JPH01299998A - Shielded propulsion and shielding construction method in lining on-site lining - Google Patents

Shielded propulsion and shielding construction method in lining on-site lining

Info

Publication number
JPH01299998A
JPH01299998A JP63129239A JP12923988A JPH01299998A JP H01299998 A JPH01299998 A JP H01299998A JP 63129239 A JP63129239 A JP 63129239A JP 12923988 A JP12923988 A JP 12923988A JP H01299998 A JPH01299998 A JP H01299998A
Authority
JP
Japan
Prior art keywords
steel pipe
propulsion
concrete
assembled
lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63129239A
Other languages
Japanese (ja)
Other versions
JPH0637834B2 (en
Inventor
Michio Itaba
板場 通夫
Yoshikazu Inada
義和 稲田
Toshitsugu Horisaki
堀崎 敏嗣
Susumu Sarada
皿田 進
Kiyohide Kaihatsu
改発 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Tobishima Corp
Original Assignee
Kawasaki Heavy Industries Ltd
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Tobishima Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63129239A priority Critical patent/JPH0637834B2/en
Publication of JPH01299998A publication Critical patent/JPH01299998A/en
Publication of JPH0637834B2 publication Critical patent/JPH0637834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the easy assembly of a reinforcement member at the predetermined position by assembling the member with the shield propulsion jack forward part inserted into the steel pipe of a reinforcement for concrete. CONSTITUTION:A reinforcement member 1 to be assembled in a shielding machine is constituted with a steel pipe 2 and a reinforcement 3, and divided into a plural number in a circumferential direction. The forward part of a propulsion jack is inserted in the steel pipe 2 of the reinforcement 1 and the reinforcement member 1 is assembled in turn in a circumferential direction. Then, an inner mold frame 4 is assembled on the internal surface of the reinforcement member 1 and a tail frame 6 is used to close a gap at the side of the shielding machine between the drum plate of thereof and the inner mold frame 4. In addition, concrete is filled into the aforesaid gap. Thereafter, quick- curing mortar filled in the steel pipe 2 of the reinforcement member 1 is pressed with the propulsion jack, thereby enabling a shielded drilling and advancing process. Furthermore, after the completion of drilling, the forward part of the propulsion jack is drawn in turn from the inside of the steel pipe 2 and quick- curing mortar is instead filled into the steel pipe 2 in order.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトンネルの覆工を既製のセグメントを使用せず
、場所打ちコンクリートで形成するための推進方法、覆
工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a propulsion method and a lining method for forming a tunnel lining with cast-in-place concrete without using ready-made segments.

(従来の技術〕 シールド掘進機により掘削されたトンネルの覆工に際し
て、既製のセグメントを現地で組み立て覆工する方法に
代わって合理的にトンネルライニングを行う方法として
、シールド機内で鉄筋と型枠を組み立て、コンクリート
を打設する方法が各種提案されている。これらをシール
ド機の推進反力を得る方法から分類すると、シールド機
後部に敷設した既製のプッシュ口・ンドから取る方法(
例えば、特開昭62−21999号公報参照)と鋼製型
枠から取る方法(例えば、特開昭60−141998号
公報および特開昭62−194399号公報参照)に分
けることができる。
(Prior technology) When lining a tunnel excavated by a shield machine, a method for lining the tunnel in a rational manner instead of assembling ready-made segments on-site and lining the tunnel is to assemble reinforcing bars and formwork inside the shield machine. Various methods have been proposed for assembling and pouring concrete.Categorizing them based on the method of obtaining the propulsion reaction force of the shield machine, there are two methods:
For example, see Japanese Unexamined Patent Publication No. 62-21999) and a method of taking it from a steel formwork (for example, see Japanese Unexamined Patent Publications No. 60-141998 and Unexamined Japanese Patent Application No. 62-194399).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のブツシュロッドから推進反力を取る方式において
は、場所打ちコンクリート内に埋設されたブツシュロッ
ドを介して充分に固化した覆工コンクリートにより推進
反力を得られるが、コンクリートが固化していることよ
り、コンクリートを加圧してテールボイドにコンクリー
トを充填することができず、且つ硬化のための待ち時間
が長くなり所要の掘進能率が得られず、その上推進反力
に耐えるブツシュロッドは太くて重いものとなるため、
設置するための設備は大掛かりなものとなり、設置に要
する時間も長くかかり、非常に作業性の悪いものであっ
た。
In the conventional method of obtaining the propulsion reaction force from the bush rod, the propulsion reaction force can be obtained from the sufficiently hardened lining concrete via the bush rod buried in cast-in-place concrete, but since the concrete is hardened, It is not possible to pressurize the concrete and fill the tail void with concrete, and the waiting time for hardening is long, making it impossible to obtain the required excavation efficiency.Furthermore, the bushing rod that can withstand the propulsion reaction force is thick and heavy. For,
The equipment required for installation was large-scale, the time required for installation was long, and the workability was extremely poor.

