JPH01300217A - Light beam scanning optical system - Google Patents

Light beam scanning optical system

Info

Publication number
JPH01300217A
JPH01300217A JP63130846A JP13084688A JPH01300217A JP H01300217 A JPH01300217 A JP H01300217A JP 63130846 A JP63130846 A JP 63130846A JP 13084688 A JP13084688 A JP 13084688A JP H01300217 A JPH01300217 A JP H01300217A
Authority
JP
Japan
Prior art keywords
deflector
light beam
spherical mirror
cylindrical lens
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63130846A
Other languages
Japanese (ja)
Other versions
JP2615850B2 (en
Inventor
Muneo Kuroda
黒田 宗男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP63130846A priority Critical patent/JP2615850B2/en
Priority to US07/342,344 priority patent/US4908708A/en
Publication of JPH01300217A publication Critical patent/JPH01300217A/en
Application granted granted Critical
Publication of JP2615850B2 publication Critical patent/JP2615850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To correct an error due to the surface tilt of each reflecting surface of a deflector and to obtain excellent distortion characteristics and image plane flatness by interposing a spherical mirror and a cylindrical lens in the optical path from the deflector to the surface of a photosensitive body under specific conditions. CONSTITUTION:Luminous flux emitted by a light source is scanned by the deflector at an equal angular velocity, reflected by the spherical mirror 20, and converged on the surface of the photosensitive body through the cylindrical lens 7. In this case, inequalities I hold. In the inequalities I, RM is the radius of curvature of the spherical mirror, (s) is the distance from the reflection point of the luminous flux toward the center of a scanning area by the deflector to the convergence point after deflector reflection, and (d) is the distance from said luminous flux reflection point to the spherical mirror. Further, d2 is the center thickness of the cylindrical lens 7 and d3 is the distance from the projection surface of the cylindrical lens 7 to the convergence surface. Consequently, the error due to the surface tilt of the deflector can be corrected and the excellent distortion characteristics and excellent image plane flatness are obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ビーム走査光学系、特にレーザビーム・プ
リンタやファクシミリ等に組み込まれ、画像情報を乗せ
た光束を感光体上に集光させる光ビーム走査光学系の構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a light beam scanning optical system, particularly a light beam that is incorporated into a laser beam printer, facsimile, etc., and focuses a light beam carrying image information onto a photoreceptor. Regarding the structure of a scanning optical system.

更米■鼓貧1」の課題 一般に、レーザビーム・プリンタやファクシミリで使用
されている光ビーム走査光学系は、基本的には、光源と
しての半導体レーザ、ポリゴンミラー、ガルバノミラ−
等の偏向器、rθレンズにより構成されている。偏向器
は半導体レーザから発せられた光束を等角速度で走査す
るものであり、そのままでは集光面で主走査方向中心部
から両端部にわたって走査速度に差を生じ、等質な画像
が得られない。rθレンズは、この様な走査速度差を補
正するために設置されている。
In general, the light beam scanning optical system used in laser beam printers and facsimile machines basically consists of a semiconductor laser as a light source, a polygon mirror, a galvano mirror, etc.
It is composed of a deflector such as, and an rθ lens. A deflector scans the light beam emitted from a semiconductor laser at a constant angular velocity, and if left as is, there will be a difference in scanning speed from the center in the main scanning direction to both ends of the light condensing surface, making it impossible to obtain a uniform image. . The rθ lens is installed to correct such a difference in scanning speed.

ところで、fθレンズは種々の凹レンズ、凸レンズ等を
組み合わせたものであり、レンズ設計が極めて複雑で、
研摩面数が多くて加工上の精度向上が図り難く、高価で
もある。しかも、透光性の良好な材質を選択しなければ
ならないという材質面からの制約もある。
By the way, the fθ lens is a combination of various concave lenses, convex lenses, etc., and the lens design is extremely complicated.
The number of surfaces to be polished is large, making it difficult to improve machining accuracy, and it is also expensive. Moreover, there are also constraints from the material standpoint, such as the need to select a material with good translucency.

そのため、従来では、fθレンズに代えて、楕円面ミラ
ーを使用すること(特開昭54−123040号公報)
、放物面ミラーを使用すること(特公昭55−3612
7号公報)、凹面反射鏡を使用すること(特開昭61−
173212号公報)が提案されている。しかしながら
、楕円面ミラーや放物面ミラーでは加工自体及び加工精
度を上げることが困難であるという問題点を有している
Therefore, conventionally, an ellipsoidal mirror is used instead of the fθ lens (Japanese Patent Application Laid-open No. 123040/1983).
, using a parabolic mirror (Special Publication No. 55-3612)
7), using a concave reflecting mirror (Japanese Patent Application Laid-open No. 1983-
173212) has been proposed. However, ellipsoidal mirrors and parabolic mirrors have a problem in that it is difficult to process them and to improve their processing accuracy.

