JPH01298170A - Ecr plasma treatment apparatus - Google Patents

Ecr plasma treatment apparatus

Info

Publication number
JPH01298170A
JPH01298170A JP63127567A JP12756788A JPH01298170A JP H01298170 A JPH01298170 A JP H01298170A JP 63127567 A JP63127567 A JP 63127567A JP 12756788 A JP12756788 A JP 12756788A JP H01298170 A JPH01298170 A JP H01298170A
Authority
JP
Japan
Prior art keywords
gas
film
plasma
specimen
reactant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127567A
Other languages
Japanese (ja)
Inventor
Susumu Tanaka
進 田中
Yutaka Shimada
豊 島田
Susumu Fukuoka
福岡 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Sagami Ltd
Priority to JP63127567A priority Critical patent/JPH01298170A/en
Priority to KR1019880016336A priority patent/KR960014434B1/en
Priority to US07/281,349 priority patent/US4970435A/en
Publication of JPH01298170A publication Critical patent/JPH01298170A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a film on the surface of a specimen with superior uniformity and also to facilitate the control of film formation by introducing a reactant gas through plural gas outlet pipes including a gas outlet pipe in the vinicinity of the outside periphery of a specimen and carrying out ECR reaction. CONSTITUTION:Microwaves from a microwave source 1 are introduced via a waveguide 2 into an electric discharge chamber 3, by which a plasma gas supplied through a gas-introducing hole 4 is formed into plasmic state. The resulting plasma is supplied into a film-forming chamber 7 in the form of a plasma stream P by means of a coil 5. A reactant gas is further supplied through reactant gas outlet pipes 10A, 10b into the above film-forming chamber 7 and allowed to react with the above plasma gas, by which a film is formed on the surface of a specimen W. In the above ECR plasma treatment apparatus, one reactant gas outlet pipe 10A is disposed apart from the specimen W, through which the reactant gas is allowed to flow uniformly in the film- forming chamber 7. The other outlet pipe 10B is disposed in the vicinity of the outside periphery of the specimen W, by which the reactant gas is allowed to flow in large quantities on the periphery of the specimen W. By this method, uniform film formation can be performed and film-forming speed can be easily controlled by regulating respective flow velocities of the reactant gases.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電子サイクロトロン共鳴(ECR)によって
発生するプラズマを利用してウェハ基板等の試料の処理
を行うための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for processing a sample such as a wafer substrate using plasma generated by electron cyclotron resonance (ECR).

[従来の技術] このようなECRプラズマ処理装置として従来第5図に
示すようなものがある。この装置において、マイクロ源
1で発生したマイクロ波は導波管2を経て放電室3に導
入される。放電室3にはガス導入’CI4よりプラズマ
発生源となるガス、例えばN2.08、Arなどが導入
されると共に、外周に設けられたコイル5によって磁界
が生じており、ここで磁界とマイクロ波とがECR条件
を満たすと荷電粒子に電界エネルギが効率よく吸収され
高活性のプラズマが発生する0発生したプラズマは放電
室3の開口部3aより発散磁界によってプラズマ流Pと
して引き出され、成膜室7′に導入される。成膜室7′
には試料台8上に成膜すべき試料Wが載置されると共に
真空状態でSiH4等の反応ガスがガス放出管10より
導入されており、この反応ガスとプラズマガスとの相互
作用により試料W表面に成膜が進行する。
[Prior Art] There is a conventional ECR plasma processing apparatus as shown in FIG. In this device, microwaves generated by a microwave source 1 are introduced into a discharge chamber 3 via a waveguide 2. A gas that becomes a plasma generation source, for example, N2.08, Ar, etc., is introduced into the discharge chamber 3 through the gas introduction CI 4, and a magnetic field is generated by a coil 5 provided on the outer periphery, where the magnetic field and microwave When the ECR condition is satisfied, the electric field energy is efficiently absorbed by the charged particles and a highly active plasma is generated. 7' is introduced. Film forming chamber 7'
A sample W to be formed into a film is placed on a sample stage 8, and a reactive gas such as SiH4 is introduced from a gas discharge tube 10 in a vacuum state. Film formation progresses on the W surface.

