JPH01299792A - Ni alloy coated electrode having excellent high-temperature cracking resistance - Google Patents

Ni alloy coated electrode having excellent high-temperature cracking resistance

Info

Publication number
JPH01299792A
JPH01299792A JP12624088A JP12624088A JPH01299792A JP H01299792 A JPH01299792 A JP H01299792A JP 12624088 A JP12624088 A JP 12624088A JP 12624088 A JP12624088 A JP 12624088A JP H01299792 A JPH01299792 A JP H01299792A
Authority
JP
Japan
Prior art keywords
metal
agent
welding
coating
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12624088A
Other languages
Japanese (ja)
Inventor
Tadao Ogawa
忠雄 小川
Hideo Sakurai
英夫 桜井
Toshihiko Koseki
敏彦 小関
Yuuji Inoue
裕滋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12624088A priority Critical patent/JPH01299792A/en
Publication of JPH01299792A publication Critical patent/JPH01299792A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent

Abstract

PURPOSE:To suppress the high-temp. cracking of a multilayered weld zone by incorporating C, Si, Mn, P, S, Cr, Fe, and Ni at specific ratios into a core wire and coating the wire with a coating material contg. prescribed ratios of metal carbonate and metal fluoride. CONSTITUTION:The core wire is formed by consisting the compsn. thereof, by weight %, of <=0.1% C, 0.01-0.75% Si, 0.01-1.0% Mn, <=0.04% P, <=0.02% Si, 6-14% Cr, and 16-52% Fe, and consisting the balance of Ni and impurities. Further, the metal carbonate is incorporated at 20-60% into the coating material and the metal fluoride at 10-40% therein and the balance thereof is constituted of a deoxidizing agent, coating agent, alloy agent, and slag forming agent. The Cr and Fe components in the core wire lower the sensitivity to high-temp. cracking of the weld zone and improves the thermal impact resistance. The carbonate and fluoride of the metal in the coating agent improve the sealing effect of molten metal and the flowability of slag. The high-temp. crack of the weld zone is suppressed by the combined effects thereof.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は多層盛溶接時の耐高温割れ性、とくに耐延性
低下割れ性が優れたNi基合金被覆アーク溶接棒に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Ni-base alloy coated arc welding rod that has excellent hot cracking resistance during multilayer welding, particularly excellent resistance to ductility drop cracking.

[従来の技術] Ni基合金は耐食性及び耐熱性に優れており、石油化学
プラント、原子炉プラントなどの苛酷な条件下で使用さ
れている。また、強度上の問題から、厚板を使用する機
会も多く、その際の溶接には必然的に多層盛溶接が採用
されることになる。
[Prior Art] Ni-based alloys have excellent corrosion resistance and heat resistance, and are used under severe conditions in petrochemical plants, nuclear reactor plants, and the like. Furthermore, due to strength issues, thick plates are often used, and multi-layer welding is inevitably adopted for welding in such cases.

ところが、Ni基合金の多層盛溶接を行なった場合、溶
接金属部に微細な割れ(ビード下ミクロ割れ)がしばし
ば発生し、問題となることがある。
However, when performing multi-layer welding of Ni-based alloys, microscopic cracks (under-bead microcracking) often occur in the weld metal, which can pose a problem.

この割れは前層ビードが後層ビードによって再加熱され
た熱影響部で発生し、Sl及び不可避不純物として含有
するP、S成分に起因する高温割れ(延性低下割れ)で
ある。
This cracking occurs in the heat-affected zone where the front layer bead is reheated by the rear layer bead, and is a high-temperature cracking (ductility reduction cracking) caused by Sl and P and S components contained as unavoidable impurities.

従来、この割れを防止するためには、溶接施工時に予熱
を行ない、拘束を小さくして小人熱で溶接する方法が採
用されてきた。しかしながら、小人熱で溶接した場合、
ビードが小さく多層盛溶接ではバス数が多くなり溶接効
率が極めて悪いという問題を生じる。
Conventionally, in order to prevent this cracking, a method has been adopted in which preheating is performed during welding, the restraint is reduced, and welding is performed using dwarf heat. However, when welding with dwarf heat,
In multi-layer welding where the bead is small, the number of buses increases, resulting in a problem of extremely poor welding efficiency.