また、型枠から推進反力を取る方式においては、場所打
ちコンクリートを圧縮してテールボイドにコンクリート
を充填することはできる。
In addition, in the method of taking the propulsion reaction force from the formwork, it is possible to compress cast-in-place concrete and fill the tail void with concrete.

しかし、コンクリート加圧荷重に耐え且つ充分な推進反
力を得ることのできる型枠を得るためには、型枠の強度
を充分なものとする必要があり、その結果型枠が重くな
りハンドリングが煩雑なものとなった。この方式による
推進反力はコンクリートと型枠との付着によるg棒刀か
ら得る構造であるから、脱型可能時期を過ぎても十分な
付着力を必要とするため型枠設置長が長くなり、型枠を
転用使用するための型枠移送装置も大掛かりなものとな
り、作業空間が制約され、また曲線部の施工性が悪くな
るなどの問題があった。
However, in order to obtain a formwork that can withstand the concrete pressurized load and obtain sufficient propulsion reaction force, the formwork must have sufficient strength, which results in the formwork being heavy and difficult to handle. It became complicated. Since the propulsion reaction force in this method is obtained from the g-bar due to the adhesion between the concrete and the formwork, sufficient adhesion force is required even after the time when the mold can be removed, so the installation length of the formwork becomes long. The formwork transfer device for reusing the formwork is also large-scale, resulting in problems such as restricted work space and poor workability on curved sections.

さらに従来のこの種のトンネルの覆工において、コンク
リートの補強材として鉄筋または鉄骨が補強材として用
いられるのが一般的であるが、トンネルの狭い切羽で鉄
筋や鉄骨を組み立てる作業は非常に煩雑であり、鉄筋の
位置保持精度確保やトンネル軸方向のリング間配筋が困
難であった。
Furthermore, in the conventional lining of this type of tunnel, reinforcing bars or steel frames are generally used as reinforcing materials for the concrete, but the work of assembling the reinforcing bars or steel frames in the narrow face of the tunnel is extremely complicated. This made it difficult to ensure the accuracy of reinforcing bar positioning and to arrange the reinforcing bars between rings in the tunnel axis direction.

上記に鑑み、本発明は、過大な内型枠を不要とし、補強
部材を軽量とすることができ、その結実施工手間を簡略
化することができ、コスト的にも有利で作業性に優れた
シールド推進、覆工工法を提供することを目的とする。
In view of the above, the present invention eliminates the need for an excessively large inner formwork, makes the reinforcing member lightweight, simplifies the labor involved in its construction, is cost-effective, and has excellent workability. The purpose is to provide shield propulsion and lining construction methods.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明は、場所打ちコンク
リートを打ち継ぎ面において所定長さづつ打ち継いで形
成されるシールド推進、覆工工法において、 シールド機内で組み立てる補強部材は鋼管と鉄筋より構
成され且つ円周方向に数分割され、上記鋼管に推進ジヤ
ツキ先方部を挿入して円周方向に順次補強部材を組み立
て、 該補強部材の内面に内型枠を組み立て、シールド機胴板
と内型枠との間にできた空隙のシールド機側の面を妻枠
でふさぎ、この空隙にコンクリートを打設し、 コンクリートの打設完了後に、前回掘進完了後に充填し
た補強部材の鋼管内の速硬モルタルを推進ジヤツキによ
り押圧してシールド掘進し、掘進完了後に補強部材の鋼
管内より推進ジヤツキ先方部を順次引き抜いて、この鋼
管内に速硬モルタルを順次充填していくことを特徴とす
る。
In order to solve the above problems, the present invention provides a shield propulsion and lining construction method in which cast-in-place concrete is formed by splicing a predetermined length at a time on the pouring surface, and the reinforcing member assembled in the shield machine is composed of steel pipes and reinforcing bars. The front part of the propulsion jack is inserted into the steel pipe, and reinforcing members are sequentially assembled in the circumferential direction.The inner form is assembled on the inner surface of the reinforcing member, and the shield machine body plate and the inner form are assembled. The side of the gap created between the shield machine and the frame is closed with a gable frame, concrete is poured into this gap, and after the concrete placement is completed, the reinforcing material filled in after the previous excavation is quickly hardened inside the steel pipe. The shield excavation is carried out by pressing the mortar with a propulsion jack, and after completion of excavation, the forward part of the propulsion jack is sequentially pulled out from inside the steel pipe of the reinforcing member, and the steel pipe is sequentially filled with quick-hardening mortar.