すなわち、プラズマがN2プラズマであれば、シランガ
ス(SiH,)と反応し、試料上にシリコン窒化膜(S
iN、)が付着する。又、o2プラズマであれば試料上
に酸化シリコン膜(SiO2)が付着する。更にArプ
ラズマとボロン又はリンにより不純物ドーピングを行う
ことができる。この場合、プラズマと反応ガスとの反応
性及び反応の均−性を高めるために反応ガスを成膜室7
′に導入するガス放出管10は第2図に示すようにリン
グ状になっていて、このリング上に設けられた孔10a
から反応ガスが均一に放出されるようになっている。
In other words, if the plasma is N2 plasma, it will react with silane gas (SiH,) and form a silicon nitride film (S) on the sample.
iN,) is attached. In addition, if O2 plasma is used, a silicon oxide film (SiO2) is deposited on the sample. Furthermore, impurity doping can be performed using Ar plasma and boron or phosphorus. In this case, in order to increase the reactivity between the plasma and the reaction gas and the uniformity of the reaction, the reaction gas is introduced into the film forming chamber 7.
The gas discharge pipe 10 introduced into the gas discharge pipe 10 has a ring shape as shown in FIG.
The reactant gas is released uniformly from the

[発明が解決しようとする課題] ところで、このような従来のECRプラズマ処理装百に
おいて、ガス放出管1oから放出される反応ガスは拡散
によって成膜室7′内にほぼ均一に存在するので、成膜
速度は導入されるプラズマの強度に依存することになる
。従って、プラズマ流の中心部ではプラズマ強度が大で
あるため、第6図に示すように試料Wの中心部で成膜速
度が早くなり成膜の均一性が得られない。
[Problems to be Solved by the Invention] Incidentally, in such a conventional ECR plasma processing apparatus, the reaction gas discharged from the gas discharge tube 1o exists almost uniformly in the film forming chamber 7' due to diffusion. The deposition rate depends on the intensity of the plasma introduced. Therefore, since the plasma intensity is high at the center of the plasma flow, the film formation rate becomes faster at the center of the sample W, as shown in FIG. 6, and uniformity of film formation cannot be obtained.

特に、試料の径が大きいほどこの傾向は大きく。In particular, this tendency increases as the diameter of the sample increases.

例えば100mn+φのウェハの場合は±5%の均一性
しか得られず、150mmφにおいては±15%と更に
均一性が下がった。
For example, in the case of a wafer of 100 mm+φ, a uniformity of only ±5% was obtained, and for a wafer of 150 mmφ, the uniformity further decreased to ±15%.

本発明はこのような従来の問題点を解決するためになさ
れたもので、均一性の極めて良好な成膜が得られ、且つ
成膜のコントロールが容易であろECRプラズマ処理装
置を提供することを目的とする。
The present invention has been made to solve these conventional problems, and aims to provide an ECR plasma processing apparatus that can form a film with extremely good uniformity and that can easily control the film formation. purpose.

[課題を解決するための手段] このような目的を達成する本発明のECRプラズマ処理
装置は1反応ガスを導入しECR反応によって試料表面
の処理を行うECRプラズマ処理装百において、前記反
応ガスを異なる部分に放出するガス放出管を少なくとも
2つ有しその一部のガス放出管は前記試料の外周近傍に
設けたことを特徴とする。
[Means for Solving the Problems] The ECR plasma processing apparatus of the present invention that achieves the above object is an ECR plasma processing apparatus that introduces one reaction gas and processes the sample surface by ECR reaction. The present invention is characterized in that it has at least two gas discharge tubes that emit gas to different parts, and some of the gas discharge tubes are provided near the outer periphery of the sample.

[作用] 反応室に設けた少なくとも2の放出管のうち1の放出管
はプラズマ流から離れた位置にあり、ここから放出され
る反応ガスは反応室内に均一に分布しており、導入され
たプラズマと反応してプラズマの強度に比例する速度で
成膜に寄与する。すなわち、試料中心部での成膜が早く
なる(第6図)。
[Function] One of the at least two discharge tubes provided in the reaction chamber is located away from the plasma flow, and the reaction gas discharged from here is uniformly distributed within the reaction chamber, and It reacts with plasma and contributes to film formation at a rate proportional to the plasma intensity. That is, the film formation at the center of the sample becomes faster (FIG. 6).