そこで、本発明の課題は、高価で制約の多いfθレンズ
や従来提案された放物面ミラー等に代えて、より加工が
容易で加工精度を高めることができる走査速度補正手段
を採用し、光学系のコンパクト化を図り、なおかつ集光
点での主走査方向に垂直な像面の湾曲を小さくし、高画
角化、高密度化を可能にすると共に、偏向器の面倒れ誤
差を効果的に補正することにある。即ち、偏向器として
ポリゴンミラー等の回転多面鏡を使用する場合、各面相
互の垂直度誤差(面倒れ誤差)が生じていると、感光体
面での走査線が副走査方向にずれを生じることとなる。
Therefore, an object of the present invention is to adopt a scanning speed correction means that is easier to process and can improve processing accuracy, instead of an expensive and highly restricted f-theta lens or a parabolic mirror that has been proposed in the past. The system has been made more compact, and the curvature of the image plane perpendicular to the main scanning direction at the condensing point has been reduced, enabling a higher angle of view and higher density, as well as effectively reducing deflector surface tilt errors. The goal is to correct it. In other words, when using a rotating polygon mirror such as a polygon mirror as a deflector, if there is a perpendicularity error (surface inclination error) between each surface, the scanning line on the photoreceptor surface will shift in the sub-scanning direction. becomes.

本発明はこの様な面倒れ誤差によるピッチむらをも是正
しようとするものである。
The present invention is intended to correct pitch irregularities caused by such surface tilt errors.

課題を解決するための手段 以上の課題を解決するため、本発明に係る光ビーム走査
光学系は、 (a)強度変調された光束を発生する光源と、(b)前
記光源から放射された光束を走査方向と同一平面の直線
状に収束させる手段と、(C)集光線付近に置かれ、前
記収束光束を等角速度で走査する偏向器と、 (d)前記偏向器で走査された光束を折り返して感光体
面上に集光させる球面ミラーと、(e)前記球面ミラー
とその集光点との間に配置されたシリンドリカルレンズ
とを備え、(f)次の式を満足することを特徴とする。
Means for Solving the Problems In order to solve the above problems, a light beam scanning optical system according to the present invention includes: (a) a light source that generates an intensity-modulated light beam; and (b) a light beam emitted from the light source. (C) a deflector placed near the condensing line and scanning the converged light beam at a constant angular velocity; (d) a means for converging the light beam scanned by the deflector into a straight line on the same plane as the scanning direction; It is characterized by comprising: a spherical mirror that is folded back to condense light onto the photoreceptor surface; (e) a cylindrical lens disposed between the spherical mirror and its converging point; and (f) satisfying the following formula: do.

|s/Rml>0.5 0.15<d/ l RM l <0.45(ldg 
l + lag l )/ IRMI <0.45但し
、RM:球面ミラーの曲率半径 S :偏向器による走査域中心方向へ の光束反射点から偏向器反射後 の集光点までの距離 d:偏向器による走査域中心方向へ の光束反射点から球面ミラーま での距離 d2:シリンドリカルレンズの心厚 d3:シリンドリカルレンズの射出面 から集光面までの距離 忙−」 以上の構成において、光源から放射された光束は偏向器
によって等角速度に走査され、この走査光束は球面ミラ
ーで反射され、シリンドリカルレンズを介して感光体面
上に集光する。前記偏向器による主走査及び感光体面の
移動による副走査で画像が形成される。そして、球面ミ
ラーによる反射光束は主走査方向に対する走査速度を走
査域中心からその両端部にわたって均等となる様に補正
され、かつ、集光面においては仏画角番こわたって良好
な歪曲特性と、良好な像面平坦性が得られる。
|s/Rml>0.5 0.15<d/l RMl<0.45(ldg
l + lag l ) / IRMI <0.45 However, RM: Radius of curvature of the spherical mirror S: Distance from the point where the light beam is reflected toward the center of the scanning area by the deflector to the focal point after reflection by the deflector d: Deflector Distance d2 from the reflection point of the light beam toward the center of the scanning area to the spherical mirror: Core thickness d3 of the cylindrical lens: Distance from the exit surface to the condensing surface of the cylindrical lens. The light beam is scanned at a constant angular velocity by a deflector, this scanning light beam is reflected by a spherical mirror, and is focused onto the photoreceptor surface via a cylindrical lens. An image is formed by main scanning by the deflector and sub-scanning by moving the photoreceptor surface. The light flux reflected by the spherical mirror is corrected so that the scanning speed in the main scanning direction is equalized from the center of the scanning area to both ends thereof, and the condensing surface has good distortion characteristics across the French field angle. This provides excellent image plane flatness.

また、光源から放射された光束は走査方向(偏向面内)
の直線状に収束されて偏向器に入射される。そして、シ
リンドリカルレンズは球面ミラーで反射された光束を感
光体面上へ集光させ、偏向器の面倒れによる誤差を補正
すると共に、像面湾曲を小さくし、高画角化、高密度化
を可能にする。
Also, the light flux emitted from the light source is in the scanning direction (in the deflection plane)
is converged into a straight line and incident on the deflector. The cylindrical lens focuses the light beam reflected by the spherical mirror onto the photoreceptor surface, correcting errors caused by the tilt of the deflector surface, and reducing field curvature, allowing for a higher angle of view and higher density. Make it.

