JPH01298313A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH01298313A
JPH01298313A JP12983088A JP12983088A JPH01298313A JP H01298313 A JPH01298313 A JP H01298313A JP 12983088 A JP12983088 A JP 12983088A JP 12983088 A JP12983088 A JP 12983088A JP H01298313 A JPH01298313 A JP H01298313A
Authority
JP
Japan
Prior art keywords
substrate
modulation
waveguide
optical modulator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12983088A
Other languages
Japanese (ja)
Inventor
Naoyuki Megata
直之 女鹿田
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12983088A priority Critical patent/JPH01298313A/en
Publication of JPH01298313A publication Critical patent/JPH01298313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To widen the modulation band of the above modulator without deteriorating the modulation efficiency thereof by forming a waveguide substrate near the part right under a light guide more thickly than in the peripheral part thereof. CONSTITUTION:The thickness in the part right under the region between a 2nd electrode 4 and the light guide 2 is larger than the thickness in the other part. Of the electric fields impressed to the electrodes 3, 4 passing an LiNbO3 substrate 1, the electric lines of force passing the light guide 2 do not leak to the outside of the LiNbO3 substrate and the other electric lines of force pass the air once and advance again into the LiNbO3 substrate 1. The speed of the modulation waves impressed to the electrodes is, therefore, increased without decreasing the electric fields applied on the light guide 2. The modulation band is widened in this way without deteriorating the modulation efficiency.

Description

【発明の詳細な説明】 〔概要〕 光変調器に関し、 変調帯域の拡大を目的とし、 導波路基板に設けられた光導波路上に電極を備え、該電
極に変調電圧を印加して前記先導波路を通過する光の変
調を行なう光変調器において、前記光導波路直下付近の
前記導波路基板がその周辺部に比べて厚く構成されてい
ることを含み構成する。
[Detailed Description of the Invention] [Summary] Regarding an optical modulator, for the purpose of expanding the modulation band, an electrode is provided on an optical waveguide provided on a waveguide substrate, and a modulation voltage is applied to the electrode to In the optical modulator that modulates light passing through the optical waveguide, the waveguide substrate in the vicinity immediately below the optical waveguide is configured to be thicker than the peripheral portion thereof.

(産業上の利用分野〕 本発明は電気光学効果を利用する光変調器、特に進行波
形変調器に関する。
(Industrial Application Field) The present invention relates to an optical modulator that utilizes an electro-optic effect, and particularly to a traveling waveform modulator.

〔従来の技術〕[Conventional technology]

電気光学効果を利用した光変調素子において、光が素子
を通過する時間は変調電圧が変化する速さに比べて無視
できるとしている。しかし、変調効率向上のため電気光
学結晶を長くすると、光が電気光学結晶の通過に要する
時間が無視できなくなり変調度が低下する。そこで、光
波だけでなく変調波も同じ方向に伝搬させる進行波形変
調器が広帯域な変調帯域を実現している。
In light modulation devices that utilize electro-optic effects, the time taken for light to pass through the device is said to be negligible compared to the speed at which the modulation voltage changes. However, if the electro-optic crystal is lengthened to improve modulation efficiency, the time required for light to pass through the electro-optic crystal cannot be ignored, and the degree of modulation decreases. Therefore, a traveling waveform modulator that propagates not only light waves but also modulated waves in the same direction realizes a wide modulation band.

この進行波形変調器はその一例を第3図に示すように、
LiNb0:+基板11、光導波路12および電極13
,14より構成され、電極13および14に高周波電圧
を印加して光導波路12の屈折率を変えることにより位
相変調を行っている。
An example of this traveling waveform modulator is shown in FIG.
LiNb0:+substrate 11, optical waveguide 12 and electrode 13
, 14, and phase modulation is performed by applying a high frequency voltage to the electrodes 13 and 14 to change the refractive index of the optical waveguide 12.

進行波形変調器をより広帯域なものにするには、電極1
3.14を伝搬する変調波(マイクロ波)の速度をさら
に光速に近づける必要がある。この方法の一つとして導
波路基板(LiNbO,基板11)を薄くする方法があ
る。
To make the traveling waveform modulator wider band, electrode 1
3.14 It is necessary to bring the speed of the modulated wave (microwave) that propagates closer to the speed of light. One method for this is to make the waveguide substrate (LiNbO, substrate 11) thinner.