このような問題点を解決するものとして、特開昭62−
13025号がある。これは、インコ社(Intern
atlonal Nie、kel Co、 Inc、)
製品であるNi基合金1neonet (登録商標)7
18の組成を基本としてNb、Taを低減し、溶接ミク
ロ割れ防止を図ったものである。
As a solution to these problems, Japanese Patent Application Laid-open No. 62-
There is No. 13025. This is an Inco company (Intern
atonal Nie, KEL Co, Inc.)
Product Ni-based alloy 1neonet (registered trademark) 7
Based on the composition of No. 18, Nb and Ta are reduced to prevent weld microcracks.

しかし、この技術内容に示された溶接材料を製作しても
耐高温割れ性の向上には問題がある。即ち、Incon
el 718を基本組成として、Nb、Taを低減して
も、なお数%のNb、Taを含有しているため、粒界に
ラーフエス相が生成され、溶接再熱時に脆化及び局部溶
融が起こり、高温割れ発生の原因となる。
However, even if the welding material shown in this technical content is manufactured, there is a problem in improving the hot cracking resistance. That is, Incon
Even if the basic composition is el 718 and Nb and Ta are reduced, it still contains a few percent of Nb and Ta, so a Rough S phase is generated at the grain boundaries, causing embrittlement and local melting during welding reheating. , which causes hot cracking.

また、この他の従来高温割れ感受性の小さいと言われて
いる溶接材料を使用した場合でも1.母材の希釈や、フ
ラックスの影響により、粒界へ不純物としてP、S等が
混入することがある。これらのP、Sも粒界脆化及び粒
界で低融点の共晶物を生成し、高温割れが発生する原因
となる。
In addition, even when using other welding materials that are conventionally said to have low hot cracking susceptibility, 1. Due to dilution of the base material or the influence of flux, P, S, etc. may be mixed into the grain boundaries as impurities. These P and S also cause grain boundary embrittlement and produce low melting point eutectics at the grain boundaries, causing hot cracking.

[発明が解決しようとする課ffi] 本発明はNi基合金を多層盛溶接した場合に発生する延
性低下割れを防止し、優れた耐高温割れ性を有するNi
基合金溶接材料を提供することを目的とするものである
[Issue to be solved by the inventionffi] The present invention prevents ductility-degrading cracking that occurs when Ni-based alloys are welded in multiple layers, and produces Ni that has excellent hot cracking resistance.
The purpose is to provide a base alloy welding material.

[課題を解決するための手段] 本発明者らは上述の問題を解決するために、Nl基合金
多層盛溶接金属の高温割れに及ぼす化学組成の影響につ
いて広範囲に詳細な研究を行なった。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors conducted extensive and detailed research on the influence of chemical composition on hot cracking of Nl-based alloy multilayer weld metal.

すなわち、第1表に示した化学組成からなる供試材を板
厚3vams長さ10011%幅501m1こ加工し、
第1図に示すようなりロスビードパレストレイン試験を
行なった。
That is, a sample material having the chemical composition shown in Table 1 was processed into a plate having a thickness of 3 vams, a length of 10011%, and a width of 501 m1.
A Rossbyde parestrain test was conducted as shown in FIG.

板幅方向にTIG溶接によって1層目のと−ドオンプレ
ート溶接を行ない、ビード表面の酸化スケールを除去し
た後、1層目ビード5に直角方向にA点からB点に向か
ってTIG溶接によって2層目のビードオンプレート溶
接を行なった。
The first layer is welded by TIG welding in the plate width direction, and after removing the oxide scale on the bead surface, the second layer is welded by TIG welding from point A to point B in the direction perpendicular to the first layer bead 5. Bead-on-plate welding was performed for each layer.