〔作用〕[Effect]

上記のように構成される場所打ちライニングに於けるに
シールド推進、覆工工法の作用と効果は以下のようにな
る。
The functions and effects of the shield propulsion and lining construction methods in the cast-in-place lining constructed as described above are as follows.

コンクリートの補強部材の鋼管にシールド推進ジヤツキ
先方部を挿入して組み立てるので、組み立てが容易で補
強部材は常時所定位置に組み立てることができる。
As the front part of the shield propulsion jack is inserted into the steel pipe of the concrete reinforcing member, assembly is easy, and the reinforcing member can always be assembled in a predetermined position.

推進反力は鋼管内の速硬モルタルに伝達されるので鋼管
には直接推進反力が作用しないために細くて軽いものと
でき、既打設コンクリートに影響を与えることなく推進
反力を確保でき、推進ジヤツキを伸長することにより掘
進する。
Since the propulsive reaction force is transmitted to the fast-hardening mortar inside the steel pipe, the propulsive reaction force does not act directly on the steel pipe, so it can be made thin and light, and the propulsive reaction force can be secured without affecting the already poured concrete. , excavates by extending the propulsion jack.

シールド掘進と共に発生するテールボイドには、妻枠加
圧等によって流動化コンクリートを加圧して充填する。
Tail voids that occur during shield excavation are filled with fluidized concrete by pressurizing the gable frame.

なお内型枠の内面には支保が設置されているので、内型
枠に加わるコンクリート加圧荷重は支保が負担する。
Note that since shoring is installed on the inner surface of the inner formwork, the concrete pressurization load applied to the inner formwork is borne by the shoring.

上記したように、内型枠にはコンクリート加圧荷重や推
進反力が作用しないので、内型枠を軽量化できる。
As described above, since concrete pressurization load and propulsion reaction force do not act on the inner formwork, the weight of the inner formwork can be reduced.

〔実施例〕〔Example〕

第1図はトンネル内において補強部材、内型枠および支
保が組み立てられた状態を示す断面図、第2図(a)は
補強部材の組み立て説明図、第2図(b)は妻枠が装着
された状態およびジヤツキ配置を示す断面図、第2図(
C)は第2図(b)をA−A線で切断した図、第2図(
d)は第2図(b)をB−B線で切断した図、第3図(
a)〜(d)は施工順序を示す説明図である。
Figure 1 is a cross-sectional view showing the reinforcing member, inner formwork, and support assembled in the tunnel, Figure 2 (a) is an explanatory diagram of how the reinforcing member is assembled, and Figure 2 (b) is the end frame installed. Fig. 2 is a sectional view showing the jacked up state and the jack arrangement.
C) is a diagram cut along the A-A line of Figure 2 (b), and Figure 2 (
d) is a diagram obtained by cutting FIG. 2(b) along the line B-B, and FIG.
a) to (d) are explanatory diagrams showing the construction order.

第1図において、lは円周方向に組み立てられた補強部
材で、2.3はそれぞれ補強部材lを構成する鋼管およ
び鉄筋である。円周方向に組み立てられた補強部材lの
内側には内型枠4が組み立てられている。5は内型枠4
に内接して組み立てられた支保である。6はシールド機
銅板のテールフレームである。
In FIG. 1, 1 is a reinforcing member assembled in the circumferential direction, and 2.3 is a steel pipe and a reinforcing bar that constitute the reinforcing member 1, respectively. An inner formwork 4 is assembled inside the reinforcing member l assembled in the circumferential direction. 5 is the inner formwork 4
It is a support built inscribed in the. 6 is the tail frame of the shield machine copper plate.

