JPH01300068A - Method for starting variable speed type water power generation facility - Google Patents

Method for starting variable speed type water power generation facility

Info

Publication number
JPH01300068A
JPH01300068A JP63129160A JP12916088A JPH01300068A JP H01300068 A JPH01300068 A JP H01300068A JP 63129160 A JP63129160 A JP 63129160A JP 12916088 A JP12916088 A JP 12916088A JP H01300068 A JPH01300068 A JP H01300068A
Authority
JP
Japan
Prior art keywords
speed
generator
variable speed
time
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63129160A
Other languages
Japanese (ja)
Other versions
JP2768688B2 (en
Inventor
Yukio Yonetani
米谷 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63129160A priority Critical patent/JP2768688B2/en
Publication of JPH01300068A publication Critical patent/JPH01300068A/en
Application granted granted Critical
Publication of JP2768688B2 publication Critical patent/JP2768688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Control Of Water Turbines (AREA)
  • Motor And Converter Starters (AREA)

Abstract

PURPOSE:To smoothly start a facility by starting a hydraulic machine, interposing a generator in an electric system, thereafter changing a time constant of speed control circuit at the point where the matching at the time of interposing is cleared over a second value, and moving operation to the normal while delaying the response. CONSTITUTION:When an aimed output is input to an output controller 1 based on a power generation command, the controller 1 computes the aimed rotary speed corresponding to the aimed output to generate a command to an opening controller 2, thereby a guide vane 3 is operated and a runner 4 is rotated. The rotary speed of an induction generator 5 directly coupled to the runner 4 is detected by a speed detector 6. A speed control circuit 7 outputs a control signal to a speed controller 8 in response to the difference between the actual rotation speed of detector 6 and the aimed rotary speed of controller 1. In this case, after the induction generator 5 is interposed in an electric system, the time constant of speed control circuit 7 is changed over a second value at the point where the shock at the time of interposition so as to speed up the response.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は水力発電設備の制御方法に係わり、特に口■変
速運転が=1能な水車・ポンプ水車等の水力機械と、こ
の水力機械に直結された発電機あるいは発電電動機をス
ムーズに始動させる制御方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method of controlling hydroelectric power generation equipment, and is particularly applicable to hydraulic machines such as water turbines and pump water turbines capable of variable speed operation. This invention relates to a control method for smoothly starting a generator or generator motor directly connected to this hydraulic machine.

(従来の技術) 従来、水ツノ発電設備においては主機として同期発電機
や同期発電電動機が多用されていたが、最近はそれらの
替わりに、誘導発電機や誘導発電電動機が使用されるよ
うになってきた。
(Conventional technology) In the past, synchronous generators and synchronous generator motors were often used as main engines in water horn power generation equipment, but recently induction generators and induction generator motors have been used in their place. It's here.

第2図は、主機として誘導発電機または誘導発電電動機
を備えた可変速水力発電設備の制御系統を示す。
FIG. 2 shows a control system of a variable speed hydroelectric power generation facility equipped with an induction generator or an induction generator motor as the main engine.

この可変速水力発電設備を始動する場合には、先ず、発
電指令に基づき目標出力P*が出力制御装fl!tlに
入力される。この出力制御装置は目標出力2本に対応す
る目標回転速度N*を算定するとともに開度調節器2に
指令を発し、水車またはポンプ水車等(以下、illに
水車という)のガイドベーン3を操作してランナ4を回
転させる。このランナ4に直結されている誘導発電機あ
るいは誘導発電電動機(以下、単に誘導発電機という)
5の回転速度は速度検出器6で検出される。速度制御回
路7は速度検出器6で検出された実回転速度Nと、出力
#J御装置1から出力される目標回転速度N*の差を検
出し、この差に応じた制御信号を速度制御装置8に出力
する。
When starting this variable speed hydroelectric power generation equipment, first, the target output P* is set to the output control device fl! based on the power generation command. It is input to tl. This output control device calculates the target rotational speed N* corresponding to the two target outputs, issues a command to the opening controller 2, and operates the guide vane 3 of the water turbine or pump water turbine (hereinafter referred to as "ill"). to rotate runner 4. An induction generator or an induction generator motor (hereinafter simply referred to as an induction generator) directly connected to this runner 4
5 is detected by a speed detector 6. The speed control circuit 7 detects the difference between the actual rotation speed N detected by the speed detector 6 and the target rotation speed N* output from the output #J control device 1, and applies a control signal according to this difference to the speed control. Output to device 8.