これは次のように説明され、る。すなわち、第4図(a
)に示すようにLiNb0.基板11がある程度以上厚
い場合、LiNb0i基板11を通過するマイクロ波の
電気力線のほとんどはLiNb0z基板11の中だけを
通る。ところが、同図(b)のようにLiNbO3基板
11を薄くするとLiNb0.基板11を通過する電気
力線の一部がいったん空気中を通過するようになる。こ
のようになると、マイクロ波が惑しろ誘電率は同ID(
a)の場合に比べて小さくなる。
This is explained as follows. That is, Fig. 4 (a
) as shown in LiNb0. When the substrate 11 is thicker than a certain level, most of the microwave electric lines of force passing through the LiNb0i substrate 11 pass only through the LiNb0z substrate 11. However, when the LiNbO3 substrate 11 is made thinner as shown in FIG. 2(b), the LiNb0. A portion of the electric lines of force passing through the substrate 11 once passes through the air. If this happens, the microwave will be confused and the dielectric constant will be the same ID (
It is smaller than in case a).

この結果、電極13.14を伝搬するマイクロ波の速度
が速くなり、広帯域な変調帯域が得られる。
As a result, the speed of the microwave propagating through the electrodes 13 and 14 increases, and a wide modulation band is obtained.

なお、第4図において第3図と同等の部材には同一の符
号を付けである。
In FIG. 4, the same members as in FIG. 3 are given the same reference numerals.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、LiNbO3基板11を薄<シすぎると次のよ
うな問題が生じる。すなわち、第5図に示すようにLi
NbO3基板11を極端に薄くすると、導波路12を通
過する電気力線もいったん空気中を通過するようになり
、その等価回路は第6図(a)に示すようになる。ここ
にCs’ は基板の容量、Cgは導波路部分の容量、C
a1rは空気中の容量である。
However, if the LiNbO3 substrate 11 is made too thin, the following problem will occur. That is, as shown in FIG.
When the NbO3 substrate 11 is made extremely thin, the electric lines of force passing through the waveguide 12 also pass through the air, and the equivalent circuit becomes as shown in FIG. 6(a). Here, Cs' is the capacitance of the substrate, Cg is the capacitance of the waveguide section, and C
a1r is the volume in air.

一方、従来(厚い基板)の等価回路は第6図(b)に示
すようになるので(Csは基板の容量)、同図(b)の
CsはCs’ とCa1rの直列容量に置き換えられ、
このCs’ とCa1rの直列容量はCsより小さくな
る。従って、電極に電圧を印加したとき、導波路に実効
的に印加される電界の大きさが小さくなり、変調効率が
劣化する。
On the other hand, the equivalent circuit of the conventional (thick board) is as shown in Fig. 6(b) (Cs is the capacitance of the board), so Cs in Fig. 6(b) is replaced by the series capacitance of Cs' and Ca1r,
The series capacitance between Cs' and Ca1r is smaller than Cs. Therefore, when a voltage is applied to the electrodes, the magnitude of the electric field effectively applied to the waveguide becomes smaller, and the modulation efficiency deteriorates.

本発明は、光変調器の変調効率を劣化させることなく、
変調帯域の広帯域化を目的とする。
The present invention does not deteriorate the modulation efficiency of the optical modulator, and
The purpose is to widen the modulation band.

[課題を解決するための手段] 本発明の第1の光変調器は、導波路基板に設けられた光
導波路上に電極を備え、該電極に変調電圧を印加して前
記光導波路を通過する光の変調を行なう光変調器におい
て、 前記光導波路直下付近の前記導波路基板がその周辺部に
比べて厚く構成されていることを特徴とし、 本発明の第2の光変調器は1、前記第1の光変調器の導
波路基板の薄い部分を低誘電率の物質で充填することを
特徴とし、前記目的を達成する。
[Means for Solving the Problems] A first optical modulator of the present invention includes an electrode on an optical waveguide provided on a waveguide substrate, and applies a modulation voltage to the electrode to pass through the optical waveguide. A second optical modulator of the present invention is characterized in that the waveguide substrate in the vicinity directly below the optical waveguide is thicker than the peripheral portion thereof, and the second optical modulator of the present invention is characterized in that: The above object is achieved by filling a thin portion of the waveguide substrate of the first optical modulator with a material having a low dielectric constant.

〔作用〕[Effect]

本発明の第1の光変調器では、光導波路を通過する電気
力線はLiNbO5基板の外部にもれず、それ以外の電
気力線はいったん基板の外部にもれる。
In the first optical modulator of the present invention, the lines of electric force passing through the optical waveguide do not leak to the outside of the LiNbO5 substrate, and the other lines of electric force temporarily leak to the outside of the substrate.

従って、光導波路に印加される電界を実効的に小さくす
ることなく、電極に印加されるマイクロ波(変調波)の
速度を速くすることができる。
Therefore, the speed of the microwave (modulated wave) applied to the electrode can be increased without effectively reducing the electric field applied to the optical waveguide.