第2図(a)において、鉄筋3は鋼管2と平行する位置
に適当な間隔を置いて矩形に組み立てられると共に鋼管
2と直交する位置に円周方向に適当数組み立てられ、数
分割のブロックに構成されている。7は推進ジヤツキ先
方部であり、この推進ジャンキ先方部7が鋼管2に挿入
されて補強部材が組み立てられる。
In Fig. 2(a), reinforcing bars 3 are assembled in a rectangular shape parallel to the steel pipe 2 at appropriate intervals, and an appropriate number are assembled in the circumferential direction at positions orthogonal to the steel pipe 2, and divided into several blocks. It is configured. 7 is a propulsion jack front part, and this propulsion jack front part 7 is inserted into the steel pipe 2 to assemble the reinforcing member.

第2図(b)〜(d)において8は妻枠、9は推進ジヤ
ツキメインロッドと鋼管2の貫通孔で、10は妻枠ジヤ
ツキの設置位置を示す。11はテールフレーム6と妻枠
8の間の妻枠外周シールであり、12は妻枠8と内型枠
4との間の妻枠内周シールである。
In FIGS. 2(b) to 2(d), reference numeral 8 indicates the end frame, 9 indicates a through hole for the propulsion jack main rod and the steel pipe 2, and 10 indicates the installation position of the end frame jack. Reference numeral 11 denotes a seal on the outer periphery of the gable frame between the tail frame 6 and the gable frame 8, and numeral 12 represents an inner circumferential seal on the gable frame between the gable frame 8 and the inner form 4.

第2図(C)において、13は推進ジヤツキメインロッ
ド、14は妻枠8と鋼管2との間隙をシールする鋼管用
シールである。
In FIG. 2(C), 13 is a propulsion jack main rod, and 14 is a steel pipe seal that seals the gap between the end frame 8 and the steel pipe 2.

第2図(d)において、18は妻枠ジヤツキ、19は妻
枠ジヤツキロッドである。
In FIG. 2(d), 18 is the end frame jack, and 19 is the end frame jack rod.

次に、施工順序について第3図(a)〜(d)に基づい
て説明する。
Next, the construction order will be explained based on FIGS. 3(a) to 3(d).

■鉄筋および内型枠の組み立て、鋼管内への速硬モルタ
ル充填作業。
■Assembling reinforcing bars and inner formwork, and filling quick-hardening mortar into steel pipes.

前回掘進部に埋め込まれた補強部材の鋼管内Cへ速硬モ
ルタルを充填する。妻枠ジヤツキ18を縮小して妻枠8
を引戻しく妻枠脱型し)、掘進が完了した場所で組立用
エレクタ−15により円周方向に数分割された補強部材
1を運搬し、推進ジヤツキ先方部7を鋼管2に挿入して
補強部材lを保持し、これを繰返して補強部材を円周リ
ングに組立てる。その後、補強部材1の内側に内型枠4
を組立用エレクタ−15により組立てる。(第3図(a
)参照)なお、鉄筋同士の結合は溶接やラップ等で行え
ばよく、その結合方法は特に限定しない。
Quick-hardening mortar is filled into the steel pipe C of the reinforcing member embedded in the previously excavated part. Wife frame Jyatsuki 18 is reduced to wife frame 8
At the place where the excavation is completed, the reinforcing member 1 divided into several parts in the circumferential direction is carried by the assembly erector 15, and the forward part 7 of the propulsion jack is inserted into the steel pipe 2 for reinforcement. Hold member l and repeat this to assemble the reinforcing member into a circumferential ring. After that, the inner formwork 4 is placed inside the reinforcing member 1.
Assemble using the assembly erector 15. (Figure 3(a)
) Note that the reinforcing bars may be joined together by welding, wrapping, etc., and the joining method is not particularly limited.