丈鼻例 以下、本発明に係る光ビーム走査光学系の実施例につき
、添付図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a light beam scanning optical system according to the present invention will be described with reference to the accompanying drawings.

[第1実施例] 第1図において、(1)は半導体レーザ、(6)はコリ
メータレンズ’、(7)はシリンドリカルレンズ、(1
0)はポリゴンミラー、(15)はビームスプリッタ、
(20)は球面ミラー、 (25)はシリンドリカルレ
ンズ、り30)はドラム状の感光体である。
[First Example] In FIG. 1, (1) is a semiconductor laser, (6) is a collimator lens', (7) is a cylindrical lens, and (1) is a collimator lens'.
0) is a polygon mirror, (15) is a beam splitter,
(20) is a spherical mirror, (25) is a cylindrical lens, and 30) is a drum-shaped photoreceptor.

半導体レーザ(1)は図示しない制御回路によって強度
変調され画像情報を乗せた発散光束を放射する。この発
散光束はコリメータレンズ(6)を通過することにより
収束光束に修正される。さらに、この収束光束はシリン
ドリカルレンズ(7) ヲ通Jすることにより走査方向
に、即ち、以下のポリゴンミラー(10)の反射面付近
に(偏向面内の)直線状に収束される。ポリゴンミラー
(10)は図示しないモータにて支軸(11)を中心に
矢印(a)方向に一定速度で回転駆動される。従って、
シリンドリカルレンズ(7)から射出された収束光束は
、ポリゴンミラー(10〉の面で連続的に反射され、等
角速度で走査される。この走査光束はビームスプリッタ
(15)を透過した後、球面ミラー(20)の凹面側に
て反射され、さらに、ビームスプリッタ(15)テ反射
された後シリンドリカルレンズ(25)を介して感光体
(30)上に集光される。このときの集光光束は感光体
(30)の軸方向に等速で走査され、これを主走査と称
する。また、感光体く30)は矢印(b)方向に一定速
度で回転駆動され、この回転による走査を副走査と称す
る。
A semiconductor laser (1) emits a diverging light beam that is intensity-modulated by a control circuit (not shown) and carries image information. This diverging light flux is corrected into a convergent light flux by passing through a collimator lens (6). Further, this convergent light beam passes through the cylindrical lens (7) and is converged in the scanning direction, that is, in the vicinity of the reflecting surface of the polygon mirror (10) described below (in the deflection plane) in a straight line. The polygon mirror (10) is driven to rotate at a constant speed in the direction of arrow (a) about a support shaft (11) by a motor (not shown). Therefore,
The convergent light beam emitted from the cylindrical lens (7) is continuously reflected on the surface of the polygon mirror (10) and scanned at a constant angular velocity. After passing through the beam splitter (15), this scanning light beam passes through the spherical mirror (10). (20), and is further reflected by the beam splitter (15), and then condensed onto the photoreceptor (30) via the cylindrical lens (25).At this time, the condensed luminous flux is The photoreceptor (30) is scanned at a constant speed in the axial direction of the photoreceptor (30), and this is called main scanning.The photoreceptor (30) is also rotated at a constant speed in the direction of arrow (b), and the scanning caused by this rotation is called sub-scanning. It is called.

即ち、以上の光ビーム走査光学系においては、半導体レ
ーザ(1)の強度変調と前記主走査、副走査によって感
光体(30)上に画像(静電潜像)が形成される。そし
て、第2図に示す如く、球面ミラー(20)とシリンド
リカルレンズ(25)とが従来のfθレンズに代わって
、主走査方向に対する走査速度を走査域中心からその両
端部にわたって均等となる様に補正する。
That is, in the above light beam scanning optical system, an image (electrostatic latent image) is formed on the photoreceptor (30) by the intensity modulation of the semiconductor laser (1) and the main scanning and sub-scanning. As shown in FIG. 2, a spherical mirror (20) and a cylindrical lens (25) replace the conventional fθ lens so that the scanning speed in the main scanning direction is made equal from the center of the scanning area to both ends thereof. to correct.

また、球面ミラー(20)と感光体(30)との間の光
路中に設置したシリンドリカルレンズ(25)は、ポリ
ゴンミラー(10)の面倒れ誤差を補正すると共に、像
面湾曲を小さくする。換言すれば、主走査方向に垂直な
方向に光束を補正して、集光点付近での像面を平坦化す
ることを目的とする。即ち、ポリゴンミラー〈10)の
各反射面相互に垂直度の誤差が生じていると、感光体(
30)上での走査線が副走査方向にずれを生じ、画像に
ピッチむらが発生する。
Further, the cylindrical lens (25) installed in the optical path between the spherical mirror (20) and the photoreceptor (30) corrects surface tilt errors of the polygon mirror (10) and reduces field curvature. In other words, the purpose is to correct the luminous flux in a direction perpendicular to the main scanning direction to flatten the image plane near the focal point. In other words, if there is an error in perpendicularity between the reflecting surfaces of the polygon mirror (10), the photoreceptor (
30) The upper scanning line shifts in the sub-scanning direction, causing pitch unevenness in the image.