速度制御回路7には、可変速制御する際に主機の回転速
度の追従性をよくするために制御時定数回路(図示せず
)が内蔵されており、誘導発電機5が目標とする回転速
度から離脱しないように作動している。
The speed control circuit 7 has a built-in control time constant circuit (not shown) in order to improve followability of the rotational speed of the main engine during variable speed control, and the control time constant circuit (not shown) is used to control the target rotational speed of the induction generator 5. It operates in such a way that it does not fall away.

なお、誘導発電機5を始動時から電力系統に並列して制
御することは、速度制御装置8の必要容量が大きくなり
、現実的でないため、可変速制御の可能な回転速度範囲
が定められている。従って始動時には、誘導発電機5は
可変速制御可能な下限回転速度に達してから初めて電気
系統に並列され、その時点から前述した速度制御回路7
による速度制御が開始される。
Note that controlling the induction generator 5 in parallel with the electric power system from the time of startup increases the required capacity of the speed control device 8 and is not practical. Therefore, the rotation speed range in which variable speed control is possible is not determined. There is. Therefore, at the time of starting, the induction generator 5 is connected in parallel to the electric system only after reaching the lower limit rotational speed at which variable speed control is possible, and from that point on, the above-mentioned speed control circuit 7
Speed control is started.

(発明が解決しようとする課題) 上述のような制御方法により可変速水車を起動する場合
には、次のような問題が発生する。
(Problems to be Solved by the Invention) When starting a variable speed water turbine using the above-described control method, the following problems occur.

すなわち、誘導発電機5の回転速度が上昇し、可変速制
御が可能な下限回転速度に達した段階で誘導発電機5を
電力系統に並列させると、この並列と同時に速度制御回
路7による制御が開始されるため、速度制御装置8によ
って回転速度の上昇が急激に抑制される。その結果、誘
導発電機5に大きな制動トルクが瞬間的に発生し、誘導
発電機5に大きな出力が発生することとなる。
That is, when the rotational speed of the induction generator 5 increases and reaches the lower limit rotational speed at which variable speed control is possible, if the induction generator 5 is connected in parallel to the power system, the control by the speed control circuit 7 is simultaneously performed. Since the rotational speed is started, the speed control device 8 rapidly suppresses the increase in the rotational speed. As a result, a large braking torque is instantaneously generated in the induction generator 5, and a large output is generated in the induction generator 5.

その詳細を第3図を参照して説明する。同図は従来方法
による可変速水力発電設備の始動時における出力P、ガ
イドベーン開度A、回転速度Nおよび速度制御時定数T
Gの時間的変化の様子を示すもので、ガイドベーンは先
ず起動ガイドベーン開度A2まで開操作され、主機の回
転速度Nが上昇して可変速制御可能な下限回転速度N1
に近ずいたら無負荷開度Atに調整される。回転速度N
が下限回転速度Nlに達した時刻11で誘導発電機5は
電力系統に並列され、同時に並列時の目標回転速度N本
は下限回転速度Nlに設定される。
The details will be explained with reference to FIG. The figure shows the output P, guide vane opening A, rotational speed N, and speed control time constant T at the time of startup of variable speed hydroelectric power generation equipment using the conventional method.
This figure shows how G changes over time. The guide vane is first opened to the starting guide vane opening A2, and the rotational speed N of the main engine increases to the lower limit rotational speed N1 at which variable speed control is possible.
When it approaches , the opening degree will be adjusted to the no-load opening At. Rotational speed N
At time 11 when the induction generator 5 reaches the lower limit rotational speed Nl, the induction generator 5 is paralleled to the power system, and at the same time, the target rotational speed N for paralleling is set to the lower limit rotational speed Nl.