■内型枠用支保の組み立て作業および妻枠のセット 前回コンクリート打設時に用いた、シールド掘進機内に
設置された摺動梁(図示せず)上を移動する支保5をジ
ヤツキ等で引き寄せて内型枠4を支持させる。また内型
枠4とテールフレーム6との間に形成される空隙でシー
ルド機側の面に妻枠8をセットする。(第3図(b)参
照) ■コンクリート打設および内型枠脱型作業内型枠に設け
た適当な注入口りより、流動化コンクリートを打設する
。そして、既ライニング箇所でコンクリートが地盤の圧
力に充分耐えられるほどの強度を確保した場所Eの内型
枠4を、台車16に設置された脱型枠周エレクタ−17
により脱型する。この脱型された内型枠は、次回掘進箇
所の内型枠として転用する。(第3図(c)参照) ■掘削および推進作業 この時点では、前回掘削部に組み立てられた鋼管内Cに
充填された速硬モルタルは所定の強度を持っているので
、推進反力をこのトンネル軸方向に連続して形成された
鋼管2内の速硬モルタルの連続柱から取ることができる
。そこで、推進ジヤツキ先方部7を前回組まれた鋼管内
に充填された速硬モルタルに押し当てて推進ジヤツキメ
インロッド13を伸長することにより掘進していく。(
第3図(d)参照)第2図(b)に示す妻枠ジヤツキの
設置位置10で、第2図(d)に示すように妻枠ジヤツ
キロッド19がヒンジ(図示せず)でシールド機本体に
連結されている妻枠ジヤツキ18を伸長する(第3図(
C)参照)ことにより、妻枠8を加圧してテールボイド
にコンクリートを充填しながらシールドが推進する。
■ Assembling the inner formwork support and setting the gable frame The support 5, which moves on the sliding beam (not shown) installed in the shield excavator that was used during the previous concrete pouring, is pulled in with a jack etc. The formwork 4 is supported. Further, the end frame 8 is set on the shield machine side surface in the gap formed between the inner formwork 4 and the tail frame 6. (See Figure 3 (b)) ■Concrete pouring and inner formwork demolding work Place fluidized concrete through a suitable injection hole provided in the inner formwork. Then, the inner formwork 4 at the location E, where the concrete has secured enough strength to withstand the pressure of the ground at the already lined location, is removed from the formwork circumferential erector 17 installed on the trolley 16.
Remove the mold by This removed inner formwork will be used as the inner formwork for the next excavation location. (See Figure 3 (c)) ■ Excavation and propulsion work At this point, the quick-hardening mortar filled in the steel pipe C assembled in the excavation part last time has a predetermined strength, so the propulsion reaction force is reduced by this. It can be taken from a continuous column of quick-hardening mortar in the steel pipe 2 that is continuously formed in the axial direction of the tunnel. Therefore, the propulsion jack main rod 13 is extended by pressing the forward part 7 of the propulsion jack against the quick-hardening mortar filled in the previously assembled steel pipe, thereby digging. (
(See Fig. 3(d)) At the end frame jack installation position 10 shown in Fig. 2(b), the end frame jack rod 19 is connected to the shield machine body by a hinge (not shown) as shown in Fig. 2(d). Extend the end frame jack 18 connected to the end frame jack 18 (see Fig. 3).
(see C)), the shield is propelled while pressurizing the end frame 8 and filling the tail void with concrete.

掘削および推進完了後に、順次速硬モルタルを充填する
箇所の推進ジヤツキ20のメインロッド13および推進
ジヤツキ先方部7を縮小させ、鋼管内Cへ速硬モルタル
を充填する。(第3図(a)参照)妻枠ジヤツキ18は
打設コンクリートが妻枠脱型できる強度発現を待って縮
小する。以上の作業を繰り返して行う。
After the excavation and propulsion are completed, the main rod 13 of the propulsion jack 20 and the propulsion jack front portion 7 at the locations to be filled with quick-hardening mortar are sequentially reduced, and the inside of the steel pipe C is filled with quick-hardening mortar. (See FIG. 3(a)) The gable jack 18 is reduced in size after the poured concrete has developed enough strength to allow the gable to be removed from the gable. Repeat the above steps.