1層目及び2層目のTIG溶接条件は第2表に示したと
おりである。2層目ビード6の溶融池がB点の1層目ビ
ードに達した瞬間、落下速度300mm/sでヨーク2
を落下させて歪みを付加しく試験片表面における歪み量
は4.1%)、1層目ビードに高温割れを発生させて、
総割れ長さを測定した。
The TIG welding conditions for the first layer and the second layer are as shown in Table 2. At the moment when the molten pool of the second layer bead 6 reaches the first layer bead at point B, the yoke 2 is moved at a falling speed of 300 mm/s.
(The amount of strain on the surface of the test piece was 4.1%), and high temperature cracks were generated in the first layer bead.
The total crack length was measured.

この結果、本発明の組成からなる溶接材料を用いて溶接
を行なうことにより、多層盛溶接時の耐高温割れ性(耐
延性低下割れ性)が向上することを見出した。
As a result, it has been found that by performing welding using a welding material having the composition of the present invention, the hot cracking resistance (ductility reduction cracking resistance) during multilayer welding is improved.

なお、上記知見はTIG溶接によるものであるが、被覆
アーク溶接にもそのまま適用できる。
Although the above findings are based on TIG welding, they can also be applied to shielded arc welding.

即ち、本発明は重量%で、C: 0.1%以下、S i
 : 0.01〜0.75%、Mn : 0.0L〜1
.0%、P:0.04%以下、S : 0.02%以下
、C「:6〜14%、Fe:16〜52%を含み、残り
がNl及び不可避不純物からなる合金を心線とし、被覆
剤全重量に対して金属炭酸塩の1種または2種以上=2
0〜60%、金属弗化物の1種または2種以上:10〜
40%を含み、さらに上記以外のスラグ生成剤、脱酸剤
、合金剤、塗装剤からなる被覆剤を心線の周囲に被覆塗
装してなることを特徴とする耐高温割れ性に優れたNi
基合金被覆アーク溶接棒である。
That is, in the present invention, C: 0.1% or less, Si
: 0.01~0.75%, Mn: 0.0L~1
.. 0%, P: 0.04% or less, S: 0.02% or less, C: 6 to 14%, Fe: 16 to 52%, and the remainder is Nl and unavoidable impurities. One or more metal carbonates based on the total weight of the coating material = 2
0-60%, one or more metal fluorides: 10-60%
40%, and is further coated around the core with a coating consisting of a slag forming agent, a deoxidizing agent, an alloying agent, and a coating agent other than those mentioned above, and has excellent hot cracking resistance.
This is a base alloy coated arc welding rod.

第   2   表 [作  用コ 以下に本発明による各元素含有量の限定理由について述
べる。
Table 2 [Function] The reasons for limiting the content of each element according to the present invention will be described below.

C: 0.1%以下 Cの添加耐熱性を向上させるが、過剰に含有されるとC
rと結合して粒界に炭化物を形成し、耐食性を劣化させ
る。また延性、靭性をも劣化させるため0.1%以下と
定めた。
C: Addition of 0.1% or less C improves heat resistance, but if excessively contained, C
It combines with r to form carbides at grain boundaries and deteriorates corrosion resistance. Furthermore, since it also deteriorates ductility and toughness, it is set at 0.1% or less.

Si:0.01〜0.75% Slは脱酸元素として不可欠であるが、過剰に含有され
ると介在物として析出し、延性、靭性を劣化させる。ま
た、0.75%超では所望の耐高8割れ性を確保するこ
とができないので0.01〜0.75%と定めた。
Si: 0.01 to 0.75% Sl is essential as a deoxidizing element, but if it is contained in excess, it will precipitate as inclusions and deteriorate ductility and toughness. In addition, if it exceeds 0.75%, the desired high-8 cracking resistance cannot be ensured, so it is set at 0.01 to 0.75%.