この時、速度制御回路7が作動し、速度制御装置8によ
って回転速度Nの上昇が急激に抑制される。その結果、
時刻tlで誘導発電機5の出力Pが瞬時にステップ状に
変化し、出力ΔPが発生する。
At this time, the speed control circuit 7 is activated, and the speed control device 8 rapidly suppresses the increase in the rotational speed N. the result,
At time tl, the output P of the induction generator 5 changes instantaneously in a stepwise manner, and an output ΔP is generated.

このように大きく、かつ過渡的な電力変動は系統運用に
悪影響を及ぼすおそれがある上、誘導発電機5に機械的
な衝撃力を加えることになり、好ましくない。
Such large and transient power fluctuations may not only adversely affect system operation, but also apply a mechanical impact force to the induction generator 5, which is undesirable.

なお、上述したステップ状に発生する出力ΔPを無くす
ため、起動ガイドベーン開度A2を無負荷開度A1に設
定しておくことも考えられるが、その場合には回転速度
Nが下限回転速度N1に達するまでに長時間を要し、水
力発電設備の機能的運用に支障をきたすという不都合が
ある。
In addition, in order to eliminate the output ΔP that occurs stepwise as described above, it is possible to set the starting guide vane opening degree A2 to the no-load opening degree A1, but in that case, the rotation speed N will be lower than the lower limit rotation speed N1. This has the disadvantage that it takes a long time to reach this point, which impedes the functional operation of the hydroelectric power generation equipment.

本発明は、前述したような主機の電力系統への並列時に
発生する大きな電力変動を無くし、可変速水力発電設備
を短時間でスムーズに始動させることのできる制御方法
を提供することを目的とするものである。
An object of the present invention is to provide a control method that eliminates the large power fluctuations that occur when the main engine is connected in parallel to the power system as described above, and can start variable speed hydroelectric power generation equipment smoothly in a short time. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の可変速水力発電設備の始動方法は発電機あるい
は発電電動機が電力系統から解列され、水虫またはポン
プ水虫等の水力機械が停止している状態から始動・加速
する際は、速度制御回路の応答が遅くなるように制御時
定数を相対的に大きい第1の値に設定して主機の回転速
度を制御し、この状態で発電機あるいは発電電動機を電
力系統に並列し、並列後には、あらかじめ定められた条
件によって並入時の電気的、機械的動揺が収まったこと
を確認した後、速度制御回路の制御定数を第1の値より
小さい第2の値に切替えることによって速度制御回路の
応答を早くし、定常運転に移行させるものである。
The method for starting variable speed hydroelectric power generation equipment of the present invention is that when the generator or generator motor is disconnected from the power system and a hydraulic machine such as an athlete's foot or a pump athlete is started or accelerated from a stopped state, the speed control circuit The rotational speed of the main engine is controlled by setting the control time constant to a relatively large first value so that the response of After confirming that the electrical and mechanical fluctuations during parallel entry have subsided under predetermined conditions, the control constant of the speed control circuit is changed to a second value smaller than the first value. This speeds up the response and shifts to steady operation.

(作 用) 本発明の可変速水力発電設備の始動方法は、前述のよう
に主機を電力系統に並列する際の速度制御回路の応答が
遅いため、主機は電力系統に並列されると回転速度を緩
やかに上昇した後、目標回転速度になる。その結果、発
電機あるいは発1!!電動機に回転速度の上昇を抑制す
るために必要なトルク、即ち第3図のような大きな出力
ΔPは発生しない。
(Function) The method for starting the variable speed hydroelectric power generation equipment of the present invention is that, as mentioned above, when the main engine is connected in parallel to the power grid, the response of the speed control circuit is slow. After gradually increasing, the target rotation speed is reached. As a result, a generator or a generator! ! The torque required to suppress the increase in rotational speed of the electric motor, that is, the large output ΔP as shown in FIG. 3 is not generated.