なお推進ジヤツキ20はメインロッド13と先方部7よ
り構成しており、メインロッド13の内径に先方部7が
入り込む構造とし、それぞれ単独で伸縮作動ができる構
造としている。
The propulsion jack 20 is composed of a main rod 13 and a front part 7, and the front part 7 is structured to fit into the inner diameter of the main rod 13, so that each can extend and contract independently.

(発明の効果) l)コンクリートの補強部材は鋼管内に推進ジヤツキ先
方部を順次挿入して組立ることができ、補強部材の位置
決めに煩わされることなく、補強部材の組立が能率よく
行える。
(Effects of the Invention) l) A concrete reinforcing member can be assembled by sequentially inserting the forward end of the propulsion jack into a steel pipe, and the reinforcing member can be assembled efficiently without having to worry about positioning the reinforcing member.

2)シールドの推進反力は、補強部材の鋼管内に充填し
た速硬モルタルを押圧し、鋼管と内型枠に直接推進反力
が作用しないことより、鋼管と内型枠の強度を高める必
要がなく、軽量化でき、取り扱いの作業性が向上する。
2) The propulsion reaction force of the shield presses the fast-hardening mortar filled in the steel pipe of the reinforcing member, and as the propulsive reaction force does not act directly on the steel pipe and inner formwork, it is necessary to increase the strength of the steel pipe and inner formwork. This eliminates the need for weight loss and improves handling efficiency.

3)シールドの推進反力は鋼管内の速硬モルタルで得る
ために、内型枠と打設コンクリートの付着による摩擦力
を必要としないことより、内型枠の設置長を短くでき、
必要な型枠数の減少と曲線部の施工性の向上が図れる。
3) The propulsion reaction force of the shield is obtained by the fast-hardening mortar inside the steel pipe, so the frictional force caused by adhesion between the inner formwork and poured concrete is not required, so the installation length of the inner formwork can be shortened.
It is possible to reduce the number of required formwork and improve the workability of curved sections.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトンネル内において補強部材、内型枠および支
保が組み立てられた状態を示す断面図、第2図(a)は
補強部材の組み立て説明図、第2図(b)は妻枠が装着
された状態およびジ十ツキ配置を示す断面図、第2図(
c)は第2図(b)をA−A線で切断した図、第2図(
d)は第2図(b)をB−B線で切断した図、第3図(
a)〜(d)は施工順序を示す説明図である。 1・・補強部材、2・・鋼管、3・・鉄筋、4・・内型
枠、5・・支保、6・・テールフレーム、7・・推進ジ
ヤツキ先方部、8・・妻枠、9・・貫通孔、IO・・妻
枠ジヤツキ、11・・妻枠外周シール、12・・妻枠内
周シール、13・・推進ジヤツキメインロッド、14・
・鋼管用シール、15・・組立用エレクタ−116・・
台車、17・・脱型枠周エレクタ−118・・妻枠ジヤ
ツキ、19・・妻枠ジヤツキロッド、20・・推進ジヤ
ツキ 、5・) 一一〆 蕗1 図 (C) ° (d) 112図 (a)        纂 (b) 3図        (C) (d) 餘i
Figure 1 is a cross-sectional view showing the reinforcing member, inner formwork, and support assembled in the tunnel, Figure 2 (a) is an explanatory diagram of how the reinforcing member is assembled, and Figure 2 (b) is the end frame installed. Fig. 2 is a sectional view showing the fixed state and the rigid arrangement.
c) is a diagram cut along the A-A line of Figure 2(b), and Figure 2(
d) is a diagram obtained by cutting FIG. 2(b) along the line B-B, and FIG.
a) to (d) are explanatory diagrams showing the construction order. 1. Reinforcement member, 2. Steel pipe, 3. Rebar, 4. Inner formwork, 5. Support, 6. Tail frame, 7. Propulsion jack front part, 8. End frame, 9.・Through hole, IO・・End frame jack, 11・・End frame outer circumference seal, 12・・End frame inner circumference seal, 13・・Propulsion jack main rod, 14・・
・Seal for steel pipe, 15・・Erector for assembly 116・・
Dolly, 17... Form removal frame periphery erector 118... End frame jack, 19... End frame jack rod, 20... Propulsion jack, 5) a) Summary (b) Figure 3 (C) (d) 餘i

Claims (1)