Mn  : 0.01〜1.0% Mnは脱酸及び脱硫元素として添加するが、過剰添加は
耐食性、耐酸化性及び引張強さを劣化させるので0.0
1〜1.0%と定めた。
Mn: 0.01-1.0% Mn is added as a deoxidizing and desulfurizing element, but excessive addition deteriorates corrosion resistance, oxidation resistance, and tensile strength, so 0.0%
It was set at 1 to 1.0%.

P : 0.04%以下 Pは不可避不純物であり、粒界脆化及び粒界で低融点の
共晶物を生成し、高温割れ発生の原因となるため0.0
4%以下と定めた。
P: 0.04% or less P is an unavoidable impurity that causes grain boundary embrittlement and the formation of low melting point eutectics at grain boundaries, causing hot cracking.
It has been set at 4% or less.

S : 0.02%以下 Sは不可避不純物であり、粒界脆化及び粒界で低融点の
共晶物を生成し、高温割れ発生の原因となるため0.0
2%以下と定めた。
S: 0.02% or less S is an unavoidable impurity and causes grain boundary embrittlement and the formation of low melting point eutectics at grain boundaries, causing hot cracking, so 0.0
It has been set at 2% or less.

Cr:6〜14% 第2図は本発明の基本成分を有するNi基合金の延性低
下割れ感受性に及ぼすCrの影響を調べた結果を示すも
のである。
Cr: 6-14% Figure 2 shows the results of an investigation into the influence of Cr on the ductility reduction cracking susceptibility of Ni-based alloys having the basic components of the present invention.

第2図からCrが6%未満、及び14%超の含有量では
延性低下割れ防止の効果が少なくなっている。
As can be seen from FIG. 2, when the Cr content is less than 6% and more than 14%, the effect of preventing ductility deterioration cracking is reduced.

これは、Cr量が増加するとSの粒界偏析は低下して延
性低下割れ感受性が低下する効果が現れる。一方、Cr
量の増加は粒界のCr炭化物の増加及び硬さの上昇によ
り延性低下割れ感受性が上昇する効果が現れる。
This is because as the amount of Cr increases, grain boundary segregation of S decreases, resulting in a decrease in ductility-degrading cracking susceptibility. On the other hand, Cr
An increase in the amount has the effect of increasing ductility-degrading cracking susceptibility due to an increase in Cr carbides at grain boundaries and an increase in hardness.

この相反する効果があいまって作用し、Crff1が6
〜14%で延性低下割れ感受性が低下する。したがって
、所望の耐高温割れ性を確保するために6〜14%と定
めた。
These contradictory effects work together, and Crff1 becomes 6
~14% reduces ductility cracking susceptibility. Therefore, in order to ensure the desired hot cracking resistance, the content was determined to be 6 to 14%.

Fe:1B〜52% Feは耐熱衝撃性を向上させる作用があり、16%以上
の含有が必要である。一方52%より多いと塩化物環境
における耐粒界応力腐食割れ性が低下するので16〜5
2%と定めた。
Fe: 1B to 52% Fe has the effect of improving thermal shock resistance, and must be contained in an amount of 16% or more. On the other hand, if it exceeds 52%, the intergranular stress corrosion cracking resistance in a chloride environment will decrease, so
It was set at 2%.

金属炭酸塩=20〜60% 本発明で言う金属炭酸塩とは、例えば炭酸石灰、炭酸バ
リウム、炭酸マグネシウム、炭酸マンガンなどを指し、
これらはスラグに高塩基性を与え、溶接金属中のPおよ
びSを低下させ、かつ分解生成するCO2ガスによって
、溶融メタルを大気から遮断するとともにアーク雰囲気
中の水素、窒素のガス分圧を下げる効果があり、被覆剤
全重量に対して20%以上の添加が必要である。
Metal carbonate = 20 to 60% The metal carbonate referred to in the present invention refers to, for example, lime carbonate, barium carbonate, magnesium carbonate, manganese carbonate, etc.
These give high basicity to the slag, lower P and S in the weld metal, and the CO2 gas generated by decomposition shields the molten metal from the atmosphere and lowers the gas partial pressure of hydrogen and nitrogen in the arc atmosphere. It is effective and needs to be added in an amount of 20% or more based on the total weight of the coating material.