一方、並列後に所定の時間が経過した時点で、速度制御
回路の制御時定数を当初の値より小さい第2の値に切替
えるため、定常運転時における速度制御回路の応答は早
くなり、回転速度の追従性も損なわれない。
On the other hand, since the control time constant of the speed control circuit is switched to a second value smaller than the initial value when a predetermined time has elapsed after paralleling, the response of the speed control circuit during steady operation becomes faster, and the rotation speed increases. Followability is not impaired either.

〔実施例〕〔Example〕

次に、本発明の実施例を第1図および第2図を参照して
説明する。なお、本発明の実施例において使用される制
御系統のハード構成は、速度制御回路7に制御時定数T
Gを第1の値と第2の値に切替える機構が内蔵されてい
る点を除けば、第2図と同じである。また、第1図は出
力P、ガイドベーン開度A1回転速度Nおよび速度制御
回路7の制御利得TGの時間的変化を示すものである。
Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. Note that the hardware configuration of the control system used in the embodiment of the present invention is such that the speed control circuit 7 has a control time constant T.
It is the same as FIG. 2 except that it includes a built-in mechanism for switching G between the first value and the second value. Further, FIG. 1 shows temporal changes in the output P, the guide vane opening degree A1, the rotation speed N, and the control gain TG of the speed control circuit 7.

第1図および第2図において、発電指令が発せられると
、それに基づいて目標出力2本が出力制御装置1に人力
される。この出力制御装置は開度調整器2に指令してガ
イドベーン3を起動ガイドベーン開度A2まで開操作さ
せ、ランナ4に直結されている誘導発電機5を起動させ
る。
1 and 2, when a power generation command is issued, two target outputs are manually supplied to the output control device 1 based on the power generation command. This output control device instructs the opening regulator 2 to open the guide vane 3 to the starting guide vane opening A2, and starts the induction generator 5 directly connected to the runner 4.

回転速度Nが上昇して可変速制御が可能な下限回転速度
Nlに近付いたらガイドベーン3を無負荷開度A1に調
整する。この時、速度制御回路7の制御時定数TGは大
きな値TGIに設定されており、回転速度Nを急激に目
標回転速度N* (この場合は下限回転速度Nl)にす
るような制御はできなくなっている。
When the rotational speed N increases and approaches the lower limit rotational speed Nl at which variable speed control is possible, the guide vane 3 is adjusted to the no-load opening degree A1. At this time, the control time constant TG of the speed control circuit 7 is set to a large value TGI, and it is no longer possible to control the rotation speed N to suddenly bring it to the target rotation speed N* (in this case, the lower limit rotation speed Nl). ing.

次に、回転速度Nが上昇し、可変速制御が可能な下限回
転速度Nlに達した時刻11で誘導発電機5を電力系統
に並列し、並列後、所定の時間が経過した時刻t2で速
度制御回路7の制御時定数TGを小さな値TG2に切替
える。
Next, at time 11 when the rotational speed N increases and reaches the lower limit rotational speed Nl at which variable speed control is possible, the induction generator 5 is connected in parallel to the power grid, and at time t2 when a predetermined period of time has passed after paralleling, the induction generator 5 is The control time constant TG of the control circuit 7 is switched to a small value TG2.