この面倒れ誤差はポリゴンミラー(10)による偏向面
に垂直な断面においてポリゴンミラー(10)(7)各
反射面と感光体(30)の集光面とを共役関係に設定す
れば補正することができる0本発明ではシリンドリカル
レンズ(7)によって光束をポリゴンミラー(10)に
集光する一方、シリンドリカルレンズ(25)によって
ポリゴンミラー(10)の各反射面と集光面とが共役関
係を保持する様にしている。
This surface tilt error can be corrected by setting each reflective surface of the polygon mirror (10) (7) and the condensing surface of the photoreceptor (30) in a conjugate relationship in a cross section perpendicular to the deflection surface of the polygon mirror (10). In the present invention, the cylindrical lens (7) condenses the light beam onto the polygon mirror (10), while the cylindrical lens (25) maintains a conjugate relationship between each reflective surface of the polygon mirror (10) and the condensing surface. I try to do it.

さらに、本実施例ではコリメータレンズ(6)にて発散
光束を収束光束に修正している。これは収束光束とする
ことによって感光体(30)付近での像面の湾曲を補正
するためである。即ち、ポリゴンミラー(10)へ収束
光束あるいは発散光束を入射させると(他の回転偏向器
でも同じであるが)、ポリゴンミラー(10)での反射
後の集光点は、ポリゴンミラー(10)の後には光学部
品がないとすると、その反射点を中心として略円弧状と
なり、これを直線で受けると像面湾曲を生じることにな
る。ボIJコンミラー(10)へ収束光束を入射させる
と、光線入射方向に凹の像面湾曲を生じる。また、入射
光の収束具合によって、球面ミラー(20)と像面との
距離も変わる。この距離の変化によって像面湾曲も変化
する。即ち、収束光束による像面湾曲により、球面ミラ
ー(20)の凹面による湾曲を補正し、結果的に集光面
での像面湾曲を小さくし、像面の平坦性を良好なものと
する。
Furthermore, in this embodiment, the collimator lens (6) corrects the divergent light beam into a convergent light beam. This is to correct the curvature of the image plane near the photoreceptor (30) by creating a convergent light beam. That is, when a converging light beam or a diverging light beam is incident on the polygon mirror (10) (the same applies to other rotary deflectors), the focal point after reflection on the polygon mirror (10) is the polygon mirror (10). Assuming that there are no optical components after the reflection point, the reflection point will form a substantially circular arc shape, and if it is received by a straight line, curvature of field will occur. When a convergent light beam is incident on the BoIJ conversion mirror (10), a concave curvature of field occurs in the light beam incident direction. Furthermore, the distance between the spherical mirror (20) and the image plane changes depending on the degree of convergence of the incident light. The curvature of field also changes with this change in distance. That is, the curvature of field caused by the convergent light beam corrects the curvature caused by the concave surface of the spherical mirror (20), and as a result, the curvature of field at the condensing surface is reduced, and the flatness of the image surface is improved.

この点はシリンドリカルレンズ(25)も同様に像面湾
曲を小さくする作用を有し、像面湾曲が小さくなると、
走査位置(像高)の相違による集光光束径の変動が小さ
くなり、光学系を広画角で使用することができ、また集
光光束径を小さくできるので画像の高密度化が可能とな
る利点を有する。
In this respect, the cylindrical lens (25) also has the effect of reducing the field curvature, and when the field curvature is reduced,
Fluctuations in the diameter of the condensed beam due to differences in scanning position (image height) are reduced, allowing the optical system to be used at a wide angle of view, and the diameter of the condensed beam can be made smaller, making it possible to increase the density of images. has advantages.

詳しくは、第2図に示す様に、ポリゴンミラー<10)
の偏向点(10g)から球面ミラー(20)の頂点<2
0a)までの距11!1(d)と、球面ミラー(20)
の曲率半径(R&l)との関係、及びこの曲率半径(九
〉と偏向点(10a)からポリゴンミラー(10)での
反射後の集光点までの距離(S)(図示せず)との関係
、さらに曲率半径(RM)とシリンドリカルレンズ(2
5)の心厚(aS)及びシリンドリカルレンズ〈25)
の射出面から感光体(30)までの距m(dm)の関係
については、I s/ RM l > 0.5    
     、、、 、、、■0、15< d/ l R
M l < 0.45       ・・・・・・■(
Id*l+ 1dal)/1Ryl<o、4s・・・・
・・■なる式を満足するのが望ましい。
For details, as shown in Figure 2, polygon mirror <10)
from the deflection point (10g) to the vertex of the spherical mirror (20) <2
0a) to the distance 11!1(d) and the spherical mirror (20)
The relationship between the radius of curvature (R&l) and the distance (S) (not shown) from the deflection point (10a) to the focal point after reflection at the polygon mirror (10) relationship, as well as the radius of curvature (RM) and the cylindrical lens (2
5) Core thickness (aS) and cylindrical lens <25)
Regarding the relationship between the distance m (dm) from the exit surface to the photoreceptor (30), I s/RM l > 0.5
, , , , ■0, 15< d/l R
M l < 0.45 ・・・・・・■(
Id*l+1dal)/1Ryl<o, 4s...
It is desirable to satisfy the following formula.