本発明の第2の光変調器では、第1の光変調器と同様に
変調波の速度が速まるとともに、導波路基板の薄い部分
が低誘電率物質で充填補強されるので、前記導波路基板
の強度が高まる。
In the second optical modulator of the present invention, the speed of the modulated wave is increased as in the first optical modulator, and the thin portion of the waveguide substrate is filled and reinforced with a low dielectric constant material, so that the waveguide substrate is strength increases.

〔実施例] 第1図は、本発明の実施例に係る光変調器の構成回であ
り、(a)が斜視図、(b)が断面図である。
[Embodiment] FIG. 1 shows the configuration of an optical modulator according to an embodiment of the present invention, in which (a) is a perspective view and (b) is a sectional view.

図において、1はLiNbO5基板であり、2はLiN
bO3基板lの上に帯状のTi膜を形成した後に咳Ti
を拡散して形成される径が10μm程度の光導波路であ
る。
In the figure, 1 is a LiNbO5 substrate, 2 is a LiN
After forming a band-shaped Ti film on the bO3 substrate l, the cough Ti
An optical waveguide with a diameter of about 10 μm is formed by diffusing

3は光導波路2をその端部で被覆するようにLiNb0
.基板lの上に形成された平板状の第1の電極、4は光
導波路2に約157zmj+1れて平行に形成される帯
状で幅が10〜20μmの第2の電極であり、この2つ
の電極(第1の電(13および第2の電極4)に高周波
電圧を印加して光の変調を行なう。
3 is LiNb0 so as to cover the optical waveguide 2 at its end.
.. A first electrode in the form of a flat plate is formed on the substrate l, and 4 is a second electrode in the form of a strip with a width of 10 to 20 μm formed parallel to the optical waveguide 2 by about 157zmj+1. (A high frequency voltage is applied to the first electrode (13 and second electrode 4) to modulate light.

第1図(b)に示すように、第2の電極4と光導波路2
との間の領域直下部分は厚さが約30μmで他の部分(
約15μm)に比べて厚くなっている。なお、!、1N
b01基板1の凹凸は磁気ヘッドの溝加工用に使用され
るブレードソーを用いて選択的に該LiNb0:+基板
1を研削するなどして形成される。
As shown in FIG. 1(b), the second electrode 4 and the optical waveguide 2
The thickness of the part directly below the area between is about 30 μm, and the thickness of the other part (
(approximately 15 μm). In addition,! , 1N
The unevenness of the b01 substrate 1 is formed by selectively grinding the LiNb0:+ substrate 1 using a blade saw used for machining grooves in magnetic heads.

このためLiNb(1+基板1を通る電極3,4に印加
される電界のうち、光導波路2を通過する電気力線はL
iNb0z基板lの外部にはもれず、他の電気力線はい
ったん空気中を通過した後、再びLiNb01基板1に
進入するようになる。従って、光導波路2にかかる電界
を減少させることなく、電1類に印加される変調波の速
度が速くなるので、変調帯域が拡大される。
Therefore, of the electric field applied to the electrodes 3 and 4 passing through the LiNb(1+ substrate 1), the lines of electric force passing through the optical waveguide 2 are L
The other lines of electric force do not leak to the outside of the iNb0z substrate 1, and after passing once through the air, they enter the LiNb01 substrate 1 again. Therefore, the speed of the modulated wave applied to the electric class 1 increases without reducing the electric field applied to the optical waveguide 2, so that the modulation band is expanded.

第2図は、本発明の別の実施例に係る光変調器の構成図
であり、(a)が斜視図、(b)が断面図である。図に
おいて、5はLiNb0□基(反、6は光導波路、7,
8は変調電圧を印加するための電極であり、LiNb0
r基板5の薄い部分には低誘電率充填材9(例えばエポ
キシ樹脂)が充填補強され構成されている。
FIG. 2 is a configuration diagram of an optical modulator according to another embodiment of the present invention, in which (a) is a perspective view and (b) is a sectional view. In the figure, 5 is a LiNb0□ group (reverse), 6 is an optical waveguide, 7,
8 is an electrode for applying a modulation voltage, and is made of LiNb0
A thin portion of the r-substrate 5 is filled and reinforced with a low dielectric constant filler 9 (for example, epoxy resin).

本実施例によれば、第1の実施例と同様の効果すなわち
更に広帯域な変調帯域を有する光変調2羽の提供が可能
になるとともに、低誘電率充填材9によりLiNb0.
基板5が補強されるので信頼性の向上にもつながる。
According to this embodiment, it is possible to provide two optical modulators having the same effect as the first embodiment, that is, a wider modulation band, and the low dielectric constant filler 9 makes it possible to provide LiNb0.
Since the substrate 5 is reinforced, reliability is also improved.