このように、時刻t1で誘導発電機5を電力系統に並列
する際、目標回転速度N本は上限回転速度Nlに設定さ
れているが、速度制御回路7の制御時定数TGが大きな
値TGIになっているために、回転速度Nの上昇は急激
には抑制されず、回転速度Nは緩やかに上昇し、その後
、目標回転速度N*になる。そのため誘導発電機5には
回転速度Nの上昇を急激に抑制するのに必要なトルク、
つまり第3図に示したような大きな出力ΔPは発生しな
い。
In this way, when the induction generator 5 is connected in parallel to the power system at time t1, the target rotational speed N is set to the upper limit rotational speed Nl, but the control time constant TG of the speed control circuit 7 is set to a large value TGI. Therefore, the increase in the rotational speed N is not suppressed rapidly, but the rotational speed N gradually increases and then reaches the target rotational speed N*. Therefore, the induction generator 5 has the torque necessary to suppress the sudden increase in the rotational speed N.
In other words, a large output ΔP as shown in FIG. 3 is not generated.

また、速度制御回路7の制御時定数TGの値は回転速度
Nが上限回転速度N2を越えないように調節されている
ため、過大な回転速度Nの上昇による制御不能に陥るよ
うなことはない。
Furthermore, since the value of the control time constant TG of the speed control circuit 7 is adjusted so that the rotational speed N does not exceed the upper limit rotational speed N2, there is no possibility of loss of control due to an excessive increase in the rotational speed N. .

一方、制御時定数TGの値が大きな値TGIのままでは
定常運転に移行した際、回転速度Nの目標回転速度N本
への追従性が悪くなるため、並列後、一定時間を経過し
た時刻t2にて、速度制御回路7の制御時定数TGを小
さな値TG2に切替え、定常運転時における回転速度N
の追従性を良くしている。
On the other hand, if the control time constant TG remains at a large value TGI, the followability of the rotational speed N to the target rotational speed N becomes poor when the operation shifts to steady state. , the control time constant TG of the speed control circuit 7 is switched to a small value TG2, and the rotation speed N during steady operation is changed.
It has good followability.

このように本実施例においては、可変速水力発電装置を
始動して電力系統に並列する際に、多大な電力変動が発
生しないため、電力系統への悪影響が排除されている。
As described above, in this embodiment, when the variable speed hydroelectric power generation device is started and connected in parallel to the power grid, a large power fluctuation does not occur, and therefore, an adverse effect on the power grid is eliminated.

なお、前述の実施例では、主機の並入後、速度制御の制
御時定数を第1の値TGIよりも小さな第2の値TG2
に切替える条件として系統並入からの時間を用いたが、
本発明はこれに限定されるものではなく、個々の条件に
応じて別の条件を用いることもできる。
In the above-mentioned embodiment, after the main engine is brought in parallel, the control time constant for speed control is set to the second value TG2, which is smaller than the first value TGI.
We used the time from system parallelization as a condition for switching to
The present invention is not limited to this, and other conditions may be used depending on individual conditions.

すなわち、本発明の主目的は、電力系統への並入の瞬間
、及びその直後に、種々の動揺(たとえば回転速度の変
動、発電機出力の変動)か発生している期間中、速度制
御装置の制御時定数を大きくすることで達成されるため
、主機を電力系統へ並入した後、並入時の動揺がおさま
ったことが確認されれば、直ちに速度制御装置の制御時
定数を゛第2の値に切替えてよい。
That is, the main object of the present invention is to control the speed control device at the moment when the power system is connected to the power system, and immediately thereafter, during periods when various fluctuations (for example, fluctuations in rotational speed, fluctuations in generator output) are occurring. This is achieved by increasing the control time constant of the speed control device. Therefore, after the main engine is connected to the power grid, if it is confirmed that the vibration at the time of parallel connection has subsided, the control time constant of the speed control device can be changed to You may switch to a value of 2.