一方、60%を越えるとガス発生量が過剰となるためピ
ットが多発するとともに、スラグの融点が上昇してスラ
グの流動性が悪くなり、良好なビード形状が得られない
。したがって、20〜60%と定めた。
On the other hand, if it exceeds 60%, the amount of gas generated will be excessive, resulting in frequent occurrence of pits, and the melting point of the slag will rise, resulting in poor fluidity of the slag, making it impossible to obtain a good bead shape. Therefore, it was set at 20 to 60%.

金属弗化物:10〜40% 本発明で言う金属弗化物とは、例えば蛍石、弗化バリウ
ム、弗化マグネシウムなどを指し、これらはスラグの融
点を低下させるため、スラグの流動性を良好にする。ま
た、アーク中で分解した弗化物は溶融金属や溶融スラグ
の水素と反応し、溶接金属中の水素量を低下させ、耐水
素割れ性の良好な溶接金属を作るため、被覆剤全重量に
対して10%以上の添加が必要である。
Metal fluoride: 10-40% The metal fluoride used in the present invention refers to, for example, fluorite, barium fluoride, magnesium fluoride, etc. These reduce the melting point of slag, so they improve the fluidity of slag. do. In addition, fluoride decomposed in the arc reacts with hydrogen in the molten metal and molten slag, reducing the amount of hydrogen in the weld metal and creating a weld metal with good hydrogen cracking resistance. It is necessary to add 10% or more.

一方、40%超ではスラグの粘性が不足するため、ビー
ド形状が悪くなり、また溶接作業性が劣化する。したが
って、10〜40%と定めた。
On the other hand, if it exceeds 40%, the viscosity of the slag becomes insufficient, resulting in poor bead shape and poor welding workability. Therefore, it was set at 10-40%.

脱酸剤としては、Al、Ti 、St 、Mnなどの単
体金属およびFe−Mnなどの鉄合金のいずれかを被覆
剤に含有せしめるが、これら添加される脱酸剤の範囲は
特に規定するものではない。
As a deoxidizing agent, either a single metal such as Al, Ti, St, or Mn or an iron alloy such as Fe-Mn is contained in the coating, but the range of the added deoxidizing agent is not particularly specified. isn't it.

[実 施 例コ 上記の知見を基にして、第3表に示す化学組成の心線お
よび第4表に示す被覆剤からなる溶接棒を製作し、被覆
アーク溶接によって溶接金属の耐高温割れ試験を行なっ
た。耐高温割れ試験は、第1表に示すIOc F −B
と同じ成分で板厚15m。
[Example] Based on the above knowledge, welding rods made of a core wire with the chemical composition shown in Table 3 and a coating material shown in Table 4 were manufactured, and a hot cracking resistance test of the weld metal was carried out by coated arc welding. I did it. The hot cracking resistance test was conducted using IOc F-B shown in Table 1.
Same ingredients as 15m thick plate.

幅120m+s、長さ200關の板に、第3図(A)に
示すような3層盛溶接を行ない、溶接終了後、第3図(
B)に示すように母材表面からの距離がh 1 (1,
5關) 、h 2 (3,0mm) 、h 3 (4,
5龍)までビード上層を階段状に研磨し、単位面積当り
の割れ個数で評価した。
Three-layer welding as shown in Fig. 3 (A) is performed on a plate with a width of 120 m + s and a length of 200 m + s.
As shown in B), the distance from the base material surface is h 1 (1,
5mm), h2 (3,0mm), h3 (4,
The upper layer of the bead was polished in a stepwise manner until the surface reached 50 mm, and the number of cracks per unit area was evaluated.