なお、第2図において、(dl)は球面ミラー(20)
の頂点(20a)からシリンドリカルレンズ(25)の
入射面までの距離である。
In addition, in Fig. 2, (dl) is a spherical mirror (20)
It is the distance from the vertex (20a) of

前記0式、■式、■式を満足すると、広画角にわたって
良好な歪曲特性と、良好な像面平坦性が得られる。各式
での下限及び上限は、感光体(30)上での画像歪みの
程度により経験上許容できる範囲として設定した値であ
る。前記0式の下限を越えると、像面が球面ミラー(2
0)に近付き配置が困難となり、歪曲特性も悪くなる。
When the above formulas 0, 2, and 2 are satisfied, good distortion characteristics and good image plane flatness can be obtained over a wide angle of view. The lower and upper limits in each equation are values set as empirically acceptable ranges depending on the degree of image distortion on the photoreceptor (30). When the lower limit of the above equation 0 is exceeded, the image surface becomes a spherical mirror (2
0), arrangement becomes difficult and distortion characteristics deteriorate.

一方、前記■式の下限を越えると、走査角の増大に従っ
て正の歪曲が増大し、主走査方向の両端(走査開始付近
及び走査終了付近)で画像が伸びることとなる。また、
前記上限を越えると、走査角の増大に従って負の歪曲が
増大し、主走査方向の両端で画像が縮むこととなり、さ
らに像面湾曲が大きくなるか、歪曲特性が悪化する。
On the other hand, when the lower limit of the formula (2) is exceeded, positive distortion increases as the scanning angle increases, and the image becomes elongated at both ends in the main scanning direction (near the start of scanning and near the end of scanning). Also,
When the upper limit is exceeded, negative distortion increases as the scanning angle increases, the image shrinks at both ends in the main scanning direction, and the curvature of field increases or the distortion characteristics deteriorate.

また、前記■式の上限を越えると、像面湾曲が大きくな
る。
Furthermore, when the upper limit of the formula (2) is exceeded, the curvature of field becomes large.

ここで、第1実施例における実験例(I)、(I)。Here, experimental examples (I) and (I) in the first embodiment.

(III >、 (mV )、 (V )での構成デー
タを表1に示す。なお、ポリゴンミラー(10)の対面
距離は23.5mmとした。
The configuration data for (III>, (mV), and (V) are shown in Table 1. The facing distance of the polygon mirror (10) was 23.5 mm.

[以下余白コ 以上の各実験例(I )、(IF)、(I[I)、(I
V)、(V)における感光体集光面での収差をそれぞれ
第4図、第5図、第6図、第7図、第8図に示す。各図
中(a)は、横軸を走査角度、縦軸を歪曲度としたグラ
フである。各図中(b)は、横軸を走査角度、縦軸を湾
曲度としたグラフで、点線は偏向面内の光束による像面
湾曲を示し、実線は偏向面に対する垂直面内の光束によ
る像面湾曲を示す。
[The following experimental examples (I), (IF), (I [I), (I
Aberrations at the photoreceptor condensing surface in V) and (V) are shown in FIGS. 4, 5, 6, 7, and 8, respectively. In each figure, (a) is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of distortion. In each figure, (b) is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of curvature.The dotted line shows the curvature of field due to the light beam in the deflection plane, and the solid line shows the image due to the light beam in the plane perpendicular to the deflection plane. Shows surface curvature.

[第2実施例コ 本第2実施例は、第9図、第11図で明らかな様に、球
面ミラー(20)を偏向面に垂直な面内で角度(θ1)
傾斜させて配置した点で、前記第1実施例と相違する。
[Second Embodiment] As is clear from FIGS. 9 and 11, in this second embodiment, the spherical mirror (20) is set at an angle (θ1) in a plane perpendicular to the deflection plane.
It differs from the first embodiment in that it is arranged at an angle.

そして、球面ミラー(20)をこの様に傾斜きせること
により、ポリゴンミラー(lO)からの光束は球面ミラ
ー(20)にて入射とは異なった方向[角度(θ、)、
傾斜角度(θ、)の2倍]へ反射され、前記第1実施例
の如くビームスプリッタ(15)等の半透光手段を必要
とすることなく直接あるいは折り返しミラー(21)を
介在させることにより、シリンドリカルレンズ(25)
を介して感光体面に集光させることができる。
By tilting the spherical mirror (20) in this way, the light beam from the polygon mirror (lO) is directed to the spherical mirror (20) in a direction different from the direction of incidence [angle (θ, ),
twice the inclination angle (θ, )], and can be reflected directly or by interposing a folding mirror (21) without requiring a semi-transparent means such as a beam splitter (15) as in the first embodiment. , cylindrical lens (25)
The light can be focused on the photoreceptor surface through the .

なお、球面ミラー(20)を傾斜させると走査線の曲が
りが発生する。この発生M囚について第15図を参照し
て説明する。第15図は偏向面に垂直な面内での光軸を
示し、点(P)は偏向角が(0°)のときの主光線反射
点であり、点(Q)は偏向角(θ)のときの主光線反射
点である。
Incidentally, when the spherical mirror (20) is tilted, the scanning line bends. This generated M prisoner will be explained with reference to FIG. 15. Figure 15 shows the optical axis in a plane perpendicular to the deflection plane, where point (P) is the principal ray reflection point when the deflection angle is (0°), and point (Q) is the deflection angle (θ). This is the principal ray reflection point when .