その際、動揺がおさまったことを確認する条件としては
、前述したように並入からの経過時間を用いるほか、並
入後、発電機出力を検出し、それが所定の値(第1図の
説明では省略したが、たとえ本発明を適用した場合でも
、系統並入時には、ごくわずかな発電機出力の動揺[第
3図中の出力変動ΔPを小さくしたもの]が発生してい
る)の範囲内にあることを条件としてもよい。
In this case, as a condition for confirming that the tremor has subsided, in addition to using the elapsed time since the parallel entry as described above, the generator output is detected after the parallel entry, and it is set to a predetermined value (see Figure 1). Although omitted in the explanation, even when the present invention is applied, when the grid is paralleled, a very slight fluctuation in the generator output [reduced output fluctuation ΔP in Fig. 3] occurs. The condition may be that it is inside.

また第1図に示すように回転速度は多少オーバーシュー
トするので、回転速度Nが再び並入した時に下限回転速
度になったものといて切替え条件としてもよい。尤も、
この場合には、回転速度がアンダーシュートすることも
あるので、実用的には、回転速度の変動率も同時に監視
することが必要で、回転速度Nの値が下限回転速度から
許容される範囲にあり、かつその時間変化率(IdN/
del)があらかじめ定められた範囲内にあることを切
替え条件としてもよい。
Further, as shown in FIG. 1, since the rotational speed overshoots to some extent, the switching condition may be that the lower limit rotational speed is reached when the rotational speed N becomes parallel again. Of course,
In this case, the rotation speed may undershoot, so in practice it is necessary to simultaneously monitor the rotation speed fluctuation rate so that the value of the rotation speed N falls within the allowable range from the lower limit rotation speed. Yes, and its rate of change over time (IdN/
The switching condition may be that del) is within a predetermined range.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば可変速水力発電設備
を始動して電力系統に並列する際、瞬時に大きな出力が
発生することなくスムーズに出力を上昇させることがで
きるため、電力系統に多大な電力変動は発生させること
はなく、従って可変速水力発電設備をスムーズに始動さ
せることができる。
As described above, according to the present invention, when variable speed hydroelectric power generation equipment is started and connected in parallel to the power grid, it is possible to smoothly increase the output without generating a large output instantaneously. Significant power fluctuations are not generated, and the variable speed hydroelectric power plant can therefore be started smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法における発電機出力、ガイドベーン
開度、回転速度および制御利得の時間変化を示すグラフ
、第2図は可変速水力発電設備の制御方法を示すブロッ
ク図、第3図は従来方法の作動例を示すグラフである。 1・・・出力制御装置、2・・・開度調節器、3・・・
ガイドベーン、4・・・ランナ、5・・・誘導発電機ま
たは誘導発電電動機、6・・・速度検出器、7・・・速
度制御回路、8・・・速度制御装置。 !bl 図
Fig. 1 is a graph showing changes over time in generator output, guide vane opening, rotation speed, and control gain in the method of the present invention, Fig. 2 is a block diagram showing the control method for variable speed hydroelectric power generation equipment, and Fig. 3 is It is a graph showing an example of operation of a conventional method. 1... Output control device, 2... Opening degree regulator, 3...
Guide vane, 4...Runner, 5...Induction generator or induction generator motor, 6...Speed detector, 7...Speed control circuit, 8...Speed control device. ! bl figure

Claims (1)