一方、別の1の放出管は試料の外周近傍に設置jられて
いるので、この放出管より放出された反応ガスは試料周
辺でプラズマと反応し、試料周辺部の成膜速度を早める
(第7図)。上記両者の成膜速度の差異により試料上に
は均一な反応生成膜が形成される。
On the other hand, since another discharge tube (1) is installed near the outer periphery of the sample, the reaction gas discharged from this discharge tube reacts with plasma around the sample, accelerating the film formation rate at the sample periphery. Figure 7). A uniform reaction product film is formed on the sample due to the difference in film formation speed between the two methods.

生成する膜の速度及び均一性は各放出管より放出される
ガスの流量を変えることにより容易にコントロールする
ことができる。
The rate and uniformity of the film produced can be easily controlled by varying the flow rate of gas discharged from each discharge tube.

[実施例コ 以下1本発明装置をECRプラズマCVD装置に適用し
た好ましい実施例を図面を参照して説明する。
[Embodiment 1] Hereinafter, a preferred embodiment in which the apparatus of the present invention is applied to an ECR plasma CVD apparatus will be described with reference to the drawings.

第1図に示すECRプラズマCVD装置はプラズマを発
生するプラズマ発生部としてマイクロ波11iX1.導
波管2、放電室3及びコイル5を備え、放電室3に化学
気相成膜を行うための反応室である成膜室7が連結され
たものである。
The ECR plasma CVD apparatus shown in FIG. 1 has a microwave 11iX1. The device includes a waveguide 2, a discharge chamber 3, and a coil 5, and the discharge chamber 3 is connected to a deposition chamber 7, which is a reaction chamber for performing chemical vapor deposition.

マイクロ波源1はマグネトロンなどのマイクロ波を発生
する装置で1通常、工業周波数(2,45GHz)のマ
イクロ波を発生する。4波管2は発生したマイクロ波を
伝送する金属管で、必要に応じマイクロ波の波長vR整
手段、モード変換手段、反射波モニタ部等を備える。放
電室3はプラズマ発生源であるN2、o2、Ar等成膜
の種類によって選択されるガスを導入するガス導入管4
が接続され、所定の流量でこれらガスが導入される。
The microwave source 1 is a device that generates microwaves, such as a magnetron, and usually generates microwaves at an industrial frequency (2.45 GHz). The four-wave tube 2 is a metal tube that transmits the generated microwaves, and is provided with microwave wavelength VR adjusting means, mode converting means, reflected wave monitoring section, etc. as necessary. The discharge chamber 3 has a gas introduction pipe 4 that introduces a gas selected depending on the type of film formation, such as N2, O2, Ar, etc., which is a plasma generation source.
are connected, and these gases are introduced at a predetermined flow rate.

又、放電室3内にはコイル5によって電界方向の磁界が
生じている。ECR条件を満たす磁界の強さは2.45
GHzのマイクロ波に対し通常例えば875Gauss
である。この磁界とマイクロ波とにより荷電粒子に効率
よく電界エネルギを吸収させて高活性のプラズマを発生
することができる。
Further, a magnetic field in the direction of the electric field is generated within the discharge chamber 3 by the coil 5. The strength of the magnetic field that satisfies the ECR conditions is 2.45
Normally, for example, 875 Gauss for GHz microwave
It is. This magnetic field and microwaves allow charged particles to efficiently absorb electric field energy and generate highly active plasma.

この作用を有すればマイクロ波周波数、磁界の強さは適
宜選択される。
As long as it has this effect, the microwave frequency and the strength of the magnetic field are appropriately selected.

放電室3及び成膜室7は図示しない真空系に接続され所
定の減圧に保持される。このため導波管2と放電室3と
の間には真空をシールし且つマイクロ波を通過させるシ
ール部材12が介在する。
The discharge chamber 3 and the film forming chamber 7 are connected to a vacuum system (not shown) and maintained at a predetermined reduced pressure. For this reason, a sealing member 12 is interposed between the waveguide 2 and the discharge chamber 3 to seal the vacuum and allow the microwave to pass.

また、放電室3の成膜室7側は、放電室3内でマイクロ
波が共振するようにマイクロ波反射板6になっており、
この開口部6aよりプラズマ流が成膜室7へ導入される
Further, the film forming chamber 7 side of the discharge chamber 3 is provided with a microwave reflecting plate 6 so that the microwave resonates within the discharge chamber 3.
A plasma flow is introduced into the film forming chamber 7 through this opening 6a.