【特許請求の範囲】  場所打ちコンクリートを打ち継ぎ面において所定長さ
づつ打ち継いで形成されるシールド推進、覆工工法にお
いて、 シールド機内で組み立てる補強部材は鋼管と鉄筋より構
成され且つ円周方向に数分割され、上記鋼管に推進ジャ
ッキ先方部を挿入して円周方向に順次補強部材を組み立
て、 該補強部材の内面に内型枠を組み立て、シールド機胴板
と内型枠との間にできた空隙のシールド機側の面を妻枠
でふさぎ、この空隙にコンクリートを打設し、 コンクリートの打設完了後に、前回掘進完了後に充填し
た補強部材の鋼管内の速硬モルタルを推進ジャッキによ
り押圧してシールド掘進し、掘進完了後に補強部材の鋼
管内より推進ジャッキ先方部を順次引き抜いて、この鋼
管内に速硬モルタルを順次充填していくことを特徴とす
る場所打ちライニングに於けるシールド推進、覆工工法
[Claims] In the shield propulsion and lining method in which cast-in-place concrete is formed by splicing predetermined lengths at the joint surface, the reinforcing members assembled in the shield machine are composed of steel pipes and reinforcing bars, and are The front part of the propulsion jack is inserted into the steel pipe, and reinforcing members are sequentially assembled in the circumferential direction.The inner formwork is assembled on the inner surface of the reinforcing member, and the structure is formed between the shield machine body plate and the inner formwork. The surface of the gap facing the shield machine is closed with a gable frame, concrete is poured into this gap, and after the concrete placement is completed, the quick-hardening mortar inside the reinforcing steel pipe that was filled after the previous excavation was completed is pressed by a propulsion jack. shield propulsion in cast-in-place lining, which is characterized in that the shield is excavated, and after the excavation is completed, the forward part of the propulsion jack is sequentially pulled out from within the steel pipe of the reinforcing member, and the steel pipe is sequentially filled with quick-hardening mortar. , lining method.
JP63129239A 1988-05-25 1988-05-25 Shielding in cast-in-place lining, lining method Expired - Lifetime JPH0637834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129239A JPH0637834B2 (en) 1988-05-25 1988-05-25 Shielding in cast-in-place lining, lining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129239A JPH0637834B2 (en) 1988-05-25 1988-05-25 Shielding in cast-in-place lining, lining method

Publications (2)

Publication Number Publication Date
JPH01299998A true JPH01299998A (en) 1989-12-04
JPH0637834B2 JPH0637834B2 (en) 1994-05-18

Family

ID=15004629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129239A Expired - Lifetime JPH0637834B2 (en) 1988-05-25 1988-05-25 Shielding in cast-in-place lining, lining method

Country Status (1)

Country Link
JP (1) JPH0637834B2 (en)

Also Published As

Publication number Publication date
JPH0637834B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
JP3285261B2 (en) Precast formwork for tunnel lining
JPH0511195B2 (en)
JP2593284B2 (en) Tunnel lining structure and construction method
JPH01299998A (en) Shielded propulsion and shielding construction method in lining on-site lining
JPH0237480B2 (en)
JPS6145037B2 (en)
JPH02128098A (en) Method of shield lining construction
JPS6354875B2 (en)
JPH06248889A (en) Concrete casting device for tunnel lining
JPH0361000B2 (en)
JPS63300200A (en) Method of cast-in-place lining shielding construction
JPH01131797A (en) Cast-in-place concrete lining construction method
JPH01322100A (en) Shield work method with cast-in-place concrete lining
JPH01268997A (en) Axial reinforced joint and reinforced joint method in cast-in-place concrete lining method
JPS60141998A (en) Shield drilling method and drilling machine therefor
JPH0786317B2 (en) The method of lining curved parts with a shield machine
JPH0367199B2 (en)
JPH0696957B2 (en) Construction method of PC tunnel
JPS63181899A (en) Shield excavator
JPH07247790A (en) Method of molding concrete pipe underground
JPH0749760B2 (en) Shield for cast-in-place lining method
JPH04174196A (en) In-situ lining work
JP2005290797A (en) Combined method of propulsion and shielding
JPH01244100A (en) Reinforced concrete lining shield work
JPS5991297A (en) Shield drilling method and apparatus