004102579A1 (en) * 2003-05-13 2004-11-25 Advanced Micro Devices, Inc. Erasing and programming an organic memory device and methods of operating and fabricating

Similar Documents

Publication Publication Date Title
JP2556492B2 (en) Reproduction device and reproduction method
JP2556491B2 (en) Recording device and recording method
US4939556A (en) Conductor device
EP0551964B1 (en) Recording and reproducing device
EP0412829B1 (en) Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such a recording medium
JPH01245445A (en) Recording and detecting device
CA2587051A1 (en) Organic-complex thin film for nonvolatile memory applications
EP0305033A2 (en) Recording device and reproducing device
JPH04145664A (en) Driving method for organic electronic element
Dinglasan et al. Differential conductance switching of planar tunnel junctions mediated by oxidation/reduction of functionally protected ferrocene
JP2694531B2 (en) Driving method of MIM type element
JPS6396956A (en) Switching element
US5270965A (en) Method of driving device having metal-insulator-metal(mim)structure
JP2728123B2 (en) Switching element and manufacturing method thereof
JPS63204531A (en) Reproducing device
JPH0620074A (en) Electronic element for neurocomputer
JPS63160389A (en) Switching device
JPH01245577A (en) Switching element
JPH01245575A (en) Switching element
JP2859652B2 (en) Recording / reproducing method and recording / reproducing apparatus
JPH0291836A (en) Device and method for recording and reproducing
JPH0371447A (en) Recording medium
JPH07121917A (en) Recording medium, manufacture thereof and recording/ reproducing apparatus using the medium
JPH01165165A (en) Switching device
JPS63296273A (en) Switching device