成膜室7は試料台8を備え、この試料台8上に試料Wを
搬送するため図示しない搬送機構が設けられている。更
に成膜室7には、成膜のための反応ガスを導入する導入
口9が2ケ所に設けられ、各導入口9にはそれぞれリン
グ状のガス放出管10A、IOBが接続される。
The film forming chamber 7 includes a sample stage 8, and a transport mechanism (not shown) is provided to transport the sample W onto the sample stage 8. Further, the film forming chamber 7 is provided with two inlet ports 9 for introducing a reaction gas for film forming, and each inlet port 9 is connected to a ring-shaped gas discharge pipe 10A and IOB, respectively.

リング状のガス放出管10A、IOBは第2図に示すよ
うな石英から成るリング管10のリング上に複数のガス
放出用の孔10aを有するもので。
The ring-shaped gas discharge tubes 10A and IOB are made of quartz and have a plurality of gas discharge holes 10a on the ring, as shown in FIG.

そのうち一方のガス放出管10Aは他方のガス放出管1
0Bより大径であり、試料W及びプラズマ流Pから離れ
た位置に設置される。また、他方のガス放出管10Bは
試料Wの外周近傍にプラズマ流Pに接する如く設置され
る。
One of the gas discharge pipes 10A is the other gas discharge pipe 1.
It has a larger diameter than 0B and is installed at a position away from the sample W and the plasma flow P. Further, the other gas discharge tube 10B is installed near the outer periphery of the sample W so as to be in contact with the plasma flow P.

これらガス放出管10A、IOHには同種の反応ガスが
図示しない供給系より供給される。反応ガスはシランガ
ス(S iH4)−ボロン、リン等でアルゴン(Ar)
やN2ガスとの混合ガスが供給される場合もある。反応
ガスのガス流量、混合ガスを用いる場合の混合比は成膜
条件に応じてコントロールされるが更に成膜の均一性を
得るためにこれらパラメータをガス放出管10A及びI
OBによってコントロールする。
The same type of reaction gas is supplied to these gas discharge pipes 10A and IOH from a supply system (not shown). The reaction gas is silane gas (S iH4) - boron, phosphorus, etc., and argon (Ar).
In some cases, a mixed gas with gas or N2 gas is supplied. The gas flow rate of the reaction gas and the mixing ratio when using a mixed gas are controlled according to the film forming conditions, and in order to obtain uniformity of film forming, these parameters are controlled by adjusting the gas discharge tubes 10A and I
Controlled by OB.

このため、ガス供給系には自動制御されるバルブ11を
設置すると共に、予め所定の成膜条件での成膜均一性を
測定しておき、実際の成膜時にはこの」り定結果に基き
最良の値をとるように両方のバルブを制御することがで
きる。
For this reason, an automatically controlled valve 11 is installed in the gas supply system, and the film formation uniformity is measured in advance under predetermined film formation conditions. Both valves can be controlled to take the value of .

次に以上のような構成におけるECRプラズマCVD装
置の動作を説明する。
Next, the operation of the ECR plasma CVD apparatus having the above configuration will be explained.

まず、マイクロ波源1から導入されるマイクロ波とコイ
ル5により発生した磁界により放電室3内でECR条件
が満たされると導入管4より導入されたガスのプラズマ
が発生し、プラズマ流Pとして成膜室7へ流れる。成膜
室7ではガス放出管10A、IOEによって反応ガスが
放出され成膜室全体に拡散しており、これら反応ガスは
導入されたプラズマと反応し試料表面に反応生成膜がデ
ポジションする。この際、成膜速度はプラズマ強度と比
例し、試料中心で早くなるが(第6図)、同時に試料周
辺近傍ではガス放出管1.OBによりプラズマと試料に
近いところで反応ガスが供給されるため試料Wの周辺部
でのデポジションも促進され(第7図)、結果として試
料表面に均一な反応生成膜が形成される。この場合、ガ
ス放出管10A及びIOBから導入する反応ガスの流量
は成膜条件に応じてバルブ11を自動的にコントロール
することができる。
First, when the ECR conditions are satisfied in the discharge chamber 3 by the microwave introduced from the microwave source 1 and the magnetic field generated by the coil 5, plasma of the gas introduced from the introduction tube 4 is generated, and a film is formed as a plasma flow P. Flows into room 7. In the film forming chamber 7, reactive gases are released by the gas discharge pipe 10A and IOE and diffused throughout the film forming chamber, and these reactive gases react with the introduced plasma to deposit a reaction product film on the sample surface. At this time, the film formation rate is proportional to the plasma intensity and becomes faster at the center of the sample (Fig. 6), but at the same time, near the periphery of the sample, the gas discharge tube 1. Since the reactive gas is supplied near the plasma and the sample by the OB, deposition at the periphery of the sample W is also promoted (FIG. 7), and as a result, a uniform reaction product film is formed on the sample surface. In this case, the flow rate of the reaction gas introduced from the gas discharge pipe 10A and IOB can be automatically controlled by the valve 11 according to the film forming conditions.