〔発明の効果] 本発明によれば、光導波路に実効的に印加される電界を
減少させることなく、変調波の速1よを速くすることが
できるので、より広帯域な変調帯域をもつ光変調器の提
供が可能になる。
[Effects of the Invention] According to the present invention, the speed of the modulated wave can be increased without reducing the electric field effectively applied to the optical waveguide, so optical modulation with a wider modulation band can be achieved. It becomes possible to provide equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る光変調器の構成図、 第2図は本発明の別の実施例に係る光変調器の構成図、 第3図は従来例に係る光変調器の斜視図、第4図は従来
例に係る光変調器の断面図、第5図は従来例に係る光変
調器の問題点の説明図、 第617は従来例に係る光変調器の等価回路図である。 (符号の説明) 1 、 5 ・・・LiNbO3基牟反、2.6・・・
先導波路、 3・・・第1の電極、 4・・・第2の電極、 7.8・・・電極、 9・・・低誘電率充填材。
FIG. 1 is a configuration diagram of an optical modulator according to an embodiment of the present invention, FIG. 2 is a configuration diagram of an optical modulator according to another embodiment of the invention, and FIG. 3 is a configuration diagram of an optical modulator according to a conventional example. 4 is a sectional view of a conventional optical modulator, FIG. 5 is an explanatory diagram of problems in the conventional optical modulator, and 617 is an equivalent circuit diagram of a conventional optical modulator. It is. (Explanation of symbols) 1, 5...LiNbO3 base, 2.6...
Leading waveguide, 3... First electrode, 4... Second electrode, 7.8... Electrode, 9... Low dielectric constant filler.

Claims (2)

【特許請求の範囲】[Claims] (1)導波路基板に設けられた光導波路上に電極を備え
、該電極に変調電圧を印加して前記光導波路を通過する
光の変調を行なう光変調器において、 前記光導波路直下付近の前記導波路基板がその周辺部に
比べて厚く構成されていることを特徴とする光変調器。
(1) In an optical modulator that includes an electrode on an optical waveguide provided on a waveguide substrate and modulates light passing through the optical waveguide by applying a modulation voltage to the electrode, the An optical modulator characterized in that a waveguide substrate is thicker than its peripheral portion.
(2)請求項1記載の光変調器であって、前記導波路基
板の薄い部分を低誘電率の物質で充填することを特徴と
する光変調器。
(2) The optical modulator according to claim 1, wherein a thin portion of the waveguide substrate is filled with a material having a low dielectric constant.
JP12983088A 1988-05-27 1988-05-27 Optical modulator Pending JPH01298313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12983088A JPH01298313A (en) 1988-05-27 1988-05-27 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12983088A JPH01298313A (en) 1988-05-27 1988-05-27 Optical modulator

Publications (1)

Publication Number Publication Date
JPH01298313A true JPH01298313A (en) 1989-12-01

Family

ID=15019283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12983088A Pending JPH01298313A (en) 1988-05-27 1988-05-27 Optical modulator

Country Status (1)

Country Link
JP (1) JPH01298313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012533A1 (en) * 2001-08-01 2003-02-13 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012533A1 (en) * 2001-08-01 2003-02-13 Sumitomo Osaka Cement Co., Ltd. Optical modulator
CN1295545C (en) * 2001-08-01 2007-01-17 住友大阪水泥股份有限公司 Optical modulator
US7397974B2 (en) * 2001-08-01 2008-07-08 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Similar Documents

Publication Publication Date Title
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
JP2008116865A (en) Nested modulator
EP2116889B1 (en) Optical phase modulator
US7099524B2 (en) Optical modulator
JP3957217B2 (en) Light modulator
JP2007101641A (en) Optical modulator and method of manufacturing same
JPH09211402A (en) Broad-band light modulator
US5083856A (en) Waveguide-type acoustooptic device
KR100293088B1 (en) Light intensity modulator
JPH01298313A (en) Optical modulator
JP2006309124A (en) Optical modulator
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP5262186B2 (en) Optical waveguide device
US5459800A (en) Optical modulation device and method of driving the same
JPS56150724A (en) Optical frequency modulator
JPS5987B2 (en) Electro-optical switches and modulators
JP4544474B2 (en) Light modulator
JP2003057616A (en) Optical waveguide device, optical modulator and optical communication system
JP2012234037A (en) Optical waveguide device
JPH05173099A (en) Optical control element
US4299449A (en) Acoustooptic modulator
CN211603768U (en) Optical waveguide element and optical modulator
JPH04149408A (en) Optical modulation element
JP5622293B2 (en) Nested modulator
US20140147072A1 (en) Electro-optic modulator