なお、溶接条件としては棒径4mmで120A −24
V −L5cm/a+Inであり、バス間温度は150
℃以下とした。
The welding conditions are 120A-24 with a rod diameter of 4mm.
V -L5cm/a+In, and the temperature between the baths is 150
The temperature was below ℃.

第5表に溶接金属の耐高温割れ試験結果を示す。Table 5 shows the results of the hot cracking resistance test of weld metal.

本発明の被覆剤A、Bを用いた場合、本発明の溶接心線
(S3〜S9)による溶接金属は比較心線(Sl、  
S2. SI0.5ll)に比べ著しく耐高温割れ性が
優れており、ビード形状、溶接作業性に優れているのは
明らかである。
When coating materials A and B of the present invention are used, the weld metal of the weld cores (S3 to S9) of the present invention is
S2. It is clear that the hot cracking resistance is significantly superior to that of SI0.5ll), and the bead shape and welding workability are excellent.

また比較被覆剤Cを用いた場合、本発明の溶接心線(8
3〜S9)による溶接金属は比較的心線(Sl、  S
2. 810. 5ll)に比べ著しく耐高温割れ性が
優れているが、ビード形状および溶接作業性は劣ってい
る。
Moreover, when comparative coating material C was used, the weld core wire of the present invention (8
3 to S9) is relatively thinner than the core wires (Sl, S
2. 810. 5ll), but the bead shape and welding workability are inferior.

第  3  表  (重量%) (*印は比較材) 第  5  表 (栗印は比較材) 第  5  表  (続き) (*印は比較材) 以上のことから、本発明による溶接材料(No。Table 3 (weight%) (*marked is comparative material) Table 5 (Chestnut marks are comparative materials) Table 5 (continued) (*marked is comparative material) From the above, welding material according to the present invention (No.

3〜9.N(L14〜20)においては高温割れを抑制
し、優れた耐高温割れ性を有するとともにビード形状お
よび溶接作業性にも優れていることがわかる。
3-9. It can be seen that N (L14-20) suppresses hot cracking and has excellent hot cracking resistance, as well as excellent bead shape and welding workability.

[発明の効果] 本発明溶接棒は多層盛溶接時の耐高温割れ性が優れてお
り、産業上の効果は極めて顕著である。
[Effects of the Invention] The welding rod of the present invention has excellent hot cracking resistance during multilayer welding, and its industrial effects are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクロスビードパレストレイン試験方法の概要を
示す平面図(A)および側面図(B)、第2図は本発明
の基本成分を有するNl基合金の延性低下割れ感受性に
及ぼすC「の影響を示す図表、第3図は溶接金属の耐高
温割れ試験方法を示す斜視図で、(A)は多層盛溶接方
法、(B)は割れの測定位置を示している。 1・・・TIGトーチ    2・・・ヨーク3・・・
試験片       4・・・曲げ治具5・・・1層目
ビード    6・・・2層目ビード7・・・溶接方向 代 理 人  弁理士  茶野木 立 夫第1図 (A) 第2図 第3図
Figure 1 is a plan view (A) and side view (B) showing an outline of the crossbead pallet train test method, and Figure 2 is a diagram showing the effect of C on the ductility-degrading cracking susceptibility of Nl-based alloys having the basic components of the present invention. Figure 3 is a perspective view showing the hot cracking resistance test method for weld metal, where (A) shows the multilayer welding method and (B) shows the crack measurement position. 1... TIG Torch 2... Yoke 3...
Test piece 4...Bending jig 5...1st layer bead 6...2nd layer bead 7...Welding direction Agent Patent attorney Tatsuo Chanoki Figure 1 (A) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 重量%で、 C:0.1%以下 Si:0.01〜0.75% Mn:0.01〜1.0% P:0.04%以下 S:0.02%以下 Cr:6〜14% Fe:16〜52% 残りがNi及び不可避不純物からなる合金を心線とし、
被覆剤全重量に対して 金属炭酸塩の1種または2種以上:20〜60%金属弗
化物の1種または2種以上:10〜40%を含み、さら
に上記以外のスラグ生成剤、脱酸剤、合金剤、塗装剤か
らなる被覆剤を心線の周囲に被覆塗装してなることを特
徴とする耐高温割れ性に優れたNi基合金被覆アーク溶
接棒。
[Claims] In weight percent, C: 0.1% or less Si: 0.01 to 0.75% Mn: 0.01 to 1.0% P: 0.04% or less S: 0.02% The following is an alloy consisting of Cr: 6 to 14%, Fe: 16 to 52%, and the remainder consisting of Ni and unavoidable impurities, as a core wire,
Contains one or more metal carbonates: 20-60%, one or more metal fluorides: 10-40%, and further contains slag forming agents and deoxidizing agents other than the above, based on the total weight of the coating material. A Ni-based alloy coated arc welding rod with excellent hot cracking resistance, characterized in that the core wire is coated with a coating agent consisting of an agent, an alloying agent, and a coating agent.
JP12624088A 1988-05-24 1988-05-24 Ni alloy coated electrode having excellent high-temperature cracking resistance Pending JPH01299792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12624088A JPH01299792A (en) 1988-05-24 1988-05-24 Ni alloy coated electrode having excellent high-temperature cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12624088A JPH01299792A (en) 1988-05-24 1988-05-24 Ni alloy coated electrode having excellent high-temperature cracking resistance