【特許請求の範囲】[Claims] ガイドベーンを備えた水車あるいはポンプ水車等の水力
機械と、この水力機械に連結された可変速発電機あるい
は可変速発電電動機と、この発電機あるいは発電電動機
の速度を目標速度に制御する速度制御装置を備えた可変
速水力発電設備において、前記発電機あるいは発電電動
機が電気系統から解列され、前記水力機械が停止してい
る状態からこれを始動・加速させ、前記発電機あるいは
発電電動機を電気系統に並入させ、並入後あらかじめ定
められた判定条件により並入時の動揺が収まったことが
確認されるまでは、速度制御装置の時定数を第1の値に
設定してその応答を遅くし、前記判定条件で並入時の動
揺が収まったことが確認された後は、前記速度制御装置
の時定数を第2の値に切替え、その応答を速くして定常
運転に移行させることを特徴とする可変速水力発電設備
の始動方法。
A hydraulic machine such as a water turbine or pump water turbine equipped with guide vanes, a variable speed generator or variable speed generator motor connected to this hydraulic machine, and a speed control device that controls the speed of the generator or generator motor to a target speed. In a variable speed hydropower generation facility equipped with a variable speed hydropower generation facility, the generator or generator motor is disconnected from the electrical system, the hydraulic machine is started and accelerated from a stopped state, and the generator or generator motor is connected to the electrical system. The time constant of the speed control device is set to the first value to slow down the response until it is confirmed that the disturbance at the time of parallel entry has subsided according to predetermined judgment conditions. However, after it is confirmed that the vibration at the time of parallel entry has subsided under the above-mentioned judgment conditions, the time constant of the speed control device is switched to a second value to speed up the response and shift to steady operation. Features: How to start variable speed hydroelectric power generation equipment.
JP63129160A 1988-05-26 1988-05-26 How to start a variable speed hydropower plant Expired - Lifetime JP2768688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129160A JP2768688B2 (en) 1988-05-26 1988-05-26 How to start a variable speed hydropower plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129160A JP2768688B2 (en) 1988-05-26 1988-05-26 How to start a variable speed hydropower plant

Publications (2)

Publication Number Publication Date
JPH01300068A true JPH01300068A (en) 1989-12-04
JP2768688B2 JP2768688B2 (en) 1998-06-25

Family

ID=15002629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129160A Expired - Lifetime JP2768688B2 (en) 1988-05-26 1988-05-26 How to start a variable speed hydropower plant

Country Status (1)

Country Link
JP (1) JP2768688B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240392A (en) * 1975-09-26 1977-03-29 Sumitomo Metal Ind Ltd Magnetic flaw detection device
JPS5320088A (en) * 1976-08-05 1978-02-23 Mitsubishi Electric Corp Water wheel speed governor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240392A (en) * 1975-09-26 1977-03-29 Sumitomo Metal Ind Ltd Magnetic flaw detection device
JPS5320088A (en) * 1976-08-05 1978-02-23 Mitsubishi Electric Corp Water wheel speed governor

Also Published As

Publication number Publication date
JP2768688B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
KR102506097B1 (en) Methods for operating hydraulic machines, and corresponding installations for converting hydraulic energy into electrical energy
JPS5972998A (en) Operating method for variable speed water wheel generator
CN103684158B (en) A kind of synchronous generator exciting control method based on PSS switching
JPS5923004A (en) Method and device for controlling generator facility of steam turbine
US5148093A (en) System for controlling AC excited synchronous machine
Magsaysay et al. Use of a static frequency converter for rapid load response in pumped-storage plants
JPH01300068A (en) Method for starting variable speed type water power generation facility
JPS6359798A (en) Water-wheel generator
RU2038489C1 (en) Method of starting and synchronizing steam turbine unit
JP2685199B2 (en) How to start a variable speed hydropower plant
JPH08154399A (en) Starting method of synchronous motor
US4292533A (en) Motoring control for hydraulic pump-turbine
JPH0428907B2 (en)
JP2526605B2 (en) Variable speed power generation control device
JPH06335296A (en) Variable-speed pumped-storage generation system
JP3141226B2 (en) Core flow control system
JPH09209906A (en) Parallel operation processing method in hydraulic tubine generator
JP2753028B2 (en) Parallel operation of water turbine or pump turbine
JPH05113171A (en) Speed regulation control device of water turbine
JP2987765B2 (en) Load limiting device for water turbine for power generation
JP2945770B2 (en) Hydraulic machine and its starting and control method
JPH06241158A (en) Variable velocity power generator, variable velocity pumped storage power generator and drive control of them
JPH0850190A (en) Reactor core flow rate control system
JPH08334005A (en) Turbine starting control device
JPH0830463B2 (en) Protection stop control method for AC excitation synchronous machine