球面ミラー(20)は曲率(ここでは偏向面内での曲率
を問題とする)を持っているため、偏向角が(0゛)と
(θ)とで反射点がX軸方向にずれる。さらに、入射光
(nl)に対して偏向角(θ)の反射光(n3〉は偏向
角(0°)の反射光(n2)に対してZ軸方向にずれる
。このずれは偏向角〈θ)に応じて変化し、反射光(n
2)、 (n3)は同一平面内には含まれない。そのた
め、走査線も光軸と垂直な面内で2軸方向に曲がること
になる。しかし、この種の走査線の曲がりは、シリンド
リカルレンズ(25)にて補正できる。即ち、副走査方
向において、シリンドリカルレンズ(25)による結像
関係を縮小結像になる様に設定すれば、ここでの走査線
の曲がりも副走査方向について縮小されることとなる。
Since the spherical mirror (20) has a curvature (the curvature within the deflection plane is considered here), the reflection point shifts in the X-axis direction between the deflection angles (0°) and (θ). Furthermore, the reflected light (n3) at a deflection angle (θ) with respect to the incident light (nl) is shifted in the Z-axis direction with respect to the reflected light (n2) at a deflection angle (0°). This shift is caused by the deflection angle 〈θ ), and the reflected light (n
2), (n3) are not included in the same plane. Therefore, the scanning line also bends in two axial directions within a plane perpendicular to the optical axis. However, this type of scanning line bending can be corrected with the cylindrical lens (25). That is, if the imaging relationship by the cylindrical lens (25) is set so as to form a reduced image in the sub-scanning direction, the bending of the scanning line here will also be reduced in the sub-scanning direction.

さらに、走査線の曲がりを補正するには、第11図に示
す様にシリンドリカルレンズ(25)を光路に垂直な方
向へシフト[シフト量は(Zc)で示す]許せることも
考えられる。
Furthermore, in order to correct the bending of the scanning line, it may be possible to shift the cylindrical lens (25) in the direction perpendicular to the optical path (the amount of shift is indicated by (Zc)) as shown in FIG.

他の構成については前記第1実施例と同様である。The other configurations are the same as those of the first embodiment.

また、本第2実施例においても前記0式、■式、■式の
関係が妥当する。特に、■式において上限を越えると、
像面湾曲ばかりか走査線の曲がりも大きくなる。
Also, in the second embodiment, the relationships of equation 0, equation (2), and equation (2) are valid. In particular, if the upper limit is exceeded in formula ■,
Not only the field curvature but also the bending of the scanning line increases.

ここで、第2実施例における実験例(Vl>、(■)。Here, an experimental example (Vl>, (■)) in the second embodiment.

(■)での構成データを表2に示す、ポリゴンミラー(
10)の対面距離は第1実施例と同様に23.5mmで
ある。
The configuration data for (■) is shown in Table 2, and the polygon mirror (
The facing distance of 10) is 23.5 mm as in the first embodiment.

[以下余白] 以上の各実験例(W)、(■)、(■)における感光体
集光面での収差をそれぞれ第12図、第13図、第14
図に示す、各図中(a)は、横軸を走査角度、縦軸を歪
曲度としたグラフである。各図中(b)は、横軸を走査
角度、縦軸を湾曲度としたグラフで、−点線は偏向面内
の光束による像面湾曲を示し、実線は偏向面に対する垂
直面内の光束による像面湾曲を示す、各図中(e)は、
横軸を走査角度、縦軸を走査線歪曲度としたグラフで、
走査線の偏向面に垂直な方向への位置ずれ、即ち、走査
線の曲がりを示す。
[Margins below] The aberrations at the photoreceptor condensing surface in each of the above experimental examples (W), (■), and (■) are shown in Figures 12, 13, and 14, respectively.
(a) in each figure is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of distortion. In each figure, (b) is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of curvature, where the - dotted line indicates the curvature of field due to the light flux within the deflection plane, and the solid line indicates the curvature of field due to the light flux within the plane perpendicular to the deflection plane. (e) in each figure showing the field curvature is
A graph with the horizontal axis as the scanning angle and the vertical axis as the scanning line distortion degree.
It shows a positional shift in the direction perpendicular to the deflection plane of the scanning line, that is, the bending of the scanning line.

なお、本発明に係る光ビーム走査光学系は以上の実施例
に限定するものではなく、その要旨の範囲内で種々に変
形することができる。
Note that the light beam scanning optical system according to the present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the gist.

例えば、偏向器としては前記のポリゴンミラー(10)
以外に、光束を一平面に等角速度で走査可能なものであ
れば、種々のものを用いることができる。また、光源と
しては半導体レーザ以外に、他のレーザ発生手段や点光
源を用いても良い。
For example, as a deflector, the polygon mirror (10) described above may be used.
In addition, various types can be used as long as they can scan the light beam in one plane at a constant angular velocity. Further, as the light source, other than a semiconductor laser, other laser generating means or a point light source may be used.