Publications (1)

Publication Number Publication Date
JPH01299792A true JPH01299792A (en) 1989-12-04

Family

ID=14930262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12624088A Pending JPH01299792A (en) 1988-05-24 1988-05-24 Ni alloy coated electrode having excellent high-temperature cracking resistance

Country Status (1)

Country Link
JP (1) JPH01299792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164233B2 (en) * 2004-08-04 2007-01-16 Federal Mogul World Wide, Inc. Barium-silica glass lamp having thermally balanced lead-in wires

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212498A (en) * 1985-03-15 1986-09-20 Nippon Steel Corp Stainless steel coated electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212498A (en) * 1985-03-15 1986-09-20 Nippon Steel Corp Stainless steel coated electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164233B2 (en) * 2004-08-04 2007-01-16 Federal Mogul World Wide, Inc. Barium-silica glass lamp having thermally balanced lead-in wires

Similar Documents

Publication Publication Date Title
JP5389000B2 (en) Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod
US9415460B2 (en) Ni-base alloy weld metal, strip electrode, and welding method
JP5441870B2 (en) Ni-base alloy solid wire for welding
JP2002511023A (en) Flux core wire for gas flow shield welding
CN108602163B (en) Ni-based alloy solid wire for welding and Ni-based alloy weld metal
JPWO2005070612A1 (en) Ni-based high-Cr alloy filler and welding rod for covered arc welding
KR101583197B1 (en) Bonded flux for submerged arc welding
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP3559806B2 (en) Basic flux cored wire for low temperature steel
KR102197134B1 (en) Ni based alloy flux cored wire
US3476909A (en) Method of deposit welding chromium steels
JP6829111B2 (en) Filling material for TIG welding
JPH01299792A (en) Ni alloy coated electrode having excellent high-temperature cracking resistance
JPH07276086A (en) Flux cored wire for mag welding small in welding deformation
JPS6046896A (en) Ni-base cored wire for welding steel for low temperature service
JP2004035909A (en) Welded structure and its manufacturing method
JP3352857B2 (en) Ni-base alloy TIG welding wire for cryogenic steel
JP7323497B2 (en) flux cored wire
JP2942450B2 (en) Gas shielded arc welding method with less welding deformation
JPH01299791A (en) Wire for welding ni-base alloy having excellent high-temperature cracking resistance
JPH09285891A (en) Electro gas arc welding fluxed core wire
JPS63212090A (en) Welding method for high-alloy austenitic steel
JPH0788688A (en) Mig welding flux cored wire having less welding deformation
JPS63268592A (en) Ferrite welding material
JPS6199598A (en) Core wire for welding of low-temperature steel