本装置を用いて実際にシリコンウェハのCVDを行った
ところ、150mmφのウェハで±3%以内の成膜均一
性を得ることができた。
When CVD was actually carried out on silicon wafers using this apparatus, it was possible to obtain film formation uniformity within ±3% on 150 mmφ wafers.

尚、上記実施例においては、ガス放出管として2つの大
小のリング状のガス放出管10A、10Bを設けた構成
を示したが、ガス放出管の数、大きさ及び形状は本実施
例に限定されるものではなく1例えばプラズマから雑れ
た位置に設置されるガス放出管は必ずしもリング状の必
要はなく、単管その他の形状であってもよい。また、試
料周辺近傍に設置されるガス放出管はリング状のみなら
ず、第3図に示すような四辺形のガス放出管10′ある
いは複数の単管で構成してもよく、要するに試料外周近
傍で且つプラズマ流近傍あるいはプラズマ流内に反応ガ
スを供給することができればよい。
In addition, in the above embodiment, a configuration was shown in which two large and small ring-shaped gas release pipes 10A and 10B were provided as gas release pipes, but the number, size, and shape of the gas release pipes are limited to this embodiment. For example, the gas discharge tube installed at a location away from the plasma does not necessarily have to be ring-shaped, and may be a single tube or other shape. In addition, the gas release tube installed near the sample periphery is not limited to a ring shape, but may also be composed of a quadrilateral gas release tube 10' as shown in FIG. 3 or a plurality of single tubes. It is sufficient if the reaction gas can be supplied near or within the plasma flow.

特に、試料周辺部での成膜速度を上げるためには第4図
に示すようにガス放出用の孔10aが試料周辺に向けて
穿設されたリング状のガス放出管10を試料Wの近傍で
且つプラズマ流P内に設置するとよい。以上、上記実施
例ではECRプラズマCVD装置の例について説明した
が、ECRプラズマを生起させて処理する手段であれば
何れでもよく、例えばエツチング装置でもよいことは説
明するまでもないことである。
In particular, in order to increase the film formation rate around the sample, as shown in FIG. It is preferable to install it within the plasma flow P. In the above embodiments, an example of an ECR plasma CVD apparatus has been described, but it goes without saying that any means that generates ECR plasma for processing may be used, such as an etching apparatus.

[発明の効果] 以上の説明からも明らかなように本発明のECRプラズ
マ処理装置は、成膜室における反応ガスの供給場所を変
えることにより成膜の均一性を大僧に改善することがで
き、特に大径ウェハに対し優れた効果を上げることがで
きる。
[Effects of the Invention] As is clear from the above explanation, the ECR plasma processing apparatus of the present invention can greatly improve the uniformity of film formation by changing the supply location of the reaction gas in the film formation chamber. In particular, excellent effects can be achieved on large-diameter wafers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す図、第2図及び第
3図はそれぞれ反応ガス放出管の一実施例を示す図、第
4図は本発明装置の他の実施例を示す図、第5図は従来
のECRプラズマ処理装置を示す図、第6図及び第7図
はそれぞれ反応ガスの供給場所を変えた場合の成膜速度
を示す図である。 1・・・・・・・マイクロ波源 3・・・・・・・放電室(プラズマ発生部)7・・・・
・・・成膜室(反応室) 10、IOA、IOB・・・・・・反応ガス放出管P・
・・・・・・プラズマ流 W・・・・・・・試料 代理人 弁理士  守 谷 −雄 第1図 ン 第2図   第3図 第4図 第5図 第6図 系ルζこn′ズ1プ゛ラズ76J−グ・丁イー44さK
12士(11′l逗 噛入廖牛−イh1 第7図 及jeπス2デ今ス゛マ;1濾ン(7丁「=に’SゝI
へt−1のイd
Fig. 1 shows an embodiment of the device of the present invention, Figs. 2 and 3 each show an embodiment of the reaction gas discharge tube, and Fig. 4 shows another embodiment of the device of the invention. FIG. 5 shows a conventional ECR plasma processing apparatus, and FIGS. 6 and 7 show the film forming speed when the reactant gas supply location is changed. 1...Microwave source 3...Discharge chamber (plasma generation part) 7...
... Film formation chamber (reaction chamber) 10, IOA, IOB ... Reaction gas discharge pipe P.
・・・・・・Plasma flow W・・・・・・Sample representative Patent attorney Moriya Z1 Plus 76J-G Ding E44K
12 masters (11'l 选入廖牛-ih1 Fig. 7 and jeπ s 2 d now ゛ma; 1 filter (7 tō ``=ni'SゝI
to t-1 id