一方、前記各実施例では球面ミラーの主走査フj向への
シフト[第2図、第10図中(Y)方向コについては言
及していない。しかし、収差補正や配置の容易性を考慮
すれば、球面ミラーを前記方向へシフトさせることが考
えられる。例えば、第1実施例での実験例(I)(第4
図参照)、第2実施例での実験例(■)(第12図参照
)等の様に歪曲収差が左右対称でない場合、この様な球
面ミラーのシフトによって歪曲収差をさらに小さくする
ことができる。
On the other hand, in each of the above-mentioned embodiments, the shift of the spherical mirror in the main scanning direction J [the (Y) direction in FIGS. 2 and 10 is not mentioned. However, in consideration of aberration correction and ease of arrangement, it is conceivable to shift the spherical mirror in the above direction. For example, experimental example (I) in the first embodiment (fourth
If the distortion aberration is not symmetrical, such as in the experimental example (■) in the second embodiment (see Fig. 12), the distortion can be further reduced by shifting the spherical mirror like this. .

また、前記実施例ではコリメータレンズにより半導体レ
ーザから放射された発散光束を収束光束に修正している
が、単に略平行光束に修正する様にしても良い。
Further, in the embodiment described above, the divergent light beam emitted from the semiconductor laser is corrected into a convergent light beam by the collimator lens, but it may simply be corrected into a substantially parallel light beam.

λ肌例効迷 以上の説明で明らかな様に、本発明によれば、偏向器か
ら感光体面への光路中に前記0式、■式、■式を満足す
る様に球面ミラー及びシリンドリカルレンズを介在させ
たため、主走査方向での走査速度を均等に補正できるこ
とは勿論、偏向器の各反射面の面倒れによる誤差を補正
し、画像の副走立方向のピッチむらを補正すると共に、
集光面において広画角にわたって良好な歪曲特性及び良
好な像面平坦性を得ることができる。さらに、球面ミラ
ーは従来のfθレンズに比べて加工が容易で加工精度も
向上し、透明である必要はないことから材質も広く選択
でき、全体として安価かつ高性能な走査光学系とするこ
とができる。しかも、球面ミラー自体によって光路が折
り返され、光学系全体がコンパクトになる。また、放物
面ミラーや楕円面ミラーに比べても加工上、精度上有利
であり、従来の凹面反射鏡に比べて小型化することも可
能である。
As is clear from the above explanation, according to the present invention, a spherical mirror and a cylindrical lens are provided in the optical path from the deflector to the photoreceptor surface so as to satisfy the above formulas 0, 2, and 2. Because of the interposition, it is possible to uniformly correct the scanning speed in the main scanning direction, as well as to correct errors caused by the surface inclination of each reflective surface of the deflector, and to correct pitch unevenness in the vertical direction of the sub-scanning of the image.
Good distortion characteristics and good image plane flatness can be obtained over a wide angle of view on the light condensing surface. Furthermore, spherical mirrors are easier to process and have improved processing accuracy compared to conventional f-theta lenses, and since they do not need to be transparent, a wide range of materials can be selected, making it possible to create an overall inexpensive and high-performance scanning optical system. can. Moreover, the optical path is folded back by the spherical mirror itself, making the entire optical system compact. Furthermore, it is advantageous in terms of processing and accuracy compared to parabolic mirrors and ellipsoidal mirrors, and can be made smaller than conventional concave reflecting mirrors.

しかも、第2実施例において説明した様に、球面ミラー
を偏向面に垂直な面内で傾斜させれば、半透光手段を介
することなく感光体上に集光させることができ、光学部
材の配置の任意性が向上し、光量の減衰も少なくなる。
Moreover, as explained in the second embodiment, if the spherical mirror is tilted in a plane perpendicular to the deflection surface, the light can be focused on the photoreceptor without using a semi-transparent means, and the optical member can be Arbitrarity in arrangement is improved, and attenuation of the amount of light is also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明の第1実施例を示し、第1図は
概略構成を示す斜視図、第2図、第3図は光路を模式的
に説明するための図、第4図〜第8図は集光面での像歪
を示すグラフである。第9図〜第15[1は本発明の第
2実施例を示し、第9図は概略構成を示す斜視図、第1
0図、第11図は光路を模式的に説明するための図、第
12図〜第14図は集光面での像歪を示すグラフ、第1
5図は球面ミラーを傾斜させることによる走査線の曲が
りを説明するための図である。 (1)・・・半導体レーザ、(6)・・・コリメータレ
ンズ、(7)・・・シリンドリカルレンズ、(10)・
・・ポリゴンミラー、(15)・・・ビームスプリッタ
、(20)・・・球面ミラー、(25)・・・シリンド
リカルレンズ、(30)・・・感光体。
1 to 8 show a first embodiment of the present invention, FIG. 1 is a perspective view showing a schematic configuration, FIGS. 2 and 3 are diagrams for schematically explaining the optical path, and FIG. Figures 8 through 8 are graphs showing image distortion on the light condensing surface. 9 to 15 [1 shows the second embodiment of the present invention, FIG. 9 is a perspective view showing the schematic structure,
Figures 0 and 11 are diagrams for schematically explaining the optical path, Figures 12 to 14 are graphs showing image distortion on the condensing plane,
FIG. 5 is a diagram for explaining the bending of the scanning line due to tilting the spherical mirror. (1)...Semiconductor laser, (6)...Collimator lens, (7)...Cylindrical lens, (10)...
... Polygon mirror, (15) ... Beam splitter, (20) ... Spherical mirror, (25) ... Cylindrical lens, (30) ... Photoreceptor.

Claims (1)

【特許請求の範囲】 1、強度変調された光束を発生する光源と、前記光源か
ら放射された光束を走査方向と同一平面の直線状に収束
させる手段と、 集光線付近に置かれ、前記収束光束を等角速度で走査す
る偏向器と、 前記偏向器で走査された光束を折り返して感光体面上に
集光させる球面ミラーと、 前記球面ミラーとその集光点との間に配置されたシリン
ドリカルレンズとを備え、 |s/R_M|>0.5 0.15<d/|R_M|<0.45 (|d_2|+|d_3|)/|R_M|<0.45但
し、R_M:球面ミラーの曲率半径 s:偏向器による走査域中心方向へ の光束反射点から偏向器反射後 の集光点までの距離 d:偏向器による走査域中心方向へ の光束反射点から球面ミラーま での距離 d_2:シリンドリカルレンズの心厚 d_3:シリンドリカルレンズの射出面 から集光面までの距離 以上の三式を満足することを特徴とする光ビーム走査光
学系。
[Scope of Claims] 1. A light source that generates an intensity-modulated light beam; a means for converging the light beam emitted from the light source into a straight line on the same plane as the scanning direction; a deflector that scans the light beam at a constant angular velocity; a spherical mirror that returns the light beam scanned by the deflector and focuses it on the surface of the photoreceptor; and a cylindrical lens disposed between the spherical mirror and its focusing point. |s/R_M|>0.5 0.15<d/|R_M|<0.45 (|d_2|+|d_3|)/|R_M|<0.45 However, R_M: of the spherical mirror Radius of curvature s: Distance from the point where the beam is reflected by the deflector toward the center of the scanning area to the focal point after reflection by the deflector d: Distance from the point where the beam is reflected by the deflector toward the center of the scanning area to the spherical mirror d_2: A light beam scanning optical system characterized by satisfying the following three equations: core thickness d_3 of cylindrical lens: distance from the exit surface to the condensing surface of the cylindrical lens.
JP63130846A 1988-05-27 1988-05-27 Light beam scanning optical system Expired - Lifetime JP2615850B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63130846A JP2615850B2 (en) 1988-05-27 1988-05-27 Light beam scanning optical system
US07/342,344 US4908708A (en) 1988-05-27 1989-04-24 Light beam scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130846A JP2615850B2 (en) 1988-05-27 1988-05-27 Light beam scanning optical system

Publications (2)

Publication Number Publication Date
JPH01300217A true JPH01300217A (en) 1989-12-04
JP2615850B2 JP2615850B2 (en) 1997-06-04

Family

ID=15044060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130846A Expired - Lifetime JP2615850B2 (en) 1988-05-27 1988-05-27 Light beam scanning optical system

Country Status (1)

Country Link
JP (1) JP2615850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694802A2 (en) 1994-07-28 1996-01-31 Matsushita Electric Industrial Co., Ltd. Optical scanner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694802A2 (en) 1994-07-28 1996-01-31 Matsushita Electric Industrial Co., Ltd. Optical scanner
US5657147A (en) * 1994-07-28 1997-08-12 Matsushita Electric Industrial Co., Ltd. Optical scanner

Also Published As

Publication number Publication date
JP2615850B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US6445483B2 (en) Optical scanning apparatus
JPH06265810A (en) Reflection type scanning optical system
JPS62275216A (en) Optical scanning device
JPH0364726A (en) Light beam scanning optical system
JPH0364727A (en) Light beam scanning optical system
JPH06281872A (en) Optical system for scanning light beam
JPH09304720A (en) Optical scanning device and optical lens
JP2003107382A (en) Scanning optical system
JP2643224B2 (en) Light beam scanning optical system
JPH08248345A (en) Optical scanner
JP3003065B2 (en) Optical scanning device
JPH04245214A (en) Light beam scanning optical system
JPH01300217A (en) Light beam scanning optical system
JPH01200220A (en) Light beam scanning optical system
JPH01300218A (en) Light beam scanning optical system
JP3132047B2 (en) Light beam scanning optical system
JP2773593B2 (en) Light beam scanning optical system
JPH01234815A (en) Light beam scanning optical system
JPH1020235A (en) Optical scanner
JPH04110819A (en) Light beam scanning optical system
JPH04110818A (en) Light beam scanning optical system
JP3381333B2 (en) Optical scanning device
JP2553882B2 (en) Scanning optical system
JPH08179236A (en) Beam scanner
JPH112769A (en) Optical scanner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12