Claims (1)

【特許請求の範囲】[Claims]  反応ガスを導入しECR反応によって試料表面の処理
を行うECRプラズマ処理装置において、前記反応ガス
を異なる部分に放出するガス放出管を少なくとも2つ有
しその一部のガス放出管は前記試料の外周近傍に設けた
ことを特徴とするECRプラズマ処理装置。
An ECR plasma processing apparatus that introduces a reactive gas and processes a sample surface by ECR reaction has at least two gas discharge tubes that discharge the reactive gas to different parts, and some of the gas discharge tubes are arranged around the outer periphery of the sample. An ECR plasma processing apparatus characterized in that it is installed nearby.
JP63127567A 1987-12-09 1988-05-25 Ecr plasma treatment apparatus Pending JPH01298170A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63127567A JPH01298170A (en) 1988-05-25 1988-05-25 Ecr plasma treatment apparatus
KR1019880016336A KR960014434B1 (en) 1987-12-09 1988-12-08 Plasma processing apparatus
US07/281,349 US4970435A (en) 1987-12-09 1988-12-08 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127567A JPH01298170A (en) 1988-05-25 1988-05-25 Ecr plasma treatment apparatus

Publications (1)

Publication Number Publication Date
JPH01298170A true JPH01298170A (en) 1989-12-01

Family

ID=14963236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127567A Pending JPH01298170A (en) 1987-12-09 1988-05-25 Ecr plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH01298170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131379A (en) * 1990-09-21 1992-05-06 Hitachi Ltd Plasma treating device
JP2002294460A (en) * 2001-03-28 2002-10-09 Tadahiro Omi Plasma processing apparatus with microwave and plasma process controlling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131379A (en) * 1990-09-21 1992-05-06 Hitachi Ltd Plasma treating device
JP2002294460A (en) * 2001-03-28 2002-10-09 Tadahiro Omi Plasma processing apparatus with microwave and plasma process controlling method

Similar Documents

Publication Publication Date Title
US6287643B1 (en) Apparatus and method for injecting and modifying gas concentration of a meta-stable or atomic species in a downstream plasma reactor
KR100322700B1 (en) Plasma processing apparatus provided with microwave applicator having annular waveguide and processing method
US7629033B2 (en) Plasma processing method for forming a silicon nitride film on a silicon oxide film
KR20170142885A (en) Gas mixing device and substrate processing apparatus
WO2021227943A1 (en) Semiconductor reaction chamber and atomic layer plasma etching equipment
KR100721504B1 (en) Plasma enhanced atomic layer deposition equipment and method of forming a thin film using the same
JPH02234419A (en) Plasma electrode
JP4280603B2 (en) Processing method
JPH01298170A (en) Ecr plasma treatment apparatus
US11414753B2 (en) Processing method
US11049699B2 (en) Gas box for CVD chamber
JP2705222B2 (en) ECR plasma CVD equipment
JPH01111876A (en) Thin film forming device by plasma treatment
WO2021199420A1 (en) Plasma processing device and plasma processing method
JPH0361377A (en) Microwave-plasma film depositing device
CN111549325B (en) Magnetron sputtering equipment
JPH07118468B2 (en) Dry thin film processing equipment
JPS63133617A (en) Plasma processing device
JPH0551746A (en) Thin film forming device
CN116145110A (en) Air inlet device and plasma equipment
KR19980077332A (en) Semiconductor wiring formation method
JPH02211624A (en) Plasma treatment device
JPH01222438A (en) Vapor growth device
JPH0198228A (en) Microwave ecr plasma processing device
JPH0372080A (en) Plasma vapor